
 Copyright Optwise Corporation 2002 -2004
Please contact W. Fisher Optwise Corp (510) 573-1686. for use not associated with STK/Scheduler

 Rev 7/15/2004

1

The Optwise Corporation Deconfliction Scheduler Algorithms
(As used in STK/Scheduler)

Introduction
Scheduling is a complex process. In the case of STK Scheduler this process has been broken
into three divisions of labor matching the strengths of three companies. Combined, the strengths
of these companies produce a single functional unit from a user perspective. Analytical Graphics
Inc. though STK provides the world context or model from which all data used as the basis for
scheduling is validated. STK also provides a means of visualizing the scheduling results in the
world context. Orbit Logic provides the intuitive user interface and "traditional" Gantt, resource
and task assignment listing views functionality. Most importantly, it coordinates the users
scheduling related interaction with STK and the Optwise scheduling algorithms. This white paper
is focused the final piece, the scheduler algorithms and framework provided by Optwise
Corporation.

Before discussing the specific scheduling algorithms it is useful to understand some background
concepts.

De-confliction and Optimization
De-confliction is the process of finding a solution that obeys all physical constraints. In the
example below a sensor can be pointed at only one location and there are four sensors. Also, the
sensors must point directly at one of the numbered locations and can only be pointed once. The
numbers indicate the priority of the locations. A de-conflicted solution may or may not be optimal
when measured by a figure of merit. An algorithm that assigns sensors in priority order produces
a valid de-conflicted solution but only covers 7 of the 15 targets. Another algorithm could find a
solution covering all of the targets.

Priority Driven Coverage Optimal

5

4

21

3

5

2

3

3
1

12

2

535

4

21

3

5

2

3

3 1

12

2

53

Which is better? It depends on the criteria used to judge the final result. If it is critical that the
highest priority locations have a sensor centered on them then the priority driven solution is
optimal. If covering as many targets as possible as long as they are in the sensor Field of View
(FOV) circle then the solution on the right is optimal. Optwise Corporation has a range of
algorithms that do simple de-confliction, as in the priority driven example to advanced algorithms
that find more globally optimized solutions.

All of the algorithms discussed here are designed to produce conflict free solutions. If the
algorithm cannot find a conflict free solution when an attempt to "assign" a task is made, then the
task is left unassigned.

 Copyright Optwise Corporation 2002 -2004
Please contact W. Fisher Optwise Corp (510) 573-1686. for use not associated with STK/Scheduler

 Rev 7/15/2004

2

STK/Scheduler Task-Resource Assignment Algorithms
To understand the different characteristics of the scheduling algorithms available in
STK/Scheduler it is useful to consider a simple assignment problem below. The scheduling
problem is just a more difficult version of the assignment problem.

Consider the two tasks and two resources problem in the figure below. Prior to running an
assignment algorithm system modeling tells us which assignments are feasible. In the figure the
stars represent physically possible assignments and the dashes impossible assignments. In this
example task two cannot use resource two. The possible solution nodes are numbered 1-3. The
concept that a task only requires one resource assignment for solution can be expressed as a
rule “one per row” while the concept that a resource can only be used once can be expressed as
a “one per column” constraint.

“Node” Description Constraints
resource
1 2

* _** * _
task 1 2 1) one per row1 2

** task 33

impossible assignment

2) one per column

Sequential Algorithms
Sequential algorithms are algorithms that assign tasks one by one following a sequence based on
pre-defined rules. First consider a sequential algorithm in which tasks are assigned in task
numeric order and resources are used in resource numeric order. In such a case, the second task
is blocked because node 1 blocks the use of node 3 (and node 3 blocks node 1). However, if task
1 is assigned node 2 then node 3 is available for use with task 2.

Real problems have many more tasks, many more possible resources (or combinations of
resources) and more complex constraints. There are many versions of such sequential algorithms
that are used to solve them. However, in general the strategy is similar: 1) choose an order to try
tasks and possible resources, 2) test if a new combination is possible and keep it if is, or 3) use
some method to find the cause of the block and remove it if possible.

A larger example of this type of assignment
problem is shown at right, framed as the
assignment of crews to flight slots. In the figure
green (or gray) indicates that an assignment is
feasible, black means the assignment is
impossible and the crosshatch indicates that that
combination has been assigned. In this example
four crews are capable of satisfying the first slot,
six the second and so on. There are 4*6*5*5*6*7*3
= 75,600 possible assignment combinations (most
illegal). One of several legal and optimal
(maximum assignment) solutions is shown using
the checkerboard squares.

Crew

Flight
 Slot

A typical sequential algorithm assigning the first

 Copyright Optwise Corporation 2002 -2004
Please contact W. Fisher Optwise Corp (510) 573-1686. for use not associated with STK/Scheduler

 Rev 7/15/2004

3

available (left to right) would not be able to assign the last flight slot as shown by the circles. On
the other hand, backtracking to row five and changing its assignment to column 7 or 8 would
allow the last flight slot to be assigned.

Most sequential algorithms work in this fashion. If the designer has made a good guess for the
rules governing the task and or resource search order the solution can be quite fast. On the other
hand a bad guess (or problem not suited to the strategy) most or all of the possible combinations
may be tested as bad decisions are undone and new combinations are tried. For problems just a
bit larger than this one, a search all of the combinations becomes unrealistic. With each additional
task the number of combinations is multiplied by the number of possibilities for the additional row.
For a 17 tasks, 17 resources problem the number of combinations is 3.6 x1014. Assuming 100
operations per combination a 2 GHz processor would take 208 days for an exhaustive search.

Thus most sequential algorithms balance the need to search all possible combinations with the
need to finish in a reasonable amount of time. Most quit when a feasible solution that assigns all
tasks is found. More sophisticated algorithms use the information in the constraints to make
backtracking more efficient or limit the number passes by trying to discover the best candidates
from prior knowledge of the domain.

A Non-Sequential (Global) Search Algorithm
Now consider another type of algorithm. This is not the only way to do global optimization, but is
one that has been found to be particularly useful as a starting point for the Optwise de-confliction
algorithms. Again consider the two tasks, two resources problem from earlier. Let us start by
setting all of the nodes to a value near zero. We will then allow them to grow using the simple rule
that the new node value is equal to the old times 1.1; a 10 percent growth rate. A node value will
double in just over 8 iterations. A node starting at 0.02 would reach a value of 1.0 after about 41
iterations. Now imagine we place some constraints on this growth. First, nodes will be stopped
when they reach a value of 1.0. Next, if the sum of the nodes on any row is greater than 1.0,
every node in the row will have a penalty subtracted from its sum proportional to the amount the
row sum was over the 1.0 threshold. We will do the same for the columns. The values of the
nodes would follow a sequence similar to the figure below.

.02
_.02

.02 ~34
iter

.51
_.51

.51 1
iter

.49
_.51

.51 ~8
iter

.01
_.99

.99
1

3

2
.02

_.02

.02 ~34
iter

.51
_.51

.51 1
iter

.49
_.51

.51 ~8
iter

.01
_.99

.99.02
_.02

.02.02
_.02

.02 ~34
iter

.51
_.51

.51.51
_.51

.51 1
iter

.49
_.51

.51.49
_.51

.51 ~8
iter

.01
_.99

.99.01
_.99

.99
1

3

2

After about 34 iterations all nodes would be close to a value of 0.51. This would violate both a row
1 and column 1 constraint. Node 1 would be penalized twice and nodes 2 and 3 would be
penalized once. If the penalty is half the amount of the constraint violation, then the new node
values would be .48, .49, and .49. One more iteration would change the values to .49, .51, .51.
Because nodes 2 and 3 now have a size advantage over node 1, subsequent iterations will
increase the values of nodes 2 and 3 at the cost of
node 1. Once nodes 2 and 3 reach 1.0 the hard node
maximum constraint would stop any further changes
in the “state” of the system. Consider the figure on
the right showing the evolution of a problem for node
1 and node 2.The path in this “solution plane” is
represented by the blue arrow. The node growth term
pushes the sum of node 1 and 2 away from the origin
until the constraint n1 + n2 < =1 is reached. The path
then moves to the corner where n2 =1 and n1=0.
Notice that the distance from the origin always
increases. The dynamics of the underlying node
growth term maximizes the distance from the origin. If the node and constraint representation are

n1 + n2 <= 1

n1

n2

1

1

Dist from origin

o

n1 + n2 <= 1

n1

n2

1

1

Dist from origin

o

 Copyright Optwise Corporation 2002 -2004
Please contact W. Fisher Optwise Corp (510) 573-1686. for use not associated with STK/Scheduler

 Rev 7/15/2004

4

chosen well, the maximization of distance will also correspond to maximizing the assignment of
tasks to resources. Fortunately, this mathematical complexity is hidden from the user. The
Optwise Interface does the required mapping behind the scene.

Although the example above goes to the optimal solution, it is not the case if node 1 is given an
initial value significantly larger than nodes 2 and 3. This illustrates another interesting feature of
using such an algorithm. By varying the values of the initial nodes randomly, it is possible to
generate a family of solutions. The resulting stochastic algorithm will produce solutions that tend
to maximize the number of assignments, but may be slightly different. For example, consider a
one task, two resources problem. It can also be mapped to the last figure on the prior page. Node
1 represents the assignment of the task to resource 1 and node 2 represents the assignment of
the task to resource 2. If the initial seeding is such that node 2 is larger than node 1 (as shown in
the figure) than the solution will evolved to the node 2 =1 node 1 =0 solution. However if node 1 is
initially larger than node 2 than node 1 will end up as the solution. The case of node 1 = node 2
must be broken with a tiebreaker. This problem is said to have a 50% probability of arriving at
solution 1 and a 50% probability of finding solution 2. More complex problems cannot be
analyzed so easily, and a great deal of research effort went into how to map “typical” problems
into node representations that had a high probability of yielding maximum assignments. This
algorithm is not guaranteed to find the maximal assignment but is a very efficient method having
a high probability of finding one of the maximum assignment solutions. When evaluating the
performance, sub-optimal solutions will occur. It is best to run the algorithm multiple times and
choose the best solution.

Notice that unlike a sequential algorithm there is no task or resource order rules and that
backtracking to good solutions is built into the method. The constraints provide the feedback.
Further the problem solution cost grows with the number of nodes needed to represent it.
Typically there are as many resources as tasks so the complexity of an assignment problem is on
the order of the square of the number of tasks. In tests of the actual implementation the
calculation cost scales worse than number of tasks squared because simple problems require
less time to settle to a final solution (fewer iterations). For a particular set of problems design to
stress this algorithm, the solution time scaled as D4.2, where D is the number of tasks. The
particular test represents the worse case. For most problems the scaling is closer to D2.5. This is
far better than a search of the combinations that increase as D factorial. While the scaling is
much better, the setup cost for this global algorithm is greater than for a sequential search
method. Thus for small problems this global algorithm will be slower.

In STK/Scheduler the corresponding scheduling algorithm is known as the Neural algorithm since
neural network research inspired its development.

For those mathematically inclined the technique for mapping this type of assignment problem into
an analog Neural network processor is described in Kennedy and Chua, Neural Networks for
Nonlinear Programming, IEEE Transactions on Circuits and Systems, Vol. 35, No.5, May 1988,
and in Fisher, Fujimoto, and Smithson, A Programmable Analog Neural Network Processor,
IEEE Transactions on Neural Networks, Vol. 2, No. 2, March 1991.

Scheduling
Schedule de-confliction requires that physical as well as temporal constraints be resolved. As will
be seen in the series of demonstration examples, the Optwise de-confliction scheduler has
evolved to have a variety of algorithms including one based on the Neural search method
described above for solving scheduling problems. The algorithms fall into two major types,
sequential and stochastic as introduced above. The specifics of the algorithms will be discussed
in a series of examples after a brief discussion of the Optwise Scheduler Model.

As shown in the figures below, tasks are satisfied when a solution profile is assigned to them.
These solution profiles are derived from task to physical resource access times (such as a
satellite to target access) and may combined with other resource related properties (such as

 C

opyright Optwise Corporation 2002 -2004
Please contact W. Fisher Optwise Corp (510) 573-1686. for use not associated with STK/Scheduler

 Rev 7/15/2004

5

satellite onboard memory). However, as far as the scheduling algorithms are concerned all
problems start with time slots and the associated solution profile.

Tasks are scheduled onto time slots
which represent the time during which
a particular resource or combination of
resources (a solution profile) may be
used to satisfy the task.

Multiple time slots with
the same or different
profiles may be possible
for a given task

latest stopearliest

desired task

Task 1

Task 1

Task 2 profile

profile

profile

Resources may be used during, allotted at the start, or replenished at the end of tasks. A setup
resource may be defined for use prior to the timeslot access.

resource

Task duration Examples:

Resource 1 qty 2.5 during

Resource 2 qty 1.0 depleted (at start)

Resource 3 qty 1.0 replenish (at end)

Resource 4 is used at a rate of 2.0 during task

Setup resource 5 qty. 1.0 for 20 units before

The Optwise algorithm interface also allows each time slot to be given a floating-point value
describing its desirability. This allows the algorithms to differentiate between otherwise equal time
slots. The process of creating the feasible time slot data can be as simple (a point to point STK
access calculation) or complex (multiple calls to STK calculate accesses with internal STK

 Copyright Optwise Corporation 2002 -2004
Please contact W. Fisher Optwise Corp (510) 573-1686. for use not associated with STK/Scheduler

 Rev 7/15/2004

6

constraints combined with STK external user generated constraints). Periodic tasking for stereo
imaging might be an example of a complex case.

The job of each of the algorithms is to pick a time slot and a start time for the task within the time
slot. Optwise assumes that even though there may be many possible time slots for a given task,
only one will be used. There is an implied OR. AND conditions between resources are implied
within the solution profiles. More complex Boolean combinations are handled prior to hand-over
to the scheduling algorithm interface within the user interface of STK Scheduler.

An Example Tour of the STK/Scheduler Algorithms
In this next section an example or two will be used to introduce each of the algorithms illustrating
how each algorithm might be matched to a particular problem.

In the example below six tasks of varied desired duration have one or more feasible time
windows that can be used to find a solution. The feasible time windows are drawn with open
rectangles. Tasks 1, 2, and 6 require duration 2 while jobs 2 and 6 require durations 3 and 1.
There is only one resource that has capacity one. Scheduled task duration is indicated by a filled
rectangle.

The figure to the left shows the solution found by a one-pass scheduler (OPS) algorithm that
assigns a task to earliest possible time in task priority order. The task priority used to guide the
consider order is the same as the list order. Task 3 and Task 4 cannot be assigned because the
resource has been used by tasks 1 and 2. The figure to the right shows a full solution generated
by the neural network search algorithm (Neural). The Neural scheduler uses an algorithm that
evolved from the neural network method described in the assignment problem section. Initially all

 Copyright Optwise Corporation 2002 -2004
Please contact W. Fisher Optwise Corp (510) 573-1686. for use not associated with STK/Scheduler

 Rev 7/15/2004

7

of the possible time slots are seeded with a start time and duration appropriate for the
corresponding task. The state of the system is iterated allowing the task assignments to be
adjusted within the time slots. As the task positions are adjusted they interact with the resource
limitations and implicit constraints such as "each task may have only one solution". Illegal and
less favored assignments are driven to zero while the assignments that obey all constraints are
driven to the assigned condition. The Neural algorithm finds the full assignment (all tasks
assigned to a solution profile slot) solution 33% of the time, close to the theoretical maximum for
this particular problem.

A more difficult 15 task, two resource problem is shown in the next figure along with the solution
generated by the OPS algorithm.

The two resources MEO Grp A and MEO Grp B each have a capacity of 3 (tasks). Some tasks
can be satisfied with resource A, some with B and some with either. On the Gantt chart tasks that
can be used by either resource show up twice on the task list when the list is expanded. There

 Copyright Optwise Corporation 2002 -2004
Please contact W. Fisher Optwise Corp (510) 573-1686. for use not associated with STK/Scheduler

 Rev 7/15/2004

8

are two possible task resource combinations of which only one should be chosen. The last task,
network-data requires both resource A and B. This problem has far greater resource interaction
than typical satellite problems. Note that the OPS algorithm finds a solution with 13 of the 15
tasks scheduled. The order in which the tasks were considered follows the task priority.

The corresponding resource usage for the15 task problem is shown below. Note while this
problem has high resource usage, there is available resource time for the two missing tasks if the
task placement was improved.

Two other scheduling algorithm options available are the Sequential algorithm (Seq) shown on

left and the Multi-pass scheduler (MPS) is shown on the right in the figure. The sequential

 Copyright Optwise Corporation 2002 -2004
Please contact W. Fisher Optwise Corp (510) 573-1686. for use not associated with STK/Scheduler

 Rev 7/15/2004

9

algorithm uses the time sequence of the available time slots. For all tasks with the same priority,
time slots are tried in the order of the time slot start time. This algorithm is well suited to problems
where there a just a few possible time slots and where the conflicts are weak. In this problem
where there are many conflicts two tasks are missed. The MPS algorithm makes multiple passes
using the OPS algorithm but modifies the task order and the resource order prior to each pass. A
set of expert system rules based on Optwise Corporation past experience is used to generate the
possible task and resource order lists. As can be seen the algorithm is able to schedule one
additional task. Each pass is graded based on a figure of merit (FOM) and the best solution is
returned. The figure of merit will be discussed later. For now assume it will find the best full
assignment solutions.

The figure at left shows the result for a
typical run of the Neural algorithm in
which all of the tasks are scheduled.
The neural algorithm is able to
schedule all tasks because it uses the
resource interaction information to find
the solution.

As was mentioned earlier, if a series of
runs are made, the Neural algorithm
does not find a single solution but will
find a family of solutions that tend to
maximize the assignment (or
scheduling) of tasks. Because the
Neural algorithm is stochastic it is
possible to specify a number of trials to
run the algorithm from which the run
with best result is used. (The “best of”
on the Schedule/Properties menu.) On
any given run this stochastic algorithm
has a probability of finding a particular
solution. For this problem the
probability of finding a full solution (15
tasks assigned) is about 70%.

Another method of searching for a
solution in an un-bias manner is to
seed a random solution (an available
option) and using a Repair algorithm to
repair it. The Random-Repair algorithm
is a particularly good algorithm to use

when there are many identical resource which need to be used uniformly. Random can also be
run in a “best of” mode. For the 15 task problem the probability of finding a full solution is about
50%.

So in the examples we have introduced the One pass (OPS), Sequential (Seq), multi-pass
(MPS), Neural (Neural) and Random with Repair (Random). Which is better? That brings us to
the subject of Figure of Merit or FOM.

Figure of Merit
Internally, each of the algorithms finds solutions using different methods. The sequential
algorithms OPS, SEQ, and MPS have at their core a set of rules that are followed to place each
new task on the schedule. Within the Neural algorithm there is a simple goal, schedule the
greatest amount of task time as possible as early as possible. Rand has an internal goal to

 Copyright Optwise Corporation 2002 -2004
Please contact W. Fisher Optwise Corp (510) 573-1686. for use not associated with STK/Scheduler

 Rev 7/15/2004

10

generate unbiased schedules. This general goal is modified by a very loose coupling to external
figure of merit (FOM).

After any of the algorithms completes the resulting schedule is graded with an external figure of
merit. Currently, the following user programmable FOM is available in STK Scheduler.

∑
=

+∗+
+∗+

∗+

∗

=
itask

iDuriearly

iPNiPP

idur
i

i
assign

i

MaxBonusKEarlyBonusK
nkingPositionRaKiorityyPossibilitK

durationK
desire
duration

K

weightFOM
*

*Pr

max

where

iorityTask
ioritysmallestiorityestlweight

i
i Pr

1PrPrarg +−
=

and

stStartTaskEarlietStartTaskLastes
tActualStartStartTaskLastesEarlyBonusi −

−
= , (1 if latest start = earliest start)

The FOM has five user definable constants (the "Ks").

Kassign is used to adjust the relative weight for pure assignment since duration/desired(duration) is
one for a full assignment. This term is complementary to the next term.

Kdur is used to adjust the relative weight of assignment times the duration. Thus tasks with longer
durations will affect the FOM more than shorter ones.

KPP is used to adjust the relative weight of Possibility Priority which is average resource priority for
the timeslot.

KPN is used to adjust the relative weight of Position Ranking of the task timeslot. Timeslots that
are closer to the scheduling preference will have a higher ranking. See STK/Scheduler help for
details on how poison ranking is calculated.

Kearly is used to adjust the relative weight of the early bonus. The early bonus was defined for the
current FOM. The early bonus is one if the task was scheduled as early as possible and zero if as
late as possible for that task.

KMaxDur is used to adjust the relative weight of the Max duration bonus. By time of release of STK
Scheduler an additional function will be available that grows all task durations from the minimum
(desired) duration to a maximum duration. This term will reward additional duration in a linear
fashion similar to the early bonus term.

The desirability of a particular time slot is the sum of the KPP and KPN terms. Setting Kassign, KPP,
KPN, KmaxDur = 0 and Kduration, Kearly = 1 will give the default FOM used for the remainder of the

 Copyright Optwise Corporation 2002 -2004
Please contact W. Fisher Optwise Corp (510) 573-1686. for use not associated with STK/Scheduler

 Rev 7/15/2004

11

white paper . This default figure of merit weakly awards tasks that are scheduled earlier and will
give more credit to tasks with longer durations if the priorities are the same.

The table below shows the FOM calculated for each of the prior runs of the scheduler algorithms.
The assignment success is also noted. For the Random and Neural algorithms the mean and
standard deviation is given for 100 runs.

Algorithm OPS MPS Seq Random Neural
assigned, best 13 14 13 15 15
Prob. of 15/15 0 0 0 48 % 72%
FOM, best (100) 11,549.8 12,030.3 11,549.8 12,869.7 12,870.2
FOM, ave. (100) - - - 12,304.8 12,646.0
FOM, stdev. - - - 647 368

Of the algorithms, MPS which is really multiple runs of OPS, is most strongly coupled to the FOM
above. The solution chosen is always the run with the best FOM. On the other hand, for the
Neural algorithm, the user must make multiple runs and choose the best result. The initial
desirability data and FOM constraints weakly affects the yield from this algorithm.

OPS is primarily driven by the priority of the tasks. However, its search order is also biased by the
timeslot desirability and the resource list order. The search order can be affected by changing the
FOM constants as well. For example, if the constant controlling desirability is set to zero than the
desirability presort is turned off.

At the other extreme using Random algorithm completely ignores the FOM on an individual run. It
is only used as an external critic. This combination is useful when a completely unbiased search
is needed. This might be the case if the user is trying to optimize for something that can not be
programmed in the current FOM.

The fact that the FOM calculation is not deeply embedded in the algorithm, allows for some
flexibility in creating enhancements to the FOM to adapt it to external variables that are hard to
capture in resource constraints. If a family of solutions is generated using the Neural or Random
algorithms, any external critic including a schedule review board can make a decision on the final
best schedule.

Two solutions from the family of solutions are shown in the next two figures. The FOMs are
12,870 and 12,865.

 Copyright Optwise Corporation 2002 -2004
Please contact W. Fisher Optwise Corp (510) 573-1686. for use not associated with STK/Scheduler

 Rev 7/15/2004

12

Distribution of Global Scheduler Solutions
To illustrate just how large the family of “good solutions” is for even a highly constrained problem
such as 15T2rSat a series of 100 runs were made with the Neural algorithm. The full assignment
(15 of 15 tasks) solution was found in 72 of the cases (72% yield) with the distribution of FOM
shown below. Each point corresponds to a unique solution differentiated only by the number
scheduled and the FOM. Thus within the criteria that all tasks are assigned it is possible to
differentiate the quality of the solutions even further. In this case on the Kearly term is making the
difference. Some tasks start earlier in their time slots than others. The 28 trials that resulted in
only 14 scheduled tasks had the distribution on the left. The larger variation in the 14 of 15
solutions is because a task durations vary from 120 to 840 and weights from 4 to 1 and the task
weight times task duration term dominates the FOM. The large jumps occur when different tasks
are not assigned.

Distribution of15/15 Solutions:
Random Algorithm

2870

2872

Distribution of 15/15 solutions
Neural Algorithm

12860

12862

12864

12866

12868

12870

12872

0 20 40 60 8

number of samples

FO
M

 o
f s

ol
ut

io
n

0

12858

12860

12862

12864

12866

12868

0 20 40 60

number of samples

FO
M

 o
f s

am
pl

e

1

1
A similar sampling can be created using the random algorithm. The left plot shows the FOM
distribution for all tasks assigned (15/15). Notice the stee drop off neural algorithm which uses
the resource constraint information to improve its yield of higher FOM solutions.

1250

1300per

Distribution of 13,14 /15 solutions:
Random Algorithm

10000

10500

11000

11500

12000

0

0

0 20 40 6

number of sample

FO
M

 o
f s

am
pl

e

Distribution of 14/15 solutions
Neural Algorithm

11800

11900

12000

12100

12200
12300

12400

12500

12600

12700

0 5 10 15 20 25 30

number of samples

FO
M

 o
f s

ol
ut

io
n

0

 Copyright Optwise Corporation 2002 -2004
Please contact W. Fisher Optwise Corp (510) 573-1686. for use not associated with STK/Scheduler

 Rev 7/15/2004

13

The left plot shows the distribution of 13 and 14 of 15 assignments with the 14 assigned first
followed by the 13 assigned solutions .The FOM is then sorted within each group. The increase in
FOM in the 13, 14 assigned task distribution at sample 45 is due to a trade off where assigning
two tasks of lower priority gives a lower FOM than assigning one higher priority task. For this set
of FOM coefficients assigning fewer tasks is better.

While the neural algorithm is clearly better in this case, every problem will have a different
distribution and the distribution will change as the coefficients of the FOM are modified. The best
way to know is to test.

Performance with Problem Scale and Type

Each of the algorithms will have types problems where they are particularly well suited.

The One Pass algorithm will in general be the fastest because it is the simplest internally. To first
order the one pass solution time scales with the number of tasks if the first available resource and
access time works. However if there are many overlapping time windows, the solution time may
scale as poorly as the number of tasks times the number of resource accesses per task. In
general, problems that have many more resources than needed are perfect for the one pass
algorithm. It is surprising how many problems (or sub-sections of a larger problem) fit this
description.

Multi-Pass has similar characteristics to one-pass because it uses the one-pass algorithm
internally. The number of passes it tries depends on the problem complexity. It does at least two
and up to 30 depending on the number of resources available. MPS will always find at least as
good a solution as one pass and can improve performance significantly for problems with
moderate conflicts.

The Sequential Algorithm was developed specifically for scheduling problems where using the
earliest contact is known to give good solutions. Empirically it has been found to produce very
good solutions for problems dominated by ground access constraints. It is very fast but because it
has a very structured search can perform poorly if the problem is not well suited to it such as
problems with highly conflicted resources.

The Neural algorithm was designed to do highly conflicted problems. Because it searches all
possibilities in parallel the time to solve will scale with the number of tasks times the number of
resources accesses (the number of time-slots). Some simple problems will solve faster because
the algorithm terminates itself when a stable full solution is found. The setup time is also higher
for this algorithm. In addition to the single run computation costs, multiple runs will generally be
desired to find the best n of m runs of the Neural algorithm.

The Random algorithm is another very fast algorithm with a solution time that is roughly linear
with the number of tasks. It has the unique feature that it makes no assumptions about the
structure of the problem so it can be very useful for sampling the range of possible solutions. It
has proved very useful as the algorithm to use when it is necessary to uniformly load a set of
identical resources. Normally Random is run multiple times using the “best of” option.

The table at left shows the
result of a scaling test run on
each of algorithms for a
problem in which each task
had a one-access window
twice as large as the desired
duration. Each window

overlapped the next task's window by 50%. The solution for the first 9 tasks and the available
access is shown on the next page. It was designed so the required task duration just fit within the

Tasks OPS MPS SEQ Random Neural
500 1 5 1 1 1

1000 2 39 2 2 4
1500 5 123 6 6 11
2000 8 201 9 9 18

 Copyright Optwise Corporation 2002 -2004
Please contact W. Fisher Optwise Corp (510) 573-1686. for use not associated with STK/Scheduler

 Rev 7/15/2004

14

available resource time. A different resource and profile was used for every group of 20 tasks.
All times are in seconds and the testing was done on a 2.6 GHz Pentium 4 processor. Times do

not include the STK/Scheduler display
time which was less than 2 seconds.
All algorithms were able to get 100%
assignment. Because all tasks must fit
perfectly and tasks must start as early
as possible this is an easy problem for
the OPS algorithm and Sequential
algorithms find solutions immediately
and have the best solution times. The
other algorithms find the solution as well
but at a higher computational cost. MPS
is the worse computationally because it
makes approximately 30 sub tries
attempting to find a better solution.
Neural has a larger setup cost in order
to incorporate the resource constraint
information.

Next, consider a satellite related scaling
example. To create a 40 task set 10
targets were matched to four task types
that had varying fixed duration times.
STK accesses were obtained one day
assuming simultaneous access to a

ground station and some elevation constraints. Corresponding 80 and 120 tasks sets were
created by matching 20 and 30 targets to the task types. Since all these example sets turned out
to be over-resourced the 120 task set was rebuilt using a 10 hour time period. This reduced the
total resource availability to a point where the scheduling algorithms needed to do some real
work. The following assignment and FOM results were obtained. The FOM is smaller because the
Kdur term was divided by 60 to have a FOM scaled to minutes rather than the default seconds.
This problem is an example of one that is solved well by sequential. Only the Neural algorithm
was capable of getting a full solution prior to the invention of the Sequential algorithm.

Tasks period OPS MPS SEQ Neural Rand
40 1 day 40, 79.1 40, 81.9 40, 81.9 40, 74.7 40, 68.4
80 1 day 80, 156.9 80, 162.4 80, 163.5 80, 129.6 80, 135.9
120 1 day 120, 232.6 120, 239.3 120, 232.6 120, 189.9 120, 206.0
120 10 hrs 116, 195.6 116, 217.5 120, 238.8 120, 194.5 116, 180.5

The corresponding solution times were all 4 sec or less and were dominated by I/O.

Finally, consider this scaling result based on a series of increasing schedule duration problems
were created using the tutorial example provided with STK/Scheduler.

 Copyright Optwise Corporation 2002 -2004
Please contact W. Fisher Optwise Corp (510) 573-1686. for use not associated with STK/Scheduler

 Rev 7/15/2004

15

Schedule
Duration tasks timeslots One Pass Mutipass Seq Neural(1) Neural(5) Rand(1) Rand(5)

2 39 118 3 4 3 4 4 3 3
15 279 1141 12 20 12 14 25 12 13
31 574 2261 24 67 23 31 67 24 31
59 1090 4505 58 319 54 82 202 54 92
90 1662 6678 112 996 109 171 527 112 227

120 2215 9065 191 2221 182 289 999 179 455
180 3322 13571 432 7104 422 645 2529 405 1304
366 8953 27720 2293 57089 2271 3088 14168 2117 9141
days sec sec sec sec sec sec sec

Since most of the tasks are periodic, increasing the length of the schedule naturally increases the
number of tasks. The schedule durations varied from 2 days to 366 days as shown in the table.
The final example had 8953 tasks with 27,720 possible access generated time slots. The tutorial
example is mostly dominated by these access times but does require resource shuffling to obtain
the best results. Typical assignment percentages were: OPS, MPS and SEQ 96%, Neural and
Random > 98%. Since not all
of the tasks could be
assigned more than one time
slot had to be tested for each
task. Three or four time slots
were available for each task.
Now the OPS,SEQ and
Random algorithms have
less of a computational
advantage over the neural
algorithm. The Random and
Neural algorithms were run
once with “best of” set to 1
(Neural(1)) and once with
“best of” set to 5 (Neural(5)). Notice that multi-pass is showing signs of non-linear scaling. Careful
examination of the table data indicates that the other algorithms are not quite linear as evidenced
by a declining task assigned per second rate as the number of tasks increase.

Time to Solve : Expanded Tutorial Problem

0

2000

4000

6000

8000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of Tasks

se
co

nd
s One Pass

Mutipass
Seq
Neural(1)
Rand(1)

Special Conditions Affecting all Algorithms
All of the examples thus far have assumed that tasks use "resilient" resources, or resources that
are used during a task. While this type of resource might numerically dominate a schedule just a
few of special resource types available in STK/Scheduler can greatly influence the yield of a
schedule. With the release of version 3 of STK/Scheduler (version 6.0 of STK) a number of
enhancements were made that allowed users to define constraint relationships between tasks
and to allow resource capacity to be rate based. A complete discussion of all of the complex
interactions affecting the algorithms that this has introduced is beyond the scope of this white
paper (perhaps a graduate student is looking for a good thesis topic). However, all of the
algorithms are compatible with the additional features. Here are a few hints as to how the new
features may affect performance.

Capacity Resources
Capacity resources are resources that are depleted (or consumed) or replenished either
discretely or at a rate. At present a discrete depletion occurs at the beginning of task and discrete
replenish occurs at the end of the task. Rate capacities are broken into a number of discrete
steps spaced through the task duration based on a user definable resolution factor. A 5%
resolution (the default setting) will break the capacity into 20 discrete level changes. The first level
change occurs at task start if it is a deplete rate and the last level change occurs at task stop if it
is a rate allocate. Clearly fine resolution may allow tasks to be scheduled closer but will add
significant processing time for all cases. Use fine resolution only when needed.

 Copyright Optwise Corporation 2002 -2004
Please contact W. Fisher Optwise Corp (510) 573-1686. for use not associated with STK/Scheduler

 Rev 7/15/2004

16

Whether discrete or rate the value of the capacity at the end of the task persists after the task.
This has huge implications for all tasking both before and after tasking. Consider a case in which
one task depletes a resource (by one unit) and another task replenishes a capacity (by one unit).
Clearly, the allocate task must occur earlier in time on the schedule than the deplete task
(assuming the capacity resource begins at zero). But what happens if the replenish task has a
lower priority (or is lower in the task list at the same priority) than the deplete task. For most of the
algorithms which use some priority sorting to decide task ordering, only the “allocate” task would
get on. The STK/Scheduler algorithms (including one pass) get around this problem by adaptively
adding additional passes though the task list when such cases occur. Although this adaptive part
of the algorithm is fast, it does add overhead to the scheduling process when needed. If it is
known that a replenish task is only constrained by access (time slot) availability it will be faster to
define the task with a high priority so it will tend to be scheduled first.

Soft Upper Limit Capacity Resources
A resource’s capacity can be defined to have a soft upper limit which will allow a task that
replenishes the resource (either discretely or as a rate) to be on even if the resource reached
maximum. For example, you might show a battery charge task as on every time there is access
to the sun. When the battery reaches its maximum charge capacity the charging task will remain
on but have no effect on the level. This can be useful when there are lower priory tasks that need
to fit in around higher priority tasks. This unseen excess charge capacity becomes real capacity
as tasking is added. This removes the need to more tasks to provide more charging. Using soft
upper constraints can speed up processing and make a schedule easier to understand.

Task Precedence
When a task is defined as being a predecessor to another task the absence of the predecessor
task can block the assignment of the task. If the blocking relationship is “n of m” then the task
must obey n of m of the appropriate min/max time after task start/stop constraint between the
predecessor task and the task if the predecessor is present. Placing task precedence constraints
also causes the algorithm manager to adapt more passes as required to maximize scheduling
with an increase in the solution time. Thus, use these only as necessary. Also see if it is possible
to use a periodic task with a min/max time between re-occurring tasks which are more efficient.

Min/Max Time Between Re-occurring Tasks
As the name implies this is special type of constraint between known re-occurring tasks. Because
the tasks are known to be re-occurring the algorithms can make short cut assumptions allowing
faster scheduling. The definition also reduces the number of tasks that the user must specify.

Maximize no Handovers: Tasks that are marked as maximize no handover cause the interface
layer of the software to run an expand algorithm after one of the base algorithms has been run.
The base algorithm will have assigned (if possible) the minimum duration requested for each of
the tasks in the schedule. The Expand algorithm expands the duration of each task out to the
maximum time allotting in 5% increments starting with the highest priority task. Time or resource
constrained tasks can be pushed later by earlier tasks that grow. This step can add significant
processing time if there are a lot of time dependant tasks.

Maximize with Handovers
 Tasks marked in this fashion ignored the algorithm selection (for just that task), using a special
"handover" algorithm instead. The handover algorithm begins with the first available time slot and
assigns as much time as possible from that time slot. It then looks for the next available time slot
and repeats the process until maximum duration is obtained or there are no more possible time
slots. There is no option to run a Handover algorithm because it is done automatically if the option
is selected for the task. This type of task allocates as much of the available resource(s) in one
pass (unlike expand) and one handover task using a critical task high in priority can easily lock
out all other tasking. It can be relatively fast, particularly if the resources do not have a lot of
interaction.

 Copyright Optwise Corporation 2002 -2004
Please contact W. Fisher Optwise Corp (510) 573-1686. for use not associated with STK/Scheduler

 Rev 7/15/2004

17

Summary of the Algorithms
The listing below reflects in summary form the characteristics of each of the algorithms and may
be used as a rough guide as to which algorithm might be best suited to a problem. However,
nothing is better than doing some testing for a particular class of problem.

One-Pass – Problems with many possible ways to do a problem without a lot of resource conflict.
Algorithm is balanced to take into account task priority and time slot desirability. Time to solve
scales linearity with number of possible time slots but can be even faster if many feasible
solutions exist for each task

Sequential – Problems in which getting the earliest possible “on” time is critical. The earliest
possible time slot is used within groups of tasks with identical priority. The time to solve is similar
to One-Pass. A more descriptive name for this algorithm would have "Earliest time slot within a
priority group", but that was too long so the shorter name Sequential has been used.

Multipass – Problems in which there is moderate resource interaction and where optimizing a
FOM is important. Multipass is typically 30 times slower than One-Pass or Sequential but large
variations possible due to problem complexity.

Neural – Problems with complex resource conflicts. Algorithm is balanced to take into account
task priority and time slot desirability. The worse case time to solve scales roughly with the
square of the number of possible time slots but typical problems scale very close to linear with the
number of tasks. Has a multiple run option used to find best FOM from a family of feasible
solutions.

Random – Algorithm that is used to optimize a FOM when an un-bias search is needed. An
example might be trying to equally load a set of identical resources. The time to solve scaling is
similar to One-Pass.

Concluding Remarks
The current STK Scheduler algorithms have been designed to solve a broad range of scheduling
problems. However, in order to meet future needs the algorithms have been designed to be
extended. AGI, Orbit Logic Inc. and Optwise Corporation look forward to our customer comments
as we not only meet but also anticipate future scheduler algorithm needs.

 Copyright Optwise Corporation 2002 -2004
Please contact W. Fisher Optwise Corp (510) 573-1686. for use not associated with STK/Scheduler

 Rev 7/15/2004

18

About the Author and Optwise Corporation
Dr. William Fisher is the president of Optwise Corporation which he founded in January of 2001 to
create commercial software components for optimization and scheduling.

Dr. Fisher began his connection with aerospace in 1987 when he joined Lockheed's Palo Alto
Research Laboratory where his interests included precision optical pointing and tracking, the
application of Neural network methods in the fields of adaptive control and high-speed
computation and the investigation of non-linear dynamics in analog hardware systems. In 1995
he co-founded Applied Analytics Corporation, later renamed Anava Corporation where he served
as the Vice President. At Anava Corporation he was the principle investigator on contracts related
to the development of software and analog hardware for highly efficient optimization and
scheduling algorithms.

In January 2001 Dr. Fisher founded Optwise Corporation as a friendly spin-off from Anava
Corporation to create commercial software products based on the prior consulting experience.

William A. Fisher received a B.S. degree in Engineering Physics from the Ohio State University in
1977 and Master of Science and Doctor of Science degrees in Nuclear Engineering from the
Massachusetts Institute of Technology in 1980 and 1983. During 1983-1987 he jointly worked as
the Technical Director at National Nuclear Corporation and as a Visiting Scholar in the Physics
Department of Stanford University.

	STK/Scheduler Task-Resource Assignment Algorithms
	A Non-Sequential (Global) Search Algorithm
	Two other scheduling algorithm options available are the Sequential algorithm (Seq) shown on left and the Multi-pass scheduler (MPS) is shown on the right in the figure. The sequential algorithm uses the time sequence of the available time slots. For
	Figure of Merit
	Distribution of Global Scheduler Solutions
	Summary of the Algorithms
	The listing below reflects in summary form the characteristics of each of the algorithms and may be used as a rough guide as to which algorithm might be best suited to a problem. However, nothing is better than doing some testing for a particular class o
	Concluding Remarks
	The current STK Scheduler algorithms have been designed to solve a broad range of scheduling problems. However, in order to meet future needs the algorithms have been designed to be extended. AGI, Orbit Logic Inc. and Optwise Corporation look forward to

