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ATTITUDE PARAMETERIZATIONS AS HIGHER DIMENSIONAL 
MAP PROJECTIONS 

Sergei Tanygin*  

A generalization is proposed for a class of three-parameter attitude representa-
tions that are formulated as a product of the unit rotation vector and various 
functions of the rotation angle. When related to a four-dimensional unit quater-
nion, these three-dimensional representations are shown to be analogous to 
higher-dimensional azimuthal map projections from a three-dimensional unit 
sphere. Several types of these parameterizations are examined. Their relation-
ships to the rotation matrix and their kinematics are derived. It is shown that 
kinematical passivity and optimality of the Rodrigues and modified Rodrigues 
parameters is a special case of the more general result that holds for a wider 
range of attitude representations. This result is used to formulate and compare 
passivity based control laws using various attitude representations.  

INTRODUCTION 

Connections between attitude parameterizations and higher-dimensional projections have been exam-
ined by several authors.1,2,3 These examinations share a common realization that Euler parameters (also 
referred to as unit quaternions or simply quaternions in the context of this paper) reside on a three-
dimensional unit sphere embedded in a four-dimensional space. For each location on this sphere there is a 
corresponding attitude and for each attitude there are two antipodal locations on the sphere. In Reference 1, 
Tsiotras establishes that a stereographic projection from the quaternion sphere onto a three-dimensional 
mapping hyperplane provides an elegant geometric interpretation for transforming quaternions into the 
Modified Rodrigues Parameters (MRPs). Schaub and Junkins in Reference 2, and later Mullen and Schaub 
in Reference 3 expand on this work by showing that projection point and mapping hyperplane can be ma-
nipulated to generate more general classes of attitude parameterizations called the Stereographic Orienta-
tion Parameters (SOPs) and the Hypersphere Stereographic Orientation Parameters (HSOPs) which include 
both the MRPs and the classical Rodrigues parameters (also referred to as Cayley-Rodrigues parameters) 
(CRPs).  

This paper proposes a further generalization of the projection approach which considers all azimuthal 
projections (a group in which stereographic projections form a sub-group). For azimuthal projections points 
on a sphere are located using meridian and colatitude coordinates measured with respect to a reference 
pole. 4 A meridian is a great circle that passes through the pole and the point in question, and colatitude is a 
great arc angle along the meridian from the pole to the point in question. The pole is mapped as the origin 
onto the hyperplane and any other point is mapped so that its meridian coordinate is preserved and its dis-
tance from the origin is some function of its colatitude. For a two-dimensional sphere embedded in a three-
dimensional space, meridian is fully defined by a single coordinate – its longitude or azimuth (hence, the 
name “azimuthal projections”). For a three-dimensional sphere embedded in a four-dimensional space, me-
ridian must be defined by two coordinates or by three coordinates with a norm constraint. On the quater-
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nion sphere meridian coordinates define a direction of the spin axis that rotates the reference attitude (the 
pole) into the attitude in question. Colatitude on the quaternion sphere is simply half of the rotation angle 
about that spin axis. Hence, there is a straightforward analogy between formulations of map projections and 
attitude parameterizations. 

This paper first introduces the projected rotation parameters (PRPs) and describes their relationship to 
rotation matrices and quaternions. The paper then defines the kinematics of PRPs and examines their pas-
sivity, optimality and nonlinearity. These results subsume those previously established for MRPs, CRPs 
and several other types of three-parameter attitude representations. Finally, the paper lists some commonly 
used azimuthal map projections and relates them to specific types of PRPs some of which are well known 
while others are new. 

PROJECTED ROTATION PARAMETERS AS AZIMUTHAL PROJECTIONS FROM 
QUATERNION SPHERE 

The standard azimuthal projection from a two-dimensional sphere onto a two-dimensional plane can be 
written as  

   ( )cos ( )x a r ϕ= , ( )sin ( )y a r ϕ= , (1) 

where x  and y  are the two planar map coordinates, ϕ  is the colatitude and a  is the azimuth (see Figure 
1 for a simple example where ( ) tanr ϕ ϕ= ). Here r  is some function of colatitude that defines the pla-
nar distance from the origin of a point projected onto the map. This function can be formulated in many 
different ways but in order to represent a well defined mapping it must satisfy the following mild restric-
tions: it must be monotonically increasing and it must pass through the origin. The first restriction ensures 
that larger colatitude angles correspond to larger distances on the map and that distinct colatitudes corre-
spond to distinct distances on the map. This is important in order to be able to unambiguously deproject 
points from the planar map back onto the sphere. The second restriction ensures that there are no holes in 
the map and that the map’s origin represents the reference pole of the sphere.  

It is straightforward to extend this standard two-dimensional formulation to higher dimensions. Written 
in vector form, the following represents azimuthal projection from an N  -dimensional sphere onto an N -
dimensional hyperplane: 

 ˆ ( )r ϕ=r n  (2) 

where n̂  is the N -dimensional unit vector that effectively defines the meridian using 1N −  coordinates 
and r  is still a function of colatitude that defines the distance from the origin of a point projected onto the 
hyperplane. Now consider a three-dimensional unit sphere embedded in a four-dimensional quaternion 
space. Let 0q̂  be the reference quaternion selected as the projection pole and let q̂  be some other unit qua-

ternion. Both quaternions represent their respective attitudes. Rotation from 0q̂  to q̂  can be represented as 
another quaternion as5 

 [ ]
T

T
0

ˆ ˆ ˆ ˆ ˆsin cos sin cos
2 2
φ φ

ϕ ϕ  = ⊗ = =   
Q q q n n , (3) 

where 0q̂  is a conjugate of 0q̂  and where ⊗  is a quaternion composition operator. Here n̂  represents the 

spin axis of any rotation that passes through attitudes defined by 0q̂  and q̂ . On the quaternion sphere it 
defines the meridian that passes through the corresponding quaternion points. The colatitude ϕ , which is 

the angle between 0q̂  and q̂ , is half of the angle of rotation φ  about n̂  that rotates the attitude repre-
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sented by 0q̂  into the attitude represented by q̂ . The projected coordinates’ relationship to attitude is more 
natural if they are formulated in terms of rotation angles rather than quaternion colatitudes on the quater-
nion sphere. So the PRPs are defined as 

 ˆ ( )r φ=r n . (4) 

Here the projection function r  is a monotonically increasing and continuously differentiable function of φ  

(at least within its domain between 0 and some maximum angle maxφ ) that also passes through the origin, 

i.e. (0) 0r = . 

In order to be practical as an attitude parameterization, the PRPs must have straightforward closed form 
transformations to and from quaternions and rotation matrices. It is clear from the definition of r  that these 
transformations must involve n̂  and φ , whose relationships with quaternions and rotation matrices are 

well documented. Let C  be the rotation matrix that corresponds to Q̂  as defined in Eq.(3), then5 

 § ¨ § ¨ ( )§ ¨2ˆ ˆ ˆexp( ) sin 1 cosφ φ φ= = + + −n n nC I  . (5) 

Here § ¨v  denotes a skew-symmetric matrix 

 § ¨
3 2

3 1

2 1

0
0

0

v v
v v

v v

− 
 = − 
 − 

v   (6) 

for any three-dimensional vector [ ]T
1 2 3v v v=v   and I  denotes an identity matrix. Once n̂  and φ  

are obtained from either Q̂  or C  using any one of the well-documented algorithms, r  can be constructed 

directly from Eq. (4). The ease of the inverse transformation from r  to either Q̂  or C  hinges on the sim-

plicity of the deprojection function 1r− . Note that because Q̂  and C  are written in terms of trigonometric 
functions of φ , it may not be necessary to obtain φ  explicitly. Instead, it may be possible to formulate 

both r  and 1r−  directly in terms of trigonometric functions of φ  and thus greatly simplify relationships 

between r  and Q̂  or C . In fact, as shown later in this paper most well known attitude parameterizations 
benefit from such simplifications. 

KINEMATICS OF PROJECTED ROTATION PARAMETERS 

For dynamical modeling, it is also important that the PRPs possess simple kinematical relationships 
with the angular velocity vector. Let ω  denote the angular velocity vector in the rotating frame. Differen-
tial equation for r&  can be constructed by a direct differentiation of Eq. (4)  

 ˆ ˆ( ) ( )r rφ φ φ′= +r n n& && . (7) 

Here and throughout the paper “ '” denotes partial differentiation of a function with respect to the specified 
argument. So in this case ( )r φ′  denotes differentiation of r  with respect to φ . Differential equations for 

n̂&  and φ&  are well-known5 and can be substituted in Eq.(7) to ultimately obtain 
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 ( )=r r ω& G , (8) 

where 

 § ¨ § ¨ ( )
2T 1 ( )sinˆ ˆ ˆ( ) ( )

2 2 1 cos
rr φ φφ

φ
′= − −

−
r nn r nG . (9) 

The inverse kinematics can be also obtained after some algebra: 

 ( )=ω r r&H , (10) 

where 

 § ¨ § ¨2T
2

1 sin 1 cosˆ ˆ ˆ( )
( ) ( ) ( )r r r

φ φ
φ φ φ

−
= − +

′
r nn n rH . (11) 

Note that, as expected, the direct and inverse kinematics matrices, ( )rG  and ( )rH , are inverses of each 
other. Note also that the relationship 

 Tˆφ = n ω&  with ˆ
( )r φ

=
rn  (12) 

provides an alternative to using the deprojection function 1r−  for obtaining quaternions or rotation matrices 
from r . If r  is numerically propagated using Eq.(8) then φ , and thus effectively quaternions and rotation 
matrices, can be numerically propagated alongside using Eq.(12). This makes it possible to kinematically 
employ projections for which the inverse function is either unavailable or too costly to compute in closed 
form. 

PASSIVITY OF PROJECTED ROTATION PARAMETERS 

In References 6, Tsiotras describes the importance of using kinematically passive attitude parameteriza-
tions. If passivity can be established then simple closed-loop control laws with certain optimality properties 
can be employed. In particular, Tsiotras identifies passivity and optimality of the MRPs and CRPs.6,7 This 
paper extends these results for all types of PRPs and demonstrates MRPs and CRPs fit within the more 
general framework. Following Tsiotras, consider the inner product of the input and output of the attitude 
kinematics. Note from Eq.(9) that 

 T( ) ( ) ( )r φ′= =r r r r rG G . (13) 

In other words, regardless of the choice of the projection function r , the vector r  of the PRPs is both the 
left- and the right- eigenvector of the matrix ( )rG  and has the associated eigenvalue ( )r φ′ . Note that this 
eigenvalue is positive by construction because the projection function is required to be a monotonically 
increasing function of φ . Using Eqs.(8) and (13), the inner product of r  and r&  can be related to the inner 
product of r  and ω :  

 T T T( ) ( )r φ′= =r r r r ω r ω& G . (14) 

The left-hand side of this equation can be replaced by 

 T ( ) ( ) ( ) ( )r r r rφ φ φ φ φ′= =r r && & , (15) 
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which leads to 

 T( ) ( ) ( )r r rφ φ φ φ′ ′= r ω& . (16) 

Here both sides can be divided by ( )r φ′  because by construction ( ) 0r φ′ >  and is, therefore, non-zero. 
The resulting expression  

 T( )r φ φ = r ω&  (17) 

can be used to establish passivity of the attitude kinematics. Consider the following storage function 

 
0

( ) ( )V r d
φ

ξ ξ= ∫r , (18) 

which is guaranteed to be a positive definite function of r  given the restrictions placed on the projection 
function r . Its derivative along the kinematical trajectories of r  is reduced to the following form by taking 
advantage of the relationship in Eq. (17): 

 T( ) ( )V r φ φ= =r r ω&& . (19) 

The fact that the derivative of the storage function is exactly equal to the inner product of the input ω  and 
the output r  of the dynamical system described by Eq.(8) indicates that this system is lossless (which is a 
particular type of passivity).6,8 In Reference 6 Tsiotras demonstrates that the kinematics of MRPs and CRPs 
are lossless by finding appropriate storage functions. This work uncovers a simple recipe for generating 
such storage functions for any type of PRPs examples of which are shown later in this paper. Of course, the 
proof described by Eqs.(18) and (19) makes it unnecessary to generate storage functions to verify passivity 
of individual types of PRPs: it shows that kinematics of any and all types of PRPs are lossless. 

This result has important implications for designing attitude control laws. Since kinematical passivity of 
PRPs has been established, it is straightforward to show that the following linear closed-loop control law  

 rk kω= − −τ r ω  (20) 

must (almost) globally asymptotically stabilize the dynamical system consisting of a cascade interconnec-
tion of the rigid-body dynamics and PRPs kinematics. Here τ  is the external torque generated by the con-
trol law, and 0rk >  and 0kω >  are two positive constants. The proof is entirely analogous to proofs put 
forward by Tsiotras for the MRPs and CRPs. See Reference 6 for further details. Note that selecting various 
projection functions in Eq.(4) opens new opportunities for shaping performance of the closed-loop attitude 
control. 

OPTIMALITY OF PROJECTED ROTATION PARAMETERS 

Consider now optimality of the closed-loop control using PRPs. In a limited sense proposed by Tsiotras 
for the MRPs and CRPs in Reference 9, kinematical optimality can be established using the following 
quadratic performance index9 

 { }2 T T
0

0

1( , )
2 rJ k dt

∞

= +∫r ω r r ω ω   (21) 

According to Hamilton-Jacobi theory, the optimal feedback ∗ω  must satisfy 
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 2 T T1 10 min ( )
2 2r

Wk ∂ = + + 
∂ ω

r r ω ω r ω
r

G   (22) 

from which 

 
T

T( ) ( ) W∗ ∂ = −  ∂ 
ω r r

r
G   (23) 

where ( )W r  is a positive definite value function. Let ( ) ( )rW k V=r r , then, using Eq.(18), ( )W r  can 
be expressed as 

 
( ) ( )

T

0 (0) (0)

( ) ( ) ˆ( ) ( )
( ) ( )

r

r r r
r

r rW k r d k dr k d
r r

φ φφ ξ ξ
ξ ξ

ξ ξ
= = =

′ ′∫ ∫ ∫
r

r

r n r  (24) 

so that it is easily differentiated with respect to r : 

 T( ) ˆ
( )r

W rk
r

φ
φ

∂
=

′∂
n

r
. (25) 

The result of this differentiation can be substituted into Eq.(23) and, with the aid of Eq.(13), reduced to 

 T( ) ˆ( ) ( )
( )r r

rk k
r

φ
φ

∗ = − = −
′

ω r r n rG .  (26) 

Therefore, the choice of ( ) ( )rW k V=r r  satisfies the optimality condition and ( )∗ω r  is the optimal con-
trol for which the optimal cost is given by  

 0 0 0( ) ( , ) ( )r rJ J k V∗ ∗= =r r ω r .  (27) 

These results demonstrate that the optimality established by Tsiotras for the MRPs and CRPs extends to 
any type of PRPs. 

LINEARITY OF PROJECTED ROTATION PARAMETERS 

Consider attitude stabilization using the PRPs with the kinematically optimal control law shown in 
Eq.(20). For a rigid body with the unit inertia matrix starting from rest the following differential equation 
describes the closed loop evolution of the rotation angle: 

 rk r kωφ φ= − −&& &  with 0 0( )tφ φ= . (28) 

The corresponding state error transition matrix for 
T

φ φ ∆ ∆ 
&  evolves according to 

 0 0

0 1
( , ) ( , )

( )r

t t t t
k r kωφ

 
=  ′− − 

&Φ Φ  with 0 0( , )t t =Φ I . (29) 
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Let 0φ±∆  be the expected (or the largest) perturbation of the initial rotation angle 0φ . Then the following 
nonlinearity index proposed by Junkins in Reference, and by Junkins and Singla in Reference can be com-
puted for the closed-loop system: 

 
0 0

0
0

( , ) ( , )
( , ) sup

( , )
F

F

t t t t
t t

t t
φ

φ
φ φ

ν ±∆

±∆

−
=

Φ Φ
Φ

. (30) 

Here subscript φ±∆  indicates perturbed trajectories starting with 0 0φ φ± ∆ . This index can be used to 
evaluate nonlinearity of the attitude error propagation using any type of the PRPs. 

EXAMPLES OF PROJECTED ROTATION PARAMETERS 

As stated previously, the fact that the projection function r  is subject to only mild restrictions permits 
many types of the PRPs. Consider first the Higher Order Rodrigues Parameters (HORPs) introduced by 
Tsiotras, Junkins and Schaub in Reference 10 as a generalization of the MRPs and CRPs. When examined 
as a sub-group within the PRPs, the HORPs provide interesting insights and exhibit relationships that are 
useful in subsequent derivations for other types of the PRPs. 

Higher Order Rodrigues Parameters 

In the context of this paper, the HORPs are analogous to azimuthal projections for which projection 
functions are given by 

 ( ) tan
2

r
m
φφ =  with 1, 2,3, 4,...m =  (31) 

Setting 1m =  produces the CRPs, 2m =  produces the MRPs, and the higher integer values of m  pro-
duce the corresponding higher orders of the HORPs. Let mρ  denote the mth order HORPs defined accord-
ing to Eq.(4) with the projection function from Eq.(31). Then the corresponding rotation matrix can be con-
cisely written in terms of the higher order Cayley transforms:10 

 § ¨( ) § ¨( )m m
m m

−
= + −ρ ρC I I . (32) 

The direct and inverse kinematics for mρ  can be derived from Eqs.(9) and (11), respectively. In these 

equations trigonometric terms equal to tan
2
φ

 can be recognized as ρ  - the magnitude of the CRPs. With 

the appropriate substitution of ρ , the direct kinematics matrix for mρ  becomes 

 § ¨ § ¨ § ¨
22 2

T T
2 2

1 11 1 1( )
2 2 2 2 2 2 2

mm m m
m m m m m m m

m m m mm m
ρ ρ ρ
ρ ρρ ρ ρρ ρ

 + +
= − − = − − + 

 

ρ
ρ ρ ρ ρ ρ ρ ρG I (33) 

and the inverse kinematics matrix for mρ  becomes 

 ( ) ( )§ ¨ ( )§ ¨
2

2T
2 2 3 2 2 2

2 2 2( )
1 1 1m m m m m

m m m m

m ρ ρ
ρ ρ ρ ρ ρ ρ

= − +
+ + +

ρ ρ ρ ρ ρH . (34) 
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In order to complete these expressions solely in terms of mρ , consider how ρ  can be expressed as a func-

tion of mρ . This can be done via the following identity for tangents of multiple angles: 

 

( ) ( )
( ) ( )

1 tan 1 tan 1 12 2tan tan
2 2 1 11 tan 1 tan

2 2

m m

m m
m m

m m m m
m m

i i i im mm i i
m i ii i

m m

φ φ
ρ ρφ φρ
ρ ρφ φ

   − − +    − − +   = = = =
− + +   − + +   

   

 (35) 

Derived on this identity, Table 1 lists expressions for ρ  as a function of mρ  for various orders. 

Table 1. Relationship between Magnitudes of CRPs and Various Orders of HORPs.  

m  ( )mρ ρ  

1 (CRPs) 1ρ ρ=  

2 (MRPs) 2

2
1

σρ
σ

=
−

, 2σ ρ=  

3 
( )2

3 3
2
3

3
3 1

ρ ρ
ρ

ρ

−
=

−
 

4 
( )2

4 4
4 2
4 4

4 1
6 1

ρ ρ
ρ

ρ ρ

−
=

− +
 

5 
( )

( )
4 2

5 5 5

2 2
5 5

10 5

5 2 1

ρ ρ ρ
ρ

ρ ρ

− +
=

− +
 

∞  
( ) ( )
( ) ( )
1 1 1 explim tan

1 exp 21 1

m m
m m

m mm
m m

i i ii i
ii i

ρ ρ φ φρ
φρ ρ→∞

 − − + −
= = = 

+− + +  
 

The last row in this table simply illustrates how the relationship in Eq.(35) can be taken to its limit. It is 
easy to verify that for 1, 2m =  substituting results from this table into Eqs.(33) and (34) recovers well-
known kinematical expressions for the CRPs and MRPs, respectively (see, for example, Reference 5). The 
same is true for the higher order parameterizations using 3,4m =  whose kinematical expressions can be 
compared to those listed in Reference 10.  

It is instructive to confirm the passivity of the HORPs by showing how their storage functions follow 
from Eq.(18). Substituting Eq.(31) into Eq.(18) and simplifying yields 

 ( )2 T

0

( ) tan 2 ln cos ln 1 tan ln 1
2 2 2m m mV d m m m
m m m

φ ξ φ φ
ξ  = = − = + = + 

 ∫ρ ρ ρ . (36) 
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It is trivial to verify that when 1, 2m =  this simple general expression matches the well-known storage 
functions found by Tsiotras for the CRPs and MRPs.6 

The nonlinearity index based on Eqs.(29) and (30) requires ( )r φ′  which for the HORPs is easily com-
puted by differentiating Eq.(31):  

 ( )2 21 1( ) 1 tan 1 ( )
2 2 2

r r
m m m

φ
φ φ ′ = + = + 

 
. (37) 

To summarize this section of the paper: the HORPs are particular types of the PRPs which afford ele-
gant transformations to and from rotation matrices via the higher order Cayley transforms. Their kinematics 
are passive and are easily derived within the general framework of the PRPs (although the derivations be-
come increasingly tedious at higher orders). These results are used in the next section where additional atti-
tude parameterizations are derived from various azimuthal projections. It is shown that these parameteriza-
tions can be related to the HORPs which simplifies many of the derivations. 

Standard Azimuthal Map Projections 

Given the analogy between azimuthal map projections and PRPs, it is natural to consider how some of 
the commonly used projections can be interpreted as attitude parameterizations. Note that many map pro-
jections include constant scaling factors designed to locally preserve distances or areas which is usually not 
a concern with attitude parameterizations. Also, note that azimuthal map projections use colatitude as one 
of their coordinates whereas attitude parameterizations are formulated using rotation angle. Therefore, cor-
respondence between map projections and attitude parameterizations is established to within some constant 
scale factor and the angles involved in attitude parameterizations are halved compared to angles involved in 
map projections.  

Some of the most common azimuthal map projections are included in Table 2 but the list is by no 
means exhaustive. 

Table 2. Azimuthal Projection – Attitude Parameterization Correspondence.  

Azimuthal Projection 4 Attitude Parameteriza-
tion*, ˆ ( )r φ=r n   ( )r φ  ( )r φ′  

Azimuthal Equidistant 

Equidistant Orienta-
tion Parameters 

(EOPs) (Rotation or 
Euler Vector), φ  

φ  1 

Gnomonic CRPs, ρ  tan
2
φ

 21 1 tan
2 2

φ + 
 

 

Stereographic MRPs, σ  tan
4
φ

 21 1 tan
4 4

φ + 
 

 

Orthographic 
Orthographic Parame-
ters (OPs) (Quaternion 

Vector Part), η  
sin

2
φ

 
1 cos
2 2

φ
 

                                                        
* Names of new attitude parameterizations are italicized. 
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Lambert Azimuthal 
Equal Area 

Lambert Parameters 
(LPs), λ  sin

4
φ

 
1 cos
4 4

φ
 

Breusing Geometric 
Breusing Parameters 

(BPs), β  tan cos
4 4
φ φ

 
3

3 cos
2

16 cos
4

φ

φ

+
 

Negative Perspective  

( D – distance from 
the center measured 
away from the pole)* 

 

Negative Perspective 
Parameters (NPPs), 

−p  

( )1 sin
2

cos
2

D

D

φ

φ

+

+
 

( )
2

1 cos 1
2

2 cos
2

D D

D

φ

φ

 + + 
 

 + 
 

 

Positive Perspective  

( D – distance from 
the center measured 

toward the pole) 

Positive Perspective 
Parameters (PPPs), 

+p  

( )1 sin
2

cos
2

D

D

φ

φ

−

−
 

( )
2

1 cos 1
2

2 cos
2

D D

D

φ

φ

 − − 
 

 − 
 

 

As stated previously, the advantage of connecting various types of the PRPs to the HORPs lies in the 
simplicity of the latter’s relationship with the corresponding rotation matrix. Indeed, if for some order m  
the expression for mρ  in terms of r  is known then substituting ( )mρ r  directly into Eq.(32) produces an 

elegant expression for C  effectively in terms of r . If in addition the differential relationships between 

mρ  and r  are known then both the direct and inverse kinematics can be easily derived from Eqs.(8) and 

(10). The direct kinematics can be recast using ( )m′r ρ  as 

 ( ) ( ) ( )m m m m′ ′= =r r ρ ρ r ρ ρ ω& & G  (38) 

and the inverse kinematics – using ( )m′ρ r  as 

 ( ) ( ) ( )m m m m′= =ω ρ ρ ρ ρ r r& &H H . (39) 

Of course, the same expressions can be computed directly from equations that use n̂  and φ  without first 

relating r  to mρ . Which approach is easier depends solely on a parameterization. All of the relevant ex-
pressions for the types of the PRPs introduced in this paper are presented in details in the Appendix. 

Mercator Map Projections 

The original interpretation of PRPs is based on azimuthal projections but it is possible to also adopt pro-
jection functions from other types of projections. An interesting example is the Gudermannian function 
which is used to convert between the latitudinal distance on the Mercator projection and the arc length on 
the sphere. The function, denoted gd , relates circular and hyperbolic trigonometric functions without 
using complex numbers. There are several formal definitions of this function some of which are listed 
below: 
                                                        
* Selecting various distances for this projection can lead to gnomonic, stereographic and orthographic projections.  
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0

( ) arcsin tanh( ) arctan sinh( ) 2arctan tanh sech( )
2

rrgd r r r t dt= = = = ∫ . (40) 

The inverse Gudermannian function is also well defined and has several forms some of which are listed 
below: 

 1

0

( ) arcsinh tan( ) arctanh sin( ) 2arctanh tan sec( )
2

gd d
φφ

φ φ φ ξ ξ− = = = = ∫ . (41) 

As a side note, consider an intriguing similarity between the Gudermannian relationship 

 
1( )tanh tan
2 2

gd φ φ−

=  (42) 

and another relationship uncovered by Tsiotras when examining the higher order Cayley transforms11 

 § ¨ § ¨ˆ ˆtanh tanφ φ=n n . (43) 

Although the Mercator projector is cylindrical and not azimuthal, it is possible to adopt its Gudermannian, 
or more precisely, its inverse Gudermannian mapping as the projection function for new types of the PRPs. 
Consider a family of projection functions based on Eq.(41): 

 1( ) ( ) 2arctanh tan 2arctanh ( ( ))
2 mr gd

m m
φ φφ ρ φ−= = =  with 1, 2,3, 4,...m =  (44) 

By construction these projections are related via hyperbolic tangent to the projections used by the HORPs. 
Let mμ  denote the mth order Mercator parameters (MPs) defined using the mth order projection function 
from Eq.(44). Then 

 2arctanh ( )m mµ ρ=  (45) 

and 

 tanh
2
m

m
µ

ρ =  (46) 

which provides an easy connection mρ  so that once again the elegant relationship to the rotation matrix C  

shown in Eq.(32) can be employed. The differential relationships between mμ  and mρ  are also straight-

forward. They, along with all the other relevant expressions involving mμ , are listed in the Appendix.  

To summarize, projection of the rotation angle via the Mercator projection function is equivalent to a 
two-step projection in which the first step generates the CRPs and the second step projects them via the 
inverse hyperbolic tangent. The same relationship is maintained between the higher orders of the MPs and 
the corresponding orders of the HORPs. Note that mμ  suffers from singularity when 2 1mρ =  which effec-

tively halves the domain of acceptable rotation angles φ : it changes from being less than mπ  for mρ  to 
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being less than 
2

mπ
 for mμ . For example, in order to be applicable within the same domain as the CRPs, 

the MPs must be second order and, therefore, be derived from the MRPs. 

ATTITUDE CONTROL EXAMPLES USING PROJECTED ROTATION PARAMETERS 

Consider how performance of the kinematically optimal control based on Eq.(20) differs when it is 
formulated using different types of PRPs. For all types, assume that the rigid body has the unit inertia ma-
trix and that it starts at rest with the initial rotation angle 0 170φ =  deg. Set 1wk =  and let rk  be selected 

for each type such that the initial rotational acceleration is the same: 0 10φ = −&&  deg/s2. For each type, 

propagate for 2  min both the state and the state error transition matrix and do it both for the nominal tra-
jectory and for the perturbed trajectories starting with 0 0.25φ±∆ = ±  deg. Resulting time histories for 

( )tφ , ( )tφ& , ( )tφ&&  and 0( , )t tν  are shown in Figures 2-5 for the following types of PRPs: OPs, CRPs, 
MRPs, EOPs, LPs, 3rd order HORPs, 4th order HORPs and 2nd order MPs. Figure 2 demonstrates that given 
the same limited control authority the CRPs and the 2nd order MPs significantly underperform compared to 
the other parameterizations. While rotation angle trajectories for the remaining parameterizations are gen-
erally close, the LPs outperform every other type of the PRPs by a significant margin. For example, the 
rotation angle falls below 5  deg after about 53  seconds when using the LPs but it takes about  70  sec-
onds to accomplish the same when using the MRPs. The rotational rate trajectories shown in Figure 3 gen-
erally follow the same pattern as the rotation angle trajectories in Figure 2: results for the CRPs and the 2nd 
order MPs are significantly different from the other parameterizations. The 2nd order MPs and particularly 
the CRPs generate rotational rates that do not peak initially as high as those for other parameterizations 
which causes the rotation angle trajectories to descent slower and ultimately leads to poorer control per-
formances for the CRPs and the 2nd order MPs. As designed using the appropriate selection of the control 
gain rk , all of the rotational acceleration trajectories shown in Figure 4 start at the same value of 

0 10φ = −&&  deg/s2. Generally, all trajectories remain clustered together, although as before, results for the 
CRPs and the 2nd order MPs are more distinct compared to the rest. These parameterizations cause faster 
declines in the magnitude of the rotational acceleration and also produce higher overshoots. It is interesting 
that relatively small changes exhibited in the control trajectories cause significant differences in the closed-
loop performance. The CRPs and the 2nd order MPs also exhibit the highest nonlinearities among the tested 
parameterizations (see Figure 5). The next highest (although much lower) nonlinearities are shown by the 
LPs and the MRPs. The rest of the tested parameterizations remain fairly linear: on average about one order 
of magnitude smaller than the CRPs. 

CONCLUSION 

This paper examines how geometry of map projections can be extended to higher dimensions and then 
adopted for attitude parameterizations. It is shown that a set of three parameters based on product of the 
unit spin vector and any monotonically increasing function of the rotation angle that also passes through the 
origin can be used to represent attitude. These parameterizations collectively called the projected rotation 
parameters (PRPs) are shown to be kinematically lossless which allows them to be used in simple linear 
control laws with certain optimality characteristics. It is shown how many existing three-parameter repre-
sentations of attitude fall within the general framework of the PRPs. Several new parameterizations in-
spired by standard map projections are introduced and their control performance examined numerically. 
Introducing various functions of the rotation angle for attitude parameterizations provides more opportuni-
ties for shaping attitude responses to the closed-loop control laws using these parameterizations. 



 13 

Figure 1. Example of Simple Azimuthal Map Projection Geometry: Gnomonic Projection. 
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Figure 2. Rotation Angle for Various Types of PRPs. 
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Figure 3. Rotational Rate for Various Types of PRPs. 
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Figure 4. Rotational Acceleration for Various Types of PRPs. 
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Figure 5. Nonlinearity Index for Various Types of PRPs. 

 

APPENDIX: DETAILED DESCRIPTIONS OF VARIOUS TYPES OF PROJECTED ROTATION 
PARAMETERS 

The following tables include closed-form expressions describing various relationships for the types of 
the PRPs introduced in this paper. 

Table 3. Transformations between Various Types of PRPs. 

Attitude Parame-
terization, r  ( )mr ρ  ( )mρ r  

EOPs, φ  2arctan= ρφ  tan
2

=ρ φ
 

CRPs, ρ   
1 2

2
1 σ

= =
−

ρ ρ σ  1 =ρ ρ  

MRPs, σ  2=σ ρ  2 =ρ σ  

OPs, η  22

1 2
11 σρ

= =
++

η ρ σ  
2

1
1 η

=
−

ρ η  

LPs, λ  2

1
1 σ

=
+

λ σ  
2

1
1 λ

=
−

σ λ  
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BPs, β  
24

1
1 σ

=
+

β σ  u=σ β , 
4 24

2
u β β+ −

=  

NPPs, −p  2

2
1 wσ− =

+
p σ ,

1
1

Dw
D

−
=

+
 

y− −=σ p , 2

1 zy
wp

−
−

−

−
= , 

21z wp− −= −  

PPPs, +p  2

2
1 / wσ+ =

+
p σ  

y+ +=σ p , 2

1
/
zy

p w
+

+
+

−
= , 

21 /z p w+ += −  

MPs, mμ  2arctanh ( )m m=μ ρ  tanh
2
m

m =
μρ  

Table 4. Differential Transformations between Various Types of PRPs. 

Attitude 
Parameteri-
zation, r  

( )m′r ρ  ( )m′ρ r  

EOPs, φ  

Τ

2

sin( ) 1
tan

2

φ φ
φ φ φ

  ′ = − −  
  

ρ I φφ
φ  

Τ

2

1( ) tan 1
2 sin
φ φ

φ φ φ
  ′ = + −  

  
ρ I φφ

φ  

CRPs, ρ  1( )′ =ρ ρ I  1( )′ =ρ ρ I  

MRPs, σ  2( )′ =σ ρ I  2 ( )′ =ρ σ I  

OPs, η  ( )2 T( ) 1 η′ = − −η ρ ηηI  
T

22

1( )
11 ηη

 
′ = + −−  

ηηρ η I  

LPs, λ  ( )2 T( ) 1 λ′ = − −λ σ λλI  
T

22

1( )
11 λλ

 
′ = + −−  

λλσ λ I  

BPs, β  
T

2

1( )
2u u

 
′ = − 

 

βββ σ I  
T

2 2( )
2

u
u β

 
′ = + − 

ββσ β I  

NPPs, −p  
( ) T

2

11( )
z

y p
− − −

−
− −

 −
′ = − 

 

p p
p σ I  

( ) T

2

1
( )

z
y

z p
− − −

− −
− −

 −
′ = + 

 

p p
σ p I  

PPPs, +p  
( ) T

2

11( )
z

y p
+ + +

+
+ +

 −
′ = − 

 

p p
p σ I  

( ) T

2

1
( )

z
y

z p
+ + +

+ +
+ +

 −
′ = + 

 

p p
σ p I  
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MPs, mμ  

T
3

1

csch( ) 1( )
csch( )

tanh
2

m m
m m m m

m m

m
m

µ µ
µ µ

µ
µ

−

 −′ = − 
 

 ×  
 

μ ρ μ μI

 

T
2

csch( ) 1( )

1 tanh
2

m m
m m m m

m

m

m

µ µ
µ

µ
µ

 −′ = + 
 

×

ρ μ μ μI

 

Table 3. Rotation Matrices for Various Types of PRPs.  

Attitude Param-
eterization, r  

( )rC  

EOPs, φ  § ¨ ( )§ ¨
1

2ˆ ˆsin 1 cos tan tan
2 2

φ φ
−

  
= + + − = + −  

  
n n

© ¬ © ¬ª ­ ª ­ª ­ ª ­« ® « ®
C I I Iφ φ

 

CRPs, ρ  § ¨ § ¨ § ¨( ) § ¨( ) 12
2 2

2 2
1 1ρ ρ

−
= + + = + −

+ +
ρ ρ ρ ρC I I I  

MRPs, σ  ( )
§ ¨

( )
§ ¨ § ¨( ) § ¨( )

2
2 22

2 22 2

1 84
1 1

σ

σ σ

−−
= + + = + −

+ +
σ σ σ σC I I I  

OPs, η  § ¨ § ¨ § ¨ § ¨
1

22

2 2

1 12 1 2
1 1

η
η η

−
  
  = + − + = + −
  − −  

η η η ηC I I I  

LPs, λ  

( ) § ¨ ( )§ ¨

§ ¨ § ¨

22 2 2

2 2

2 2

4 1 2 1 8 1

1 1
1 1 1

λ λ λ

λ λ

−

= + − − + −

   
= + −   

− −   

λ λ

λ λ

C I

I I
 

BPs, β  

( )§ ¨ § ¨ § ¨ § ¨
2 2

27 3 6 1 14 2 8u u u
u u

−
   = + − + = + −   
   

β β β βC I I I  

4 24
2

u β β+ −
=  

NPPs, −p  § ¨ § ¨
2 2

1 1
y y

−

− −
− −

   
= + −   

   
p pC I I  

PPPs, +p  § ¨ § ¨
2 2

1 1
y y

−

+ +
+ +

   
= + −   

   
p pC I I  



 18 

MPs, mμ  tanh tanh
2 2

m m
m m

−
   

= + −   
   

μ μ© ¬ © ¬ª ­ ª ­ª ­ ª ­« ® « ®
C I I  

Table 4. Direct Kinematics for Various Types of PRPs.  

Attitude Parameterization ( )=r r ω& G  

EOPs, φ  
( )

( ) ( )T
2

1 cos1 sin 1 1
2 2 1 cos 2sin

φ φφ φ
φ φ φ

+ 
= × + + − −  

ω ω ω&φ φ φ φ  

CRPs, ρ  ( )T1
2

 = + × + ρ ω ρ ω ρ ρ ω&  

MRPs, σ  ( )2 T1 1 11
2 4 2

σ = × + − + σ σ ω ω ω σ σ&  

OPs, η  21 1 1
2 2

η= × + −η η ω ω&  

LPs, λ  ( )
2

T

2 2

1 1 1 2 1 1
2 4 41 1

λ

λ λ

−
= × + +

− −
λ λ ω ω ω λ λ&  

BPs, β  ( )2 T1 1 1 3 1
2 4 8

u
u u

β = × + − +  
β β ω ω ω β β&  

NPPs, −p  ( )
2 2

T11 1
2 4 4

p y w
y

− −
− − − −

−

− −
= × + +p p ω ω ω p p&  

PPPs, +p  ( )
2 2

T11 1 1/
2 4 4

p y w
y

+ +
+ + + +

+

− −
= × + +p p ω ω ω p p&  

MPs, 2μ  

( )

2 2 2 2

T 2 2 2
2 2 2

2

1 1 csch( )
2 2

cosh( ) csch( )1
2

µ µ

µ µ µ
µ

= × +

 −
+  

 

μ μ ω ω

ω μ μ

&
 

Table 5. Inverse Kinematics for Various Types of PRPs.  

Attitude Parameteri-
zation ( )=ω r r&H  

EOPs, φ  ( )T
2 2

sin 1 cos 1 sin 1φ φ φ
φ φ φ φ

 −
= − × − − 

 
ω & & &φ φ φ φ φ φ  
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CRPs, ρ  [ ]2

2
1 ρ

= − ×
+

ω ρ ρ ρ& &  

MRPs, σ  ( ) ( )2 T
22

4 1 2 2
1

σ
σ

 = − − × +  + 
ω σ σ σ σ σ σ& & &  

OPs, η  ( )2 T

2

12 1
1

η
η

 
= − − × + 

−  
ω η η η η η η& & &  

LPs, λ  ( ) ( ) ( )
2

2 2 2 T

2

3 24 1 2 1 2 1
1

λ
λ λ λ

λ

 −
= − − − − × + 

− 
ω λ λ λ λ λ λ& & &  

BPs, β  ( ) ( ) ( )
5 4

3 4 6 T
4

2 3
4 2 1 2

1
u u

u u u
u

 +
 = − − × +

+  
ω β β β β β β& & &  

NPPs, −p  ( ) ( ) ( )2 2 T
22 2

4 11 2
11

y wp y y
z zp y

−
− − − − − − − − −

−− −

 +
= − − × + + +   

ω p p p p p p& & &  

PPPs, +p  ( ) ( ) ( )2 2 T
22 2

4 1 1/1 2
11

y wp y y
z zp y

+
− + + + + + + + +

++ +

 +
= − − × + + +   

ω p p p p p p& & &  

MPs, 2μ  ( )
2 2 2 2 2 2

2
T2 2 2

2 2 22
2

sech( ) tanh( )
tanh( )2 csch( ) 1

µ µ µ
µ

µ µ
µ

µ

− × 
 =  − +     

μ μ μ
ω

μ μ μ

& &

&
 

Table 6. Storage Functions for Various Types of PRPs.  

Attitude Param-
eterization, r  

0

( ) ( )V r d
φ

ξ ξ= ∫r  

EOPs, φ  T1( )
2

V =φ φ φ  

CRPs, ρ  ( )T( ) ln 1V = +ρ ρ ρ  

MRPs, σ  ( )T( ) 2ln 1V = +σ σ σ  

OPs, η  ( ) 2 1 cos
2

V φ = − 
 

η  
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LPs, λ  ( ) 4 1 cos
4

V φ = − 
 

λ  

BPs, β  ( )( ) 8 1V u= −β  

NPPs, −p  
( )

( ) ( )
2 1

2 1( ) ln cos ln 1
2

D
DV D Dφ − +

+
−

    = + + +       
p  

PPPs, +p  
( )

( ) ( )
2 1

2 1( ) ln cos ln 1
2

D
DV D Dφ −

−
+

    = − − −       
p  

MPs, mμ  2 2( ) 2 2 arctan( ) ( ) ( )
i i
m m

m mV mi e ie i
m

φ φφ
φµ χ χ

 
= + + − 

 
μ * 
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* Here 2χ  denotes the 2nd order Legendre’s Chi-function. 


