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Review of Conjunction Probability Methods  
for Short-term Encounters  

 

Salvatore Alfano* 
Center for Space Standards and Innovation, Colorado Springs, Colorado, 80132 

This paper discusses current methods for computing collision probability between space-
borne objects.  Current formulations are based on the Gaussian distribution and the concept 
of covariances which can be obtained from orbit determination.  In broad general terms and 
in chronological order, there are four main categories to classify the current models.  These 
are the Foster (1992), Chan (1997), Patera (2001 & 2005) and Alfano (2005) models.  This 
work compares the numerical results obtained from those four algorithms with validation 
results obtained using the MATHCAD solution of the two-dimensional probability integral 
over a very wide range of collision parameters (miss distance, standard deviations and 
collision cross-section radius).  Based on the number of function evaluations which is an 
indication of computing efficiency, the Foster model is approximately ten or twenty times 
slower than either the Alfano or Patera model, which in turn are orders of magnitude slower 
than the Chan model.  Within the prescribed bounds of testing, the models typically are 
accurate to two or more significant figures. 

Nomenclature 
erf = error function 
k = power series term 
m = power series term 
n = covariance ellipsoid scale factor or power series term 
OBJ = combined object radius 
R = miss distance 
r = integration variable (object radius) 
U = principal axis in encounter plane 
W = principal axis in encounter plane 
x = distance along minor axis 
xm = miss distance along minor axis 
y = distance along major axis 
ym = miss distance along major axis 
φ = miss distance angle relative to ellipse primary axis 
σ = standard deviation 
θ = integration variable (angle) 

                                                           
* Technical Program Manager, CSSI, 7150 Campus Drive, Suite 260, Colorado Springs, CO, 80920-6522, 
salfano@centerforspace.com, AIAA Associate Fellow. 
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I. Introduction 
his paper discusses four current methods to compute collision probability for short-term encounters between 
space-borne objects. The early formulations of spacecraft collision were based on the Poisson distribution and 

used concepts from the kinetic theory of gases in which the molecules move in straight lines and their number 
density is statistically uniform.  Current formulations are more realistic, being based on the positional Gaussian 
distribution and the concept of covariances which can be obtained from orbit determination.  In broad general terms 
and in chronological order, the four main models were developed by Foster1, Chan2, Patera3, and Alfano4. 

The method developed by Foster1 for NASA evaluates the collision probability numerically by examining the 
plane perpendicular to relative motion, dividing the combined object’s circular cross-section in concentric circles 
and radial straight lines. The model developed by Chan2 is analytical, being based on transforming the two-
dimensional Gaussian probability density function (pdf) to a one-dimensional Rician pdf and using the concept of 
equivalent areas. This model involves the evaluation of an analytical expression containing two exponential terms.  
The Patera3 model is based on a one-dimensional pdf and is formulated in the form of a “line-integral.”  Its 
evaluation is performed numerically by taking short line segments around a closed contour.  The Alfano4 model is 
also based on a one-dimensional pdf expressed as two error functions and one exponential term.  It is numerically 
evaluated using well-known software already developed for error functions. 

This paper presents a comparison of numerical results obtained from those four models against a suite of test 
cases.  The reference (truth) probability was computed with MATHCAD 13 set to the highest tolerance that would 
still allow convergence of the double integral.  This investigation serves to check the validity and accuracy of the 
models as pure modules against the reference probability without introducing extraneous activities such as the 
propagation of the state vectors, the determination of the closest distance at conjunction, and the propagation of the 
combined covariance as prerequisites.  For a very wide range of collision parameters (miss distance, standard 
deviations, and collision cross-section radius) covering collision probabilities in the range of 0.1 to 10-7, the four 
models are almost always in good agreement.  Using the number of function evaluations as an indicator of 
computational efficiency, the fastest model is Chan’s and the slowest is Foster’s.  The Alfano and Patera models are 
relatively close in computing speeds. 

 

II. Probability computation 

A. General Method  
 The assumptions involved in linear collision probability formulation are well defined in References 1-4 and are 
summarized here for the reader's convenience.  Space object collision probability analysis (COLA) is typically 
conducted with the objects modeled as spheres, thus eliminating the need for attitude information.  Their relative 
motion is considered linear for the encounter by assuming the effect of relative acceleration is dwarfed by that of the 
velocity.  The positional errors are assumed to be zero-mean, Gaussian, uncorrelated, and constant for the encounter.  
The relative velocity at the point of closest approach is deemed sufficiently large to ensure a brief encounter time 
and static covariance.  The encounter region is defined when one object is within n standard deviations (nσ) of the 
combined covariance ellipsoid.  This user-defined, three-dimensional, n-σ  shell is centered on the primary object; n 
is typically in the range of 3 to 8 to accommodate conjunction possibilities ranging from 97.070911% to 
99.999999%. 

Because the covariance matrices are expected to be uncorrelated, they are simply summed to form one, 
large, combined, covariance ellipsoid that is centered at the primary object.  The secondary object passes quickly 
through this ellipsoid creating a tube-shaped path that is commonly called a collision tube.  A physical overlap 
occurs if the secondary sphere comes within a distance equal to the sum of the two radii.  Thus, we have a condition 
for collision. The probability of collision is obtained by evaluating the integral of the three-dimensional pdf within a 
long circular cylinder.  It can be shown that this is equivalent to evaluating the integral of the two-dimensional pdf 
within a circle on a plane perpendicular to the relative velocity at closest approach.  This is illustrated in the 
following figure.   
 

T 
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Fig. 1  Conjunction Encounter Visualization 

 
As previously stated, the encounter region is defined by an n-σ shell determined by the user to sufficiently 

account for conjunction possibilities.  For short-term encounters5, the tube is assumed straight and rapidly traversed, 
allowing a decoupling of the dimension associated with the tube path (relative velocity).  The tube becomes a circle 
on the projected encounter plane.  Likewise, the covariance ellipsoid becomes an ellipse as depicted in Figure 2.   
 

 
Fig. 2  Combined Covariance Sliced by Encounter Plane 

 
 
The relative velocity vector (decoupled dimension) is associated with the time of closest approach.  The 

conjunction assessment here is concerned with cumulative probability over the time it takes to span the n-σ shell, 
not an instantaneous probability at a specific time within the shell.  Along this decoupled dimension, integration of 
the probability density across the shell produces a number very near unity, meaning the close approach will occur at 
some time within the shell with near absolute certainty.  Thus the cumulative collision probability is reduced to a 
two-dimensional problem in the encounter plane that is then multiplied by the decoupled dimension’s probability.  
By rounding the latter probability to one, it is eliminated from further calculations.  Thus the projection results in a 
double integral. 
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The resulting two-dimensional probability equation in the encounter plane is given in Cartesian space as 
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where OBJ is the combined object radius, x lies along the minor axis, y lies along the major axis, xm and ym are the 
respective components of the projected miss distance, and σx and σy are the corresponding standard deviations.  
The four methods examined in this paper express Equation 1 numerically (Foster, Patera, Alfano) or by analytical 
approximation (Chan). 

This investigation is an extension of Chan’s previously published comparisons.6  It serves to check the validity 
and accuracy of the methods against a truth model without introducing extraneous activities such as the propagation 
of the state vectors, the determination of the closest distance at conjunction and the propagation of the combined 
covariance as prerequisites.  All computations start in the encounter plane. 

B. MATHCAD Implementation 
Equation 1 was directly inserted into MATHCAD without alteration.  The reference (truth) probability was then 

computed with MATHCAD 13 set to the highest tolerance that would still allow convergence of the double integral.  
For these validation cases the tolerance was set to 10-9 thereby guaranteeing accuracy to at least 9 decimal places.  
For this paper, an operational decision making region is outlined by a solid red line defining one percent error for 
collision probability ranging from 10-1 and 10-7.  Some users might consider this region too restrictive and perhaps 
accept up to a 10% difference or make the upper probability bound 10-3.  Ideally, the method should never produce 
results in this region, thus ensuring sufficient accuracy for decision-making.  If an approximation does produce 
answers in this region, then it should overestimate (erring on the conservative side).  An overestimate is represented 
with a blue plus sign and an underestimate is marked with a red x as shown in Figure 3. 

Approximately 60,000 test cases were used to evaluate the probability equation.  These cases had all parameters 
normalized to the covariance ellipse’s minor-axis standard-deviation of 1.  The object size varied from 10-3 to 10+3, 
the miss distance varied from 10-4 to 10+3 with position ranging from 00 to 900 relative to the minor axis, and the 
covariance ellipse’s major-axis standard-deviation varied from 1 to 500 (1 ≤ AR ≤ 500).  These parameters go well 
beyond what is found in present day values.  Because the truth results are good to at least 9 decimal places, 
differences beyond this accuracy might be attributed to MATHCAD and not the method being tested.  A blue-
dashed line outlines this validation data limit; differences above this line are due to inaccuracies in the tested method 
and not to MATHCAD.  A set of figures with AR of 1, 2, 3, 5, 10, 50, and 500 can be found for all four methods in 
the Appendix A. 
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Figure 3. Chart legend for comparing a model to MATHCAD-generated validation results. 
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III. Foster’s Method 

A. General Method  
 Foster1 derived a collision probability model using polar coordinates in the encounter (U-W) plane where R0 and 
φ define the combined object center’s location, OBJ is the combined object radius, σu and σw are the principal axes 
standard deviations, and r and θ  define the relative spatial position of the segmented object. 
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In Foster’s numerical implementation the angle φ is measured from the W axis, the angle θ step size is 0.5°, and the 
radius r step size is OBJ/12.  This model is currently used by NASA to assess on-orbit risk for ISS and Shuttle 
missions.  It can also be found in The Aerospace Corporation’s Collision Vision Tool. 

B. Numerical testing  
Equation 2 was programmed in FORTRAN using the step sizes recommended in the NASA/JSC paper.  During 

testing, certain cases placed the results inside the operational decision making region.  Further investigation showed 
that these incursions occurred when the object radius was smaller than the miss distance but larger than the standard 
deviation of the minor axis.  Within the accuracy bounds of currently available orbital data, it is reasonable to 
assume that these theoretical cases are highly unlikely.  If needed, Foster’s method can handle these cases by 
decreasing the step sizes of θ  and r. 

 

 
 
A complete set of unfiltered case results can be found in Appendix A.  
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Figure 4a. Foster method (unfiltered) comparison with object  
smaller than or equal to miss distance 
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The following figure shows the results of eliminating those cases where the object radius was smaller than the 
miss distance but larger than the standard deviation of the minor axis. 

 

 
 
A complete set of filtered case results can be found in Appendix B.  
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Figure 4b. Foster method (filtered) comparison with object  
smaller than or equal to miss distance 
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IV. Chan’s Method 

A. General Method  
 Chan2 developed a series expression as an analytical approximation to Equation 1 based on representative, 
present-day values (1m ≤  OBJ ≤  100m, 10m ≤  miss distance ≤  100KM , 1KM ≤  σ ≤  10KM).  Chan transforms 
the two-dimensional Gaussian probability density function (pdf) to a one-dimensional Rician pdf and uses the 
concept of equivalent areas.  In the encounter plane, the combined object radius is OBJ, centered at (xm, ym) with 
associated standard deviations of (σx, σy).  The series expression is  
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This expression has the added benefit of being easily differentiated for other types of probability analysis.  For this 
evaluation 11 terms were used (m=10).  This model is currently implemented in Analytical Graphics, Inc., Satellite 
Tool Kit with 2 terms (m=1). 

B. Numerical testing  
Equations 3a, 3b, and 3c were programmed in FORTRAN.  During testing, certain cases placed the results inside 

the operational decision making region.  Further investigation showed that these incursions occurred when the object 
radius was larger than one-tenth of the smaller standard deviation.  Increasing the number of terms will not correct 
these incursions because they result from the equivalent-area approximation. 

 

 
 
A complete set of unfiltered case results can be found in Appendix A.  
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Figure 5a. Chan method (m=10, unfiltered) comparison with object  
smaller than or equal to miss distance 
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The following figure shows the results of eliminating those cases where the object radius is larger than one-tenth 
of the smaller standard deviation.  This is reasonable given the present accuracy of orbital data. 

 

 
 
A complete set of filtered case results can be found in Appendix B.  
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Figure 5b. Chan method (m=10, filtered) comparison with object  
smaller than or equal to miss distance 
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V. Patera’s Method 

A. General Method  
 Patera3 developed a mathematically equivalent model to Equation 1 as a one-dimensional line integral where r is 
the distance to the hardbody perimeter and θ is the covariance-centric angular position measured from the x-axis.  
The probability density is symmetrized enabling the two-dimensional integral to be reduced to a one-dimensional 
path integral, resulting in the expression 
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if the combined object radius exceeds the miss distance.  Computation of the α term and Equation 4’s numerical 
implementation involves coordinate rotation, scaling, and trigonometric functions as explained in Patera’s paper.  
The method based on Reference 3 is currently employed in The Aerospace Corporation’s Collision Vision Tool and 
Satellite Orbit Analysis Program (SOAP).  The method is also used by various government and civil organizations. 

B. Numerical testing  
This 2001 covariance-centric method was programmed in FORTRAN with the number of integration steps (n) 

set to 400 as suggested by Patera.  During testing, when the aspect ratio exceeded 50, some results were inside the 
operational decision making region.  This was simply resolved by increasing the number of steps.   

 

 
 
A complete set of 2001 case results can be found in Appendix A.  
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Figure 6a. Patera 2001 method (n=400) comparison with object  
smaller than or equal to miss distance 
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In a subsequent 2005 Engineering Note7 Patera switched the integration variable such that it was centered on the 

object.  This change eliminated the trigonometric functions and also resulted in substantially fewer integration steps 
to achieve a given level of accuracy.  This improved, object-centric method was programmed in FORTRAN.  It 
produced better results and did so more quickly.  The number of integration steps (n) was set to 50 as determined by 
numerous trials to prevent incursions into the operational decision making region. 

 

  
A complete set of 2005 case results can be found in Appendix B.  
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Figure 6b. Patera 2005 method (n=50) comparison with object  
smaller than or equal to miss distance 
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VI. Alfano’s Method 

A. General Method  
 Alfano4 developed a series expression to represent Equation 1 as a combination of error (erf) functions and 
exponential terms.  In the encounter plane, the combined object center’s location is (xm, ym) with associated 
standard deviations σx and σy and combined object radius OBJ.  The series expression is given as 
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The method then breaks the series into m-even and m-odd components and makes use of Simpson’s one-third rule.  
An expression to determine a sufficiently small number of terms is given as 
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with a lower bound of 10 and upper bound of 50.  This method is currently implemented in Analytical Graphics, 
Inc., Satellite Tool Kit. 

B. Numerical testing  
Equations 5a and 5b were programmed in FORTRAN.  No results appeared inside the operational decision 

making region for any of the test cases because of the sufficiency of Equation 5b.  Greater accuracy, if desired, can 
be achieved by increasing m. 

 

 
 
A complete set of case results can be found in Appendix A.  
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Figure 7. Alfano method comparison with object  
smaller than or equal to miss distance
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VII. Practical Considerations 
Within the bounds of testing and observed limits, all four methods are sufficiently accurate for analysis of 

satellite conjunctions.  Chan’s method is by far the fastest but is also the most restrictive due to relative object size 
limitations.  Patera’s method produces good results, especially with his more-recent object-oriented formulation.  
Alfano’s method determines the number of integrations steps on a case-by-case basis.  Foster’s method is the 
slowest, but can be sped up by increasing the step size for many cases without adversely affecting accuracy. 

The operational decision-making region defined in this paper is only a suggestion.  The user must decide what 
level of accuracy is required over a given range of probabilities.  For trend analysis, speed might be more important 
than accuracy to a large number of decimal places.  Accuracy will be the driver for maneuver decisions where fuel 
will be expended and on-orbit lifetime shortened.  For co-orbiting satellites, the linear relative velocity assumption 
may be invalid.  Whatever the purpose, the user must understand the limits and assumptions that apply to each 
method before choosing. 

VIII. Conclusion 
Four methods were reviewed for determining collision probability of spherical objects exhibiting linear relative 

motion.  Testing was performed over a wide range of parameters and results were compared to a truth set accurate to 
at least 9 decimal places.  An operational decision-making region was defined to further assess computational 
results.  All four methods produced acceptable results within the bounds of testing and observed limits.  These 
methods can be found in commercial and/or government tools.   

Foster casts the problem in polar coordinates, then sections the object footprint into numerous radial and angular 
pieces to compute conjunction probability.  Chan develops an analytical approximation by transforming the two-
dimensional Gaussian probability density function (pdf) to a one-dimensional Rician pdf and uses the concept of 
equivalent areas.  Patera symmetrizes the probability density to enable reduction to a one-dimensional line integral.  
Alfano uses error functions and exponential terms to develop a series expression that makes use of Simpson’s one-
third rule. 
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Appendix B

Foster method filtered results

Chan method filtered results

Patera 2005 method results
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