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ESTIMATION OF INSTANTANEOUS MANEUVERSUSNG A HXED
INTERVAL SMOOTHER
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An alternative to the typical means of maneuver reconstruction
and calibration is presented which uses the orbit determination
process to directly provide an egtimate of short duration orbital
maneuvers. The proposed method uses a sequential filter and
fixed interval smoother to edimate the satellite state forward and
backward across the time of the maneuver. The reaulting
maneuver egtimate, which is derived directly from the output of
the smoother, is supplemented by the existence of an associated
covariance. Examples of this process usng both real and
smulated tracking data are presented in conjunction with a
comparison to standard recondtruction and calibration methods
using least squares.

INTRODUCTION

Orbita maneuvers are part of norma operations for many satellites. Maneuvers are
performed for a variety of reasons including the establishment and maintenance of the
operationa orbit. The operaiona execution of maneuvers usualy contains both amaneuver
planning phase and post-maneuver anaysis to calibrate the maneuver. The maneuver
planning process typicdly includes a verification that all mission constraints are being met
prior to, during and after the maneuver in addition to design of the desired maneuver. Post-
maneuver anaysis strives to determine the actua maneuver resulting from the thrusting by
using orbit determination results from tracking prior to and after the maneuver. This
process, sometimes referred to as maneuver reconstruction and cdibration, is often done by
applying the maneuver design tools to determine the maneuver required to link the pre-
maneuver orbit estimateto the post maneuver orbit estimate. The reconstructed maneuver is
then anayzed to yield caibration information such as the efficiency of the engine and the
presence of errorsin the thrust direction.
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There are two main reasons to cdibrate a maneuver after it has been executed by the
spacecraft. The first is to assess the success of the maneuver and to determine if any
corrective action must be taken, either afine ‘vernier' correction or possibly a quick major
energy correction in the case of adrasticaly under-performing engine. The second reason for
cadibrating isto establish atrend in the overall propulsion system performance. U sudly after
a few maneuvers it is possible to cdibrate the system and to use the resulting cdibration
factor when planning subsequent maneuvers. For instance, when planning a maneuver using
a propulsion system calibrated at two percent ‘cold’ (underperformance), the anayst may
purposely increase the duration of the next maneuver by two percent to eliminate the need
for additiona maneuvers.

Many orbit maintenance maneuvers, such as those used for groundtrack control or
drag make-up, are smadl in magnitude and are typically executed over a very short duration
relative to the orbita period of the satellite. In such cases, the maneuvers may be modeled as
instantaneous events to a high degree of accuracy. Maneuvers of larger magnitude can aso
be accurately modeled as being instantaneous if a high thrust engine is used and the burn
duration remains small relative to the orbita period. The anaysis of these nearly
instantaneous maneuversisthe focus of this study.

CONVENTIONAL MANEUVER ESTIMATION AND CALIBRATION

Most agorithms for maneuver cdibration are based on the use of estimates of the
orbit produced by least squares orbit determination processes. The basic ideaisto determine
the maneuver that connects a pre-maneuver orbit estimate to apost-maneuver orbit estimate.
A farly simple method commonly used to determine the effectiveness of a maneuver
involves the anayst determining the point of closest approach of the pre-maneuver orbit
estimate to the post-maneuver orbit estimate and taking the difference of the velocity
components to be the observed instantaneous maneuver, DV, . An efficiency factor can be
caculated by comparing thisto the planned (desired) maneuver, DV;:

DV, - DV, |

e=1+
DV,

This method is more accurate when the duration of the maneuver is small so that the
approximation a the point of closest approach is smal. A comparison of the vector
difference between the planned and observed maneuvers may aso give an indication of any
error in the direction of the maneuver. We note that this method does not account for the
discontinuity in position a the time of closest approach nor does it provide a measure of
confidence in the estimated maneuver. Further, the time of closest approach may differ from
the known centroid of the maneuver.

Another common method to cdibrate a maneuver is to examine the effect on an
orbital element expected to change as a result of the maneuver. For example, many
maneuvers are designed to only affect the semi-mgjor axis. The pre-maneuver semi-magor
axis, a;, can be cdculated from the pre-maneuver state. Likewise, a post-maneuver semi-



maor axis, a;, can be caculated from the planned post-maneuver trgectory. An efficiency
can be caculated as:

e=%"3

a; - g

where a,is the semi-mgjor axis calculated from the observed post maneuver trgectory. This

technique is applicable to longer duration burns, but does not yield any insight into errorsin
thrust direction.

Variations on these techniques are dso used. Sometimes the efficiency is put back
into the maneuver planning software and the maneuver is reconstructed to compare with the
observed parameter. This process is then repeated with the efficiency factor differentialy
corrected until the difference between the observed and predicted parameter is considered
small.

A more robust technigue employs multi-dimensional differentia corrections with
least squares to simultaneously estimate the efficiency factor and direction errors'. In this
method, most conveniently performed with software, the orbit estimate a the time of
maneuver ignition taken from the pre-maneuver orbit determination result is used as the
starting point. The software then reconstructs the maneuver to caculate a post-maneuver

orbit state. This post maneuver reconstructed orbit state, X5, can be compared with the
post-maneuver orbit estimate, X, to determine how well the maneuver was modeled. By
numericaly perturbing some of the maneuver modeling independent parameters a sensitivity

matrix, S, can be constructed, with each term representing the change in one component of
X, as afunction of one independent parameter. X, is typically represented as the six

Keplerian elements. The independent parameters for finite burns are usudly a thrust
efficiency factor and two pointing controls such as pitch and yaw. For impulsive burns, the
]

instantaneous change in velocity, DV, vector can be used. In both cases, the size of S is6
rows by 3 columns. A least squares technique is then used to compute alinear estimate of
the correction to the independent parameters. Adding the corrections to the parameters
used during planning, the maneuver is again reconstructed, and the process repeated until the
corrections to the parameters are considered smdl. In this procedure, the position
discontinuity is removed, but there is still no information available regarding a confidence
level in theresult.

AN ALTERNATIVE APPROACH

In this paper we present an dternative to the typica maneuver reconstruction and
cadibration procedure. This dternative method uses the orbit determination system directly
to provide an estimate of an instantaneous maneuver. The orbit determination method
consists of asequentia filter used to move forward across the maneuver and a fixed interva
smoother to move backwards across the maneuver. The sequentid filter servesto process dl



of the tracking data prior to the maneuver to provide an optima pre-maneuver state estimate
and covariance. The sequentia filter then continues across the maneuver, adding the
uncertainty in the maneuver to the velocity sub-matrix of the covariance. Tracking datais
processed after the time of the maneuver until the uncertainty in the state estimate returnsto
anormda non-maneuver condition. At that time, the filter state and covariance are used to
initialize the fixed interval smoother and the smoothing processis run backwards until atime
prior to the maneuver. The smoother serves to map information provided by the post-
maneuver tracking data backwards and provides a smoothed estimate of the post-maneuver
state. The smoothing process continues acrossthe time of the maneuver to yield asmoothed
estimate of the pre-maneuver state. The difference between the pre-maneuver and post-
maneuver smoothed states may now be extracted as the estimate of the maneuver. The pre-
maneuver and post-maneuver smoothed covariance matrices are used to compute the
uncertainty associated with the estimate of the maneuver. It is noteworthy that no additiona
states are added to the estimation process and that this solution can be donein the process of
normal operationswithout the need for additiona tasks being performed by orbit anaysts.

NOTATION

Thefollowing notationa conventions are used:

Variables
t time
X true state
>A< Filter estimate of state

l

Smnooth estimate of state
dX Error in filter estimate of state

dX Error in smooth estimate of state

P Filter estimate of state error covariance
P Smooth estimate of state error covariance
Pd) Filter process noise covariance

f Linear state error transition matrix

J Non-linear state transition function



N ominal state change at instantaneous maneuver

bv Error covariance on nomina maneuver

DX oy Smnooth estimate of instantaneous maneuver

Pov Smooth estimate of instantaneous maneuver error covariance

dX BV Error in smooth estimate of instantaneous maneuver
Qubscripts

t, kth entry of aset of discretetimes (t,,t,,t,,...)

k atime t,

k+1|k Estimate et t,,, incorporating measurements up to t,

k+1k Transition from t, to t,,,

c a thetime of the maneuver centroid
FORMULATION

Snce the estimate of the instantaneous maneuver is extracted from the smoothed
state estimate history and the smoother operates on data produced by the filter, the
maneuver must be modeled in the filter processing. The filter process consists of series of
time updates and measurement updates. The time update procedure servesto move the filter
state estimate and state error covariance forward in time from one measurement to the next.
The measurement update serves to provide a new estimate of the state and state error
covariance a the time of a measurement based on the information contained in the
measurement. The instantaneous maneuver is accounted for in the filter viaincorporation in
thetime update agorithm. Thetime updateisformulated as:

)ZkﬂJk =J ()Zk|k’tk’tk+1)' (1)

_ ®
I:)k+]4k =f k+1,k I:)k|k f I;r+1,k + I:)k+14k ' (2)
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where J ()A(klk,tk,tkﬂ) represents the nonlinear transition of the filter state estimate, X,

from time t, to time t,,,. We define a maneuver centered on time t, and having aduration
of e such that

&k =t - 39 <t < é?c-'-gztkﬂg'
é 29 e 2 %)

For the case of an instantaneous maneuver wheree ® 0,
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the non-linear state transition simply consists of adding the instantaneous change in velocity
to the velocity components in the state. The state error transition matrix, f,,,, is the

identity matrix and the process noise covariance is the covariance associated with the
maneuver. The time update formulation across an instantaneous maneuver in the filter may
therefore bewritten as,

Xk = Xy T DXpy ©)
_ D
Bk = B * Fov (4)

Asthefilter processesinformation in the forward direction, information is saved to support
the smoothing process. The inputs to the smoother resulting from a filter time update
consist of the updated state, the updated covariance and the process noise covariance.

The smoothing process starts with the initia smoothed state estimate and state error
covariance equd to the last estimates available from thefilter. If we stop thefilter a thetime

of the last measurement, t, , then the smoother isinitiaized as,
X = X (5
P =R (6)

The smoothing process then proceeds in the reverse time direction combining the current
smoothed estimate and state error covariance with the filtered estimates according to*?,

, - -1
_— _ ~ ~ e/\ _ _ T u e ~
X = Xiw + B épk|k +f kil,k Pk?ik ( k:l,k) f [J (xk+]JL'tk+l’tk)_ xk|k]' (7
P = B + Ak |_Pk+1|L - Pk+1|k_|A-<r,k+11 (8)

where,



A = Pk|kf kT+1,k Pk_+114k' (9)

Egs (7-8) present a modification of the smoother implementation given in Meditch' and
Rauch? to use afull non-linear state transition to move the state estimate backwards in time.
In the case where the smoother traverses an instantaneous maneuver, the non-linear state
transition simplifiesto

J (Xk+JJL'tk+1’tk): Xy = DXpy - (10)

Recdling that the state error transition matrix, ., , , becomes the identity matrix, Egs. (7-
8) may be simplified to

s 0 ~ SN l:l_ ~ ~
Xk|L - Xk||< + Pk|k épk|k + PD(\PQ [(xk+uL - DXDV)' xk|k]' (11)
Pae = Pkt Akt |_Pk+1|L - Pk+1|kJA-<r,k+11 (12)

where,
-p p-!
k+1 T T kk ' k+lk "
A P, P
Werecall that the above simplifications are possible dueto transition across an instantaneous

maneuver, t, =t,,,. The smoothed estimate of the instantaneous maneuver is then given by
differencing the smoothed pre-maneuver and post-maneuver states,

~ ~

XDV = Xk+JJL - Xk|L- (13)
Theerror covariance of the maneuver estimate isformally expressed as,
~ = = = ARl
PDV = El_(dxk+u|_ - dxk|L)(dxk+m_ - dxk|L) J-’ (14)
which can be expanded to theform

Pov = I:)le + Pk+JJL B El.dxledkaﬂJLJ' El.dxkﬂil-dkal'-J" (19)

Eqg. (15) implies that the covariance of the maneuver estimate would simply be equa to the
sum of the pre-maneuver and post-maneuver covariance matrices if the pre-maneuver and
post maneuver states were not correlated. Note that last two terms of Eq. (15) are not
symmetric, but the sum of these terms is symmetric. The error form of Eq. (11) givesthe
relationship between pre-maneuver smoothed errors and post-maneuver smoothed errors,

. w 1
= A A U Lo ~
dxk|L = dxk|k + Pk|k épk|k + PD(\:/DQ [dxk+uL - dxk|k . (16)

Both sides of Eq. (16) are post multiplied by d)Z,LHL to yield,

L, “w ~-1
va v Y va 5 €5 @u V2 Y V2
dxk|LdXI-<r+1|L - dxk|kdka+u|_ + I:>|<||< épk|k +Py H [dxk+1|L - dxk|k] dx|<T+u|_- (17)

Apply the expectation operator to both sides of Eq. (17) and rearrangetermsto give



E[d;(—kmd)ZILJJL] = A<,k+lﬁ<+uL + [l - A<,k+l] E|_d)2 k|kd>~(—|1—+JJLJ ’ (18)
where

1
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Snce the first term on the right hand side of Eq. (18) is symmetric, substituting this result
into Eq. (15) to yields,

~

Pov = IE;|<|L + 5k+]4L - 2A<,k+1|5k+JJL ) [l ) A<,k+1]{E|.d)A<k|kd)ZII+HLJ+ E[d)ZkJrHLd)A('IlkJ}' (19)

Computation of the last term requires a model of the cross covariance between the pre-
maneuver estimate from the filter and the post-maneuver estimate from the smoother.
However, the significance of this cross covariance should diminish as the number of
processed measurements after the time of the maneuver increases and as the time span of
measurements after the time of the maneuver increases. The cross covariance is multiplied by

a positive definite matrix,[l - Aﬂkﬂj, which ranges from the identity matrix when the

uncertainty in the maneuver is large to a zero matrix when knowledge of the maneuver is
perfect. In lieu of constructing a model for the computation of the cross covariance, we
assume that the contribution of the cross covariance on the complete maneuver error
covariance will be smadll given that enough measurements are processed after the time of the
maneuver and that the orbit is observable based on those measurements. Snce the cross
covariance term would serve to reduce the size of the maneuver error covariance, the
maneuver error covariance computed by ignoring the cross covariance should be
conservative. The following is therefore the proposed computation for the maneuver
estimate covariance:

PDV @Pku_ + I:>|<+14|_ - 2A<,k+1pk+1|L' (20)

Foecial Cases

Some insight into the expression given in Eqg. (19) can be gained by examining the
meaning of the last two termson theright hand side. A, ,,, aoproachesthe unit matrix asthe
uncertainty in the maneuver approaches zero, but A, ,,, approaches zero as the uncertainty

in the maneuver becomes large. For the case where theapriori uncertainty in the maneuver is
zero, Eq. (19) simplifiesto,

~ ~

Pov =B - B (21)
If we substitute the identity matrix for A, in Eqg. (8), we seethat
Poe = Bk + Bea - Bk (22)

for which Eqg. (21) issimplified to the expected result,

~

P,, =0. (23)



If, on the other hand, the uncertainty in the maneuver is large, then Eq. (19)
simplifiesto,

~

By = By * Py - {E[0X X7 |+ EJ0X,.aX7 ]} (24)

Assuming that a sufficient number of measurements are processed after the time of the
maneuver, the correlation between the pre-maneuver filter errors and the post-maneuver
smoother errors becomes small and Eq. (24) simplifiesto

~

Poy =Py + Py (25)

Redl test cases will, of course, lie between these two extremes. Eq. (25) can dso be used to
produce a conservative estimate of the maneuver error covariance under any conditions. The
following test cases will serve to explore the validity of the assumption tha the cross
covariance between thefilter and smoother solutionsis small.

TEST CASES

Two test cases are presented, one using a simulated reference trgectory and
simulated measurements and one based on read measurements where atruth trgectory is not
available. Both test cases were analyzed using STK/OD®, an orbit determination application
built by Anaytica Graphics, Inc.

Smulated Test Case

A test case was generated using simulated tracking data based on an orbit with the
approximate parameters given in Table 1. An instantaneous in-track maneuver with nominal
magnitude of 2 m/sis planned. The planned maneuver, the uncertainty associated with the
planned maneuver and the actual simulated maneuver are given in Table 2. The maneuver is
modeled based on its nomina vaues during the filtering and smoothing processes. The
force model for the smulation consisted of Earth gravity (21x21), aamospheric drag (Jacchia
71), solar radiaion pressure and third body perturbations. Process noise was added to the
computation of aamospheric density and solar radiaion pressure during the computation of
the simulated trgectory. Measurements were simulated from the set of ground stations
shown in Figure 1 and consisted of two-way range, two-way D oppler, azimuth and elevation
a afrequency of one measurement set per minute. The measurementsincluded time varying
measurement biases and white noise.

TABLE 1. APPROXIMATE ORBIT PARAMETERS FOR SMULATED TEST CASE

Epoch (GMT) a(km) e | (deg) | W(deg) | w(deg) | u(deg)

1 Jun 2002 12:00:00 | 6978.14 | 0.002 98.5 120.0 55.0 0.0




TABLE 2. SMULATED MANEUVER

Epoch 2Jun 2002 07:11:17.00 GMT
Nomina Sgma Smulated
Radia 0.0m/s 0.035m/s 0.0838 m/s
In-track 20m/s 0.100 m/s 2.0701 m/s
Cross-track 0.0m/s 0.035m/s -0.0513m/s

Figure 1. Tracking station locations

The ssimulation produced 30 passes of tracking dataover a19 hour interva before the
maneuver and an additiond 30 passes of tracking data in a 17 hour interval after the
maneuver. The tracking data was smulated a a one minute step. The simulated maneuver
time was between two tracking passes. The pass prior to the maneuver ended on 2 Jun 2002
06:16:30 and the first pass after the maneuver started at 07:43:00. Two covariance estimates
were computed for the estimated maneuver. The proposed covariance was computed
according to Eqg. (20) and an additiona covariance was computed according to Eq. (25). The
second covariance estimate, which will be more conservative, was computed to determinethe
importance of the subtracted term in Eq. (20). The resulting maneuver estimate from the
smoother isshown in Table 3. The covarianceinformation in Table 3isgiven in terms of the
square roots of the variances of the proposed, s, and the conservative, s’, estimates.
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TABLE 3. ESTIMATED MANEUVER FROM SMULATION

Smulated | Estimated | Error S s
(m/s) (m/s) (m/s) (m/s) (m/s)
Radia 0.0838 0.0805 -0.0033 0.006 0.025
In-track 2.0701 2.0696 -0.0005 0.002 0.006
Cross-track -0.0513 -0.0460 0.0053 0.011 0.012

Theresultsin Table 3 indicate that the smoothing process produced an accurate estimate of
the simulated maneuver. The estimate of the maneuver uncertainty based on the application
of Eq. (20) appears to be redistic while the estimate of the maneuver uncertainty based on
Eq. (25) appears to be overly conservative. The readism of the covariance estimate will be
examined further in the next section. An additiond solution, given in Table 4, was computed
where only one pass of tracking data was processed after the maneuver. Theresultsindicate
that the agorithm is able to produce a good result with a much smaller amount of post-
maneuver tracking.

TABLE 4. ESTIMATED MANEUVER FROM SMULATION (SNGLE PASS

Smulated | Estimated | Error S s
(m/s) (m/s) (m/s) (m/s) (m/s)
Radia 0.0838 0.0667 -0.0171 0.018 0.043
In-track 2.0701 2.0739 0.0038 0.011 0.014
Cross-track -0.0513 -0.0275 0.0238 0.030 0.031

Monte Carlo Analysis

A Monte-Carlo analysis was performed on the same simulation test case to vaidate
the covariance associated with the maneuver estimate. Each run in the Monte-Carlo analysis
consisted of selecting a new seed for the random number generator, then running the
simulator followed by the filter and the smoother. This way a different set of random
deviates was used in dl elements of the truth trgectory, simulated maneuver and simulated
measurements. The resulting maneuver estimate from the smoother was differenced with the
simulated maneuver to produce the error in the maneuver estimate. This error, a three
dimensiona vector, was then rotated into the principle axis frame of the maneuver estimate
error covariance. The principle axes and dimensions of the maneuver estimate covariance
ellipsoid are found viaamatrix decomposition of the form

11



lSDV(3x3) =U'DU (26)

where 5DV(3X3) , derived from the smoother, is the (3x3) sub-matrix containing the velocity

components relevant to the maneuver, U isan orthogona transformation matrix and D isa
diagona matrix. The elements of D are the variances in the principle axis frame and are
therefore the squares of the dimensions of the one sigma ellipsoid. The matrix U provides

therotation from the reference axes of By, 5,5 to the principle axes of the ellipsoid.

A single measure of the error relative to the covariance is constructed by determining
the n-sigmaboundary on which the error lies. The value of n isfound viathe solution of the
equation of the ellipsoid®,

Lo, ) (D) L Xy, ) =1, )

where d)zDV is the error in the maneuver estimate and U serves to rotate the error into the

principle axes frame. Eg. 27, which defines an ellipsoid with asurface of constant probability
density for aGaussian probability density function, is easily solved for n to give,

) 1
i \/(U dX,, ) DU dX,,)

The results of the Monte-Carlo andysis are plotted in a histogram and compared
against the expected values for a three dimensiona random vector in Figures 2-3. Figure 2
shows results based on the gpplication of Eq. (20) while Figure 3 shows results based on the
application of Eq. (25). The expected distribution is computed based upon the relationship
between the probability level and the number of standard deviations, n, for a three
dimensiona random vector is given by*,

(28)

rob.(n) = erfEN0. 2 g ler2) 29
prob,(n) &/Eg ) (29)

The expected percentages (Gaussian 3D) in each bin of the histograms given in Figures 2 and
3 were computed as the difference in probabilities, for the vaues of n which bound the bin,
multiplied by 100.

12



Normalized Maneuver Estimate Error Distribution
Sample Size:1000

@ Computed
Gaussian 3D

Percentage
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Figure 2. Normalized maneuver error distribution for proposed covariance

Normalized Maneuver Error Distribution
Sample Size: 1000

@ Computed
B Gaussian 3D

Percentage

0-0.5 05-1 1-15 15-2 2-2.5 25-3

n Sigma Range

Figure 3. Normalized maneuver error distribution for conservative covariance
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Figure 3 shows that the maneuver error covariance computed based on Eq. (25) is
clearly too conservative. Figure 2 showsthat the maneuver error covariance computed based
on Eqg. (20) is aso conservative, but is better than the results of Figure 3. While the
conservative gppearance of the proposed result indicates that the assumption that the cross
covariance between thefiltered and smoothed estimates could be ignored may not be correct,
auseful result isstill obtained.

Real Data Test Case

Tracking data for the EO1 spacecraft was used for the red data test case.
Approximate orbit elements for EO1 are given in Table 5. The tracking data consists of
Doppler, azimuth and elevation from the single DataLynx ground station, located in Alaska
N ot al of the passes contained D oppler data. The overall span of tracking data started on 19
May 2002 and ended on 12 July 2002. The specific period of interest for this study was 13
Jun 2002 when two short duration maneuvers were performed. We did not have accessto the
nomina maneuver values, but we were given the duration of the maneuvers. The maneuvers
were entered into the orbit determination software as having zero magnitude and spherical
uncertainties based on the duration of the maneuvers. The summary of known and
conjectured information on the maneuversisgiven in Table 6.

TABLE 5. APPROXIMATE ORBIT PARAMETERSFOREO1

Epoch (GMT) a(km) e | (deg) | W(deg) | w(deg)

19 May 2002 7085 0.0015 98.2 206.9 83.9

TABLE 6. MANEUVER INFORVIATION

Maneuver 1 Maneuver 2

at 14:08:00 a 16:35:44
Duration (sec) 45 26
Radial Sgma(cm/s) 20 10
In-track Sgma(cm/s) 20 10
Cross-track Sgma(cm/s) 20 10

The filter was run to process measurements across the time span of the maneuvers.
The maneuvers were in the middle of agap in the tracking data which started at 08:26:40 and
lasted until 20:02:10 which means there is no tracking data between the maneuvers. Four
passes of data after the maneuver were processed with the last pass ending a 14 Jun 2002
02:38:50. The smoothing process was then performed and the maneuver estimate from the

14



smoother isgiven in Table 7. We need to assesthe vaidity of the smoothed estimatesfor the
maneuvers. This was accomplished by inserting the smoothed estimates of the maneuvers
into thefilter and re-computing the D oppler residuas. Figures 4-5 show a comparison of the
Doppler residuds for the first pass after the maneuvers for the cases where azero maneuver
was applied and the smoothed estimate of the maneuver was applied.

TABLE 7. SMOOTHED MANEUVER ESTIMATES

Maneuver 1 Maneuver 2
Epoch/Duration (sec) 14:08:00 45 16:35:44 26
Radia/ Sgma(cm/s) -2.7 7.3 -10.7 94
In-track/ Sgma(cm/s) 11.2 1.0 -1.7 0.8
Cross-track/ Sgma(cm/s) 32 11.2 -4.5 9.0
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Figure 5. First pass Doppler residuals using first smoothed estimate

For the purpose of investigation, the process was iterated. A second smoother run,
incorporating the maneuver estimate from the first smoother run, produced a second set of
maneuver estimates. The same maneuver uncertainties were used in both runs. Comparisons
of the first and second smoothed estimates for each of the maneuvers are given in Tables 8-9
while the effect of the second smoothed estimate on the Doppler residuas is shown in
Figure 6. These comparisons indicate that performing the process twice yielded a minor
improvement in the Doppler residuals and that the two estimates were consistent on the
basis of their computed uncertainties.

TABLE 8. SMOOTHED MANEUVER 1 COMPARSON

Estimate 1 Estimate 2
Radia/ Sgma(cm/s) -2.7 7.3 -134 7.3
In-track/ Sgma(cm/s) 11.2 1.0 10.7 1.0
Cross-track/ Sgma(cm/s) 32 11.2 20 11.2

TABLE 9. SMOOTHED MANEUVER 2 COMPARSON

Estimate 1 Estimate 2
Radia/ Sgma(cm/s) -10.7 9.4 -17.3 94
In-track/ Sgma(cm/s) -1.7 0.8 -6.3 0.8
Cross-track/ Sgma(cm/s) -4.5 9.0 0.4 9.0
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Figure 6. First pass Doppler residuals using second smoother estimate

CONCLUSONS

A promising new method of solving for short duration maneuvers modeled as
impulses in the orbit determination process has been developed. The process provides an
estimate of the maneuver and an associated covariance with no additiona work required by
the operaor. The amount of additional code required to perform the computations is
extremely small and has virtuadly no effect on computationa performance since the size of
the estimation state is not atered. Smulations have been performed to verify the estimate
and error covariance of the maneuver and area data case has produced useful results. The
resulting error covariance appears to be conservative, but is a substantial improvement over a
covariance computed with the assumption tha the pre-maneuver and post-maneuver
estimates are not correlated. Additionad Monte-Carlo andyses are required to fully
characterize the performance of the agorithm.
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