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Abstract

The deployment of large constellations of
satellites both increases the potential for close
approaches between orbiting objects and increases
the importance of predicting potential collisions
between objects. Improvements and extensions to
existing close approach algorithms are presented
for application to constellations of satellites. Many
of the constellation configurations currently under
consideration consist of a distinct set of orbital
planes each containing a group of phased satellites
in circular orbits. Similarities in the orbits of the
satellites in the constellation are utilized to
improve the efficiency of close approach
predictions by as much as 62 percent. The
associated computation times are projected to be
reasonable for even the largest of the currently
proposed constellations.

Introduction

The probability of collisions between
orbiting objects is increasing with the launch of
each new satellite. The first confirmed collision
between two objects in orbit about the Earth, the
French satellite CERISE and a piece of debris from
a rocket body, occurred in July 1996." In light of
this, the daily maintenance and operations of large
constellations of satellites will probably include the
determination of potential future collisions
between the satellites that comprise the
constellation and other objects in orbit. These
potential collisions are often referred to as close
approaches. Because each orbiting body occupies a
volume in space, and because there is uncertainty
associated with the ephemeris of each object, exact
intersections of the trajectories are not the only
events of interest. It is more realistic to define an
exclusion zone about each satellite in the
constellation such that passage of another object
through the exclusion zone is considered to
represent an unacceptable risk to the satellite.
Close approaches are defined as the periods of time
when an object is within the exclusion zone of a

satellite in the constellation. Once future close
approaches have been identified, contingency plans
can be enacted to reduce the probability of
collision.

The basic problem is to predict when a
satellite of interest, the primary satellite, will have
an unacceptably high risk of collision with any
another Farth orbiting object. The source of
epemeris information for objects in Earth orbit is
usually the United States Space Command
(USSPACECOM)  satellite  catalogue  which
currently contains over 8000 objects.! The simplest
method of close approach prediction is to step
along the trajectories of the primary and each
candidate object, computing the distance between
the objects at each time step, and detect crossings
through the boundary of the exclusion zone. The
drawback of this simple technique is the large
computational burden that it imposes. To lighten
the computational load associated with this
approach, most methods for determining close
approaches between satellites include filters which
are used to eliminate candidate objects from
consideration if the range between the two
satellites cannot be less than the radius of the
exclusion zone.

Hoots et al.” designed a series of three
filters through which candidate objects have to
pass before a final determination of the close
approach distance is made. Two of the filters are
purely geometrical and one uses the known
properties of the orbital motion of the two objects.
These filters serve to “weed out” the majority of
the objects in the catalogue and greatly reduce the
number of computations needed.  After the
application of the filters, the trajectories of the
remaining candidate objects are sampled to
determine the actual close approach periods. The
exclusion zone is modeled as a sphere centered at
the primary satellite.  Alfano and Negron’
developed a technique for modeling the distance
between two objects using localized cubic
polynomials. In this approach, the geometrical



filters developed by Hoots et al.? are still applied,
but the final filter is removed and the trajectories
of the vehicles are sampled at large time steps (up
to 10 minutes) to create waveforms describing
either the relative distance’ or range rate* between
the satellites. This waveform provides a model
from which estimates of the time of closest
approach and the entrance and exit times for
crossing an exclusion zone boundary are made.
The work of Alfano and Negron allows the
exclusion zone boundary to be modeled as an
ellipsoid centered at the primary satellite to
account for uncertainties in the along-track
position of the objects being greater than the
uncertainty in the cross-track and radial directions.
Other authors have approached restricted versions
of the problem considering only the distance
between the orbital paths’ or only circular orbits®.

In this paper, we describe an algorithm for
the detection of close approaches based upon
Hoots et al.?> with extensions for constellations of
satellites. These extensions improve the efficiency
of the close approach algorithms when applied to
most constellations of satellites under current
consideration. The overall number of
computations can be reduced by taking advantage
of similarities in the orbits of the satellites in the
constellation. Most constellations under current
consideration, for example, are comprised of
satellites in circular orbits in a distinct set of orbital
planes. This information can be used to reduce the
need for application of some of the filters to once
for the entire constellation or once per orbital
plane. While the exclusion zone is modeled as a
sphere centered at the primary satellite, an
alternative definition of the exclusion zone could
be implemented.

Descrintion of Eil

The close approach filters applied to the
constellation problem are those described by
Hoots et al.” with some significant modifications
to the orbit path filter. The application of each of
these filters requires the specification of the time
interval over which the close approach analysis will
be performed and assumes that all objects are in
closed orbits. A candidate object which may still
have a possibility for a close approach with the
primary object after a filter has been applied is said
to have passed that filter. The purpose of these

filters is to eliminate candidate objects which
cannot come closer than the minimum allowed
separation distance to the primary satellite.

The apogee-perigee filter is used to
eliminate candidate objects which do not come
within the minimum allowed separation distance,
D, of having an overlap in altitude with the
primary object. Candidate objects are eliminated
only if they fail this filter at both ends of the time
period being considered. For constellations where
all of the satellites share the same basic range of
altitude, this filter need only be applied once. The
apogee and perigee for the filter are set to be the
extreme values as sampled from the entire
constellation.

This filter can be applied using a different
definition of the exclusion zone surface if the radial
dimension of the surface is bounded.

~rbit Path Fil

The orbit path filter is used to eliminate
candidate objects whose orbital paths, independent
of the location of the satellite, do not come within
the minimum allowed separation distance of the
primary object. For the case of two circular orbits,
in the absence of perturbations, an analytical
solution exists. In this case, the minimum distance
occurs along the line of intersection, the relative
line of nodes, of the two orbital planes. This
solution was used by Hoots et al.” as the starting
point for a Newton iteration scheme to solve the
more general problem where the orbit paths are
elliptical. For cases where either orbit has moderate
eccentricity, however, the Newton method usually
requires an initial guess which is closer to the final
solution than the points along the relative node in
order to converge.

A new algorithm has been developed for
the orbit path filter which solves the problem in a
slightly different way. The previous approach
solved for the minimum distance between the two
orbits and then compared that result to the
minimum allowed distance. The new method first
determines if the distance between the orbits can
be less than the minimum allowed distance, and
only solves for the minimum distance in a small



subset of the cases. The geometry of the two orbit
planes is shown in Figure 1.
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Figure 1. Orbit path geometry

The two orbit planes have a relative
inclination, /,, which may be defined using the

cross product of the two orbit normal unit vectors
as

sin/, :|)}JP><);C|, (1)

where );JP is the normal to the orbit plane of the

primary object and }IJC is the normal to the orbit

plane of the candidate object. Based on the relative
inclination, the minimum allowed separation
distance, D, and the radius of the orbit at the
relative node, it is possible to determine the
maximum distance from the relative node that a
satellite could be and still be within the minimum
allowed distance. The distance between one object
and the orbit plane of the other object may be
written as

+ D=rsinl, sinu,, (2)

where u, is the argument of latitude relative to

the intersection of the two orbit planes and 7 is
the orbit radius.  Figure 2 illustrates the
relationship between the relative inclination, the
relative argument of latitude and the distance
between the orbit paths.
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Figure 2. Relative argument of latitude

The orbit radius is expressed as
a(l-e?)
-

- 1+ecos( Uy —(a) —A))

3)

where a is the semi-major axis length, e is the
eccentricity, @ is the argument of perigee, A is
the argument of the relative node and u, is

defined by the relationship
Uy, =v+o-A, 4)

where V is the true anomaly. Equation (3) may
then be substituted into Equation (2) and solved
for u, to yield

Asinu, + Beosu, =1, (5)

where

1_ 2
A:MsinIRJresin(a)—A), (6)

and
B=ecos(w —A). (7)

When the substitutions

C=VA*+B*, (8)
A=Ccoso, 9)
B =Csino, (10)

are made in Equation (5), then a simple
trigonometric identity yields



sin(uR+5):%. (11)

Equation (11) has two solutions for u,

1
U, =—0+ sin"l(zj , (12)

1
U, =—0+7 —sinl(Ej . (13)

Equations (12)-(13) are each solved with both
possible signs in Equation(6) to yield a total of
four solutions, two of which bound each crossing
of the relative node. If the quantity 1/C is greater

than one, then the orbit paths never reach a cross-
track distance of D and the two orbit paths are
considered to be coplanar. In a coplanar case, the
orbit path filter and time filter are skipped.

Any close approach between the two
objects must occur in the range of values of

U defined by Equations (12)-(13). The next step

in the filter is to determine the minimum distance
between the two orbits inside the allowed range of
the relative argument of latitude for one of the
orbits. The minimum distance is determined by
computing the distances from the interval
endpoints and the relative node on the candidate
orbit to the primary orbit.

The distance between a point and an
ellipse may be computed using the following
algorithm.  First, the position of the candidate
object is projected into the plane of the primary
orbit as

Foow =TF (14)

where T 1is the transformation matrix between the
inertial coordinate system and the orbit plane

coordinate system with the P axis pointing

towards perigee and the P axis pointing along the
orbital angular momentum vector. The projection
of the candidate satellite position vector into the
orbit plane of the primary satellite is shown in
Figure 3.
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Figure 3. Projection of position vector into the orbital
plane

The eccentric anomaly associated with a vector
from the center of the ellipse through the point is
then computed from the in-plane component of
;;;’QW as

E= tanl{r—g}, (15)

where
Vp, =a€+rp. (16)
Since no minimization can be done on the out of

plane distance ‘VW‘ , the quantity to be minimized is

the distance from the in-plane projection of the
point to the orbit path. This distance can be
written as

d(E) = \/(acosE —rp) + bsinE—rQ)2 (17)

where b is the semi-minor axis length,

2
b=av1—e . We use the secant method to

minimize the function %dz(E) by driving the
value of its slope to zero. The initial bounds for
the secant method are given by the bounds of the
quadrant in which the projected point lies. The
slope of the distance function with respect to the
eccentric anomaly is given by

dd'=ar,, SmE —br,cosE —

(18)

a’e’ cosEsinE.



The secant method locates the eccentric anomaly
where the distance between the point and the
ellipse is a minimum,

Do =B, +r . (9

If the distance at the relative node is less
than the distance at both ends of the interval of the
relative argument of latitude, found by solving
Equation (2), and the distance at the relative node
is greater than the minimum allowed separation
distance, then we solve for the true minimum using
a parabolic approximation method. Otherwise the
minimum sample is considered to be the minimum
distance. If the minimum distance between the
orbit paths is less than the minimum allowed
separation distance, then the candidate object
passes the orbit path filter. To account for the
changing geometry due to the precession of the
orbit plane and the argument of perigee, we
perform this filter at the ends as well as at the
midpoint of the time interval. If the candidate
object passes the filter at any of these evaluations,
it is retained.

In application of the orbit path filter to
constellations of satellites, a computational savings
may be possible if the satellites within an orbital
plane have very nearly the same semi-major axis
length, eccentricity and argument of perigee. In
this case, it is possible to run the orbit path filter
once and apply the results to all of the satellites in
the plane. To account for the fact that the satellites
will not be in identical orbits, we can increase the
minimum allowable distance for this filter by the
maximum distance between the orbit of the first
satellite in the plane and the orbits of the other
satellites in the plane.  This value can be
determined by stepping around the orbits in the
plane, other than that of the first satellite, and
computing the distance to the orbit of the first
satellite at each step. The maximum distance, S,
to the orbit of the first satellite is computed for
each subsequent satellite in the plane and the
maximum of these is added to the value of D used
in Equation (2),

D

=D+S (20)

plane max *
This filter can also be applied to different
definitions of the exclusion zone if the radial and

cross-track dimensions of the exclusion zone are

bounded. In this case, the square root of the sum
of the squares of the maximum radial and cross-
track dimensions of the exclusion surface can be
used as the minimum allowed separation distance.

Time Fil

In order for a close approach to occur, not
only must the paths of the primary and candidate
objects come sufficiently close, but the two objects
must simultaneously be within the intervals
defined by the orbit path filter. The purpose of the
time filter is to compute the time intervals for each
satellite when it is within the minimum allowed
separation distance of the trajectory of the other
object. The two sets of intervals are then searched
for overlaps. Candidate satellites pass this filter if
one or more overlaps exist. Furthermore, only the
overlap intervals are retained for use in the final
filter.

The time intervals are computed for each
satellite based on the ranges of the relative
argument of latitude computed in the orbit path
filter and the related intervals for the primary
satellite. These intervals are converted to intervals
in mean anomaly for each satellite. The orbital
elements of the satellite at the midpoint of the
consideration interval are then used to determine
the times when each satellite is within the closest
mean anomaly interval around each of the two
nodes. The satellites will return to this geometry
on a periodic basis. Since the orbits are affected by
perturbations, however, we cannot simply add
multiples of the orbit period to generate the entire
set of time intervals. The period of interest is the
amount of time required to return to the same
argument of relative latitude. This period is
dependent upon both the mean motion of the
satellites and the motion of the relative node,

ROt - & @

The secular rates of change of the argument of
perigee, @ , the right ascension of the ascending

node, €2, and the mean anomaly, M, are modeled

as’

3 Jal
C&:Eaz(lszyn(SCOSZI_l)’ (22)



(‘S‘:—é L s ncos/ (23)
2a2(1—ez)
=7+ %%, (24)
where
=n, 1+3J2—a§(3c0521—1) (25)
4c12(1—e2)2 ’

a, is the equatorial radius of the Earth, J, is the
second zonal harmonic of the gravitational
potential, 7, is the unperturbed mean motion, &

is the rate of change of the mean motion and ¢ is
the time past the epoch of the element set. The
rate of change of the perturbed mean motion is
computed based on the change in the perturbed
mean motion over the span of the interval of
consideration.

Hoots et al.” give the rate of change of the
relative node to be

sin/
§LP = sinlz cosAc(@P —K‘S‘C> . (26)

§‘C = S%nIP cosAP(S‘S‘P —S‘S‘C) ,  (27)

sin/,

and a useful expression for computing successive
relative periods after k revolutions,

27 &
TRK =Ty pr l_k?% ’ (28)

where Ty . is the relative period in the absence

of drag effects (B=0).

The time intervals computed from the
time filter represent the periods of time when one
satellite is within the minimum allowed distance of
the orbit path of the other satellite. Since the time
filter is simply converting the ranges of relative
argument of latitude produced by the orbit filter
into time intervals, the application of the time filter
to a entire plane of the constellation is subject to
the same requirements as the orbit path filter. In
this case, the intervals computed for the candidate
object can be shared by all of the satellites in the

plane. The intervals for each satellite in the plane
must still be computed separately as do the
resulting overlaps with the intervals for the
candidate satellite.

The time filter can be applied to different
definitions of the exclusion zone subject to the
same conditions as the orbit path filter.

- ossing Ei

The final filter in the determination of
close approaches is the boundary crossing filter.
The purpose of this filter is to detect crossings of
the exclusion zone boundary during the intervals
remaining after the time filter. Since we are
considering the boundary to be a sphere, boundary
crossing are analogous to the range between the
two satellites crossing the threshold defined by the
minimum allowed separation distance. In this
filter, the range between the satellites is computed
during the intervals computed during the time
filter. These intervals are typically very short. For
cases where the interval duration is less than 10
minutes, we compute the range at the ends and
midpoint of the interval. If the range at the
midpoint of the interval is less than the range at
both ends, then we solve for the minimum using a
parabolic approximation method. Otherwise the
minimum range is simply the smallest of the
sampled ranges. If the minimum range is less than
the specified minimum allowed separation distance,
then a close approach has been found and the exact
crossing times are determined. If the time interval
is greater than 10 minutes in duration, then the
range is sampled at intervals of 10 minutes and the
minimum range determined. This is usually only
necessary in the case of coplanar orbits. There are
no efficiency improvements to the boundary
crossing filter during the computations of close
approaches for constellations of satellites.

Coplanar Orbits

If a candidate satellite is detected to be
coplanar with the primary satellite in the orbit path
filter, the orbit path filter and time filters are
skipped and the candidate satellite is subjected to

the boundary crossing filter over the entire interval
of consideration.



Results

The IRIDIUM™ satellite constellation
was selected for study because the number of
satellites in orbit at the time of this writing (34) is
fairly large and because the altitude regime allows
for a large number of candidate objects for close
approaches. Two issues were of interest in this
study: the ability of the constellation algorithms to
report the same close approaches as are reported
when the satellites are processed individually and
improvements in processing efficiency. A baseline
set of close approaches were determined by
processing the satellites in the constellation
individually for the period of 10 November 1997
00:00:00 to 12 November 1997 00:00:00 (GMT).
The satellites considered to be part of the
IRIDIUM™ constellation are listed in Table 1
along with an orbit plane designation created for
this analysis and the number of approaches closer
than 10 Km experienced by each of the satellites in
the constellation over the two day time period.

Table 1. Iridium constellation

SSC Number Plane # Close
Approaches

24792 6

24793

24794

24795

24796

24836

24837

8
3
3
5
6
6
4

24838

24839

24840

24841

24842

NERAE R

24869

24870

24871

24872

24873

ralo]lo]| s

24903

24904

24905

24906

24907

24944

24945

24946

24947

24948

24949

24950

24965

24966

24967

24968

~MlOO|OC|O|O ||| IN|]UV|[O]W]lW]|O]|U]|O

24969

ol ||l Im|im|m|mm|m|m|O|0O| 0|0

Total 229

The same analysis was performed three
more times using the constellation-specific
enhancements to the filters. In the first case, the
apogee-perigee filter was applied once for the entire
constellation. The orbit path, time and boundary
crossing filters were then applied individually for
each remaining candidate satellite. In the second
case, the apogee-perigee filter was applied once for
the entire constellation and the orbit path filter was
applied once per plane. The time and boundary
crossing filters were then applied individually for
each remaining candidate satellite. In the third
case, the apogee-perigee filter was applied once for
the entire constellation and the orbit path and time
filters were applied once per plane. The boundary
crossing filter was then applied individually for
each remaining candidate satellite. In all three
cases the same set of close approaches was found as
in the baseline case. The effect of sharing the
results of the various filters in the close approach
processing for a constellation is shown in Table 2.
The processing times shown in Table 2 were
generated on a Silicon Graphics O2 workstation
with a 150 MHz processor.



Table 2. Effects of sharing filters in close approach processing

Sharing Average # Candidates Passing Filter Close Processing Percent
Configuration Approaches Time (sec) Improvement
Apogee- Orbit Path Time
Perigee
None 2228 852 384 229 270 0%
Apogee-Perigee 2905 866 393 229 136 50%
Orbit Path 2905 866 456 229 113 17%
Time 2905 866 457 229 102 10%
P ical Consid . the fact that the mean motion of the satellites

Actual close approaches will not occur
exactly as predicted by the algorithm presented
here. The element sets from which the close
approaches are computed have an associated
uncertainty at the epoch of the element set. The
orbit prediction model used to generate ephemeris
from the original element sets is imperfect. The
combination of these two error sources leads to
predictions of position and velocity of the satellites
which in general degrade in accuracy over time.
Since close approaches are typically determined
using a relatively small separation distance, 10 Km
in our example, it is not long before the
uncertainties in the ephemeris greatly reduce the
reliability of predicted close approaches. Jenkins
and Schumacher' report that the reliability of
predicted close approaches 7 days out only have
about a 50% chance of actual occurrence.

To achieve accurate results using the
described filters, it is necessary to add a pad to the
minimum allowed separation distance regardless of
whether a single satellite or constellation is being
processed. In the case of the apogee-perigee filter
and the orbit path filter, the trajectories of the
satellites are assumed to be ellipses. Only secular
changes in the size and shape of the ellipses is
modeled by the filters. The addition of a pad to
the minimum allowed separation distance for these
filters accounts for the osculation of the orbital
elements that is not being modeled as part of the
filters. For the example presented here, a 20 Km
pad was added. The time filter also requires the
addition of pads on the computed intervals due to

computed from Equation(25) will not be exact for
each revolution. To account for this a pad of 10
seconds plus one second per revolution was added
to the time intervals for each satellite before the
overlaps were computed.

Conclusions

An efficient algorithm for determining
close approaches to the members of a constellation
of satellites has been presented. The algorithm is
based on a set of filters which are typically applied
in the determination of close approaches for single
satellites. A significant improvement in the orbit
path filter has been made which eliminates the
problems experienced by the existing algorithm
with orbits of moderate eccentricity. A total
computational savings of 62% was achieved for the
case study of the IRIDIUM™ constellation over a
two day time period. The most significant
improvement, and the easiest to implement, is the
sharing of the results of the apogee-perigee filter
over the entire constellation. This improvement
alone provides a computational savings of
approximately 50%. The processing time of well
under two minutes for 34 satellites can be
extrapolated to infer that the processing times for
even the largest constellations (Teledesic has 288
satellites in the currently proposed configuration)
will be under 30 minutes.

Recommendations for Future Work

A more robust method of determining the
appropriate pads to be used in the filtering process
would be useful. Currently, conservative padding




is applied to avoid missing close approaches. If
smaller pads could be used, the efficiency of the
algorithm would be enhanced. An additional filter
which removes coplanar members of the
constellation should be applied. This filter would
eliminate the need to process coplanar objects for
which close approaches are not possible. This
could be important in reducing the overall
processing time for large constellations, since
coplanar objects are the most computationally
intensive to investigate.
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