Safe Rendezvous and Proximity Operations

Kathryn Bradley, Brent Barbee
Emergent Space Technologies
Company Overview

• We provide engineering services and consulting to the civil, commercial, and military space industry

• Our core competencies include:
 – Spacecraft guidance, navigation and control
 – Command, control, and information systems
 – Mission operations automation and autonomy

• We became an AGI business partner in 2006
 – Focusing on systems integration of AGI products
 • Real-time implementations of ODTK, STK, etc.
Background

• Founded August 2001
 – 100% growth per year since inception

• Headquartered in Greenbelt, Maryland
 – Planning for expansion to Colorado and Texas

• Highly educated workforce
 – 30% PhD, 30% MS, 40% BS

• Experienced in multi-satellite development and operations
 – Globalstar, Iridium, HST HRV, ANGELS, EO-1/LS-7, SMEX

• Diverse customer base
 – NASA, NOAA, Air Force, DARPA, Private Industry
 – Cleared for DoD work

• Prime contractor partners
 – Lockheed Martin, Orbital Sciences, Northrop Grumman, Honeywell
 Technical Services, Swales Aerospace, General Dynamics, SpaceDev
Program Overview

• Commercial Orbital Transportation Services (COTS)
 – Supported the SpaceDev Team
 • On-Orbit Navigation and Rendezvous and Proximity Operations
 – SpaceDev’s Dream Chaser (DC), a variant of NASA’s HL-20 lifting body, is the proposed crew/cargo transfer vehicle
 – With the International Space Station (ISS) as the destination, safe rendezvous and proximity ops are paramount
 – Emergent developed algorithms for safe DC/ISS rendezvous and proximity operations and used high-fidelity modeling and simulation to visualize their performance
Challenge

• Compute safe approach maneuvers for DC/ISS approach, prox ops and docking

• Interface in-house algorithms with AGI software for visualization

• Create animation of approach trajectories and docking
 – Using SpaceDev-provided model
 – Displaying a “keep out” ellipsoid

• Do this rapidly since we were on a tight schedule
Solution Criteria

- Provide visualization as rendezvous trajectories are computed
 - Ability to accept maneuver data from in-house software
- Display relative trajectory between ISS and DC
- Utilize accurate spacecraft models and textures
- Display ISS “keep out” ellipsoid
- Intuitive user interface for rapid development
Alternative Solutions

• Celestia
 – Only provided visualization

• In-House visualization software
 – Too much time required for development

• STK product suite
 – Provides clean interface for quick integration
 – Provides excellent graphical displays
 – Provides means to generate post-simulation movies for marketing purposes
Solution

• STK/Advanced VO
 – Provides accurate visualization of proximity operations and docking
 – Accurate models and textures

• STK/Connect
 – Provides interface with in-house algorithms
 – Easy to use and implement in a short development period

• STK/Astrogator
 – Provides multiple maneuver propagation capability

• ODTK for future work
 – Provides navigation algorithms
Results

• Time Savings
 – In-House
 • Customer model conversion: 10 hours
 • In-house visualization software development: 120 hours
 • Interface with in-house algorithms: 40 hours
 • Capture animation: 25 hours
 • Total Hours: 195 hours
 – STK/In-House
 • Customer model conversion: 15 hours
 • In-house visualization software development: 0 hours
 • Interface with in-house algorithms: 10 hours
 • Capture animation: 20 hours
 • Total Hours: 45 hours
 – Total Savings: 150 hours

* Numbers are approximate
Contact Information

Kathryn Bradley, kate.bradley@emergentspace.com

Brent Barbee, brent.barbee@emergentspace.com

Emergent Space Technologies, Inc.

http://www.emergentspace.com

301-345-1535