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For satellite conjunction prediction containing many objects, timely processing can 
be a concern.  Various filters are used to identify orbiting pairs that cannot come 
close enough over a prescribed time period to be considered hazardous.  Such 
pairings can then be eliminated from further computation to quicken the overall 
processing time.  One such filter is the orbit path filter (also known as the geometric 
pre-filter), designed to eliminate pairs of objects based on characteristics of orbital 
motion.  The goal of this filter is to eliminate pairings where the distance (geometry) 
between their orbits remains above some user-defined threshold, irrespective of the 
actual locations of the satellites along their paths.  Rather than using a single distance 
bound, this work presents a toroid approach, providing a measure of versatility by 
allowing the user to specify different in-plane and out-of-plane bounds for the path 
filter.  The primary orbit is used to define a focus-centered elliptical ring torus with 
user-defined thresholds.  An assessment is then made to determine if the secondary 
orbit can touch or penetrate this torus.  The method detailed here can be used on 
coplanar, as well as non-coplanar, orbits.  

INTRODUCTION 

 As the number of orbiting satellites and space debris grows, so does the concern of possible 
collision.  Predicting future close encounters is becoming a routine requirement.  In 2004, as a 
free service to the satellite operator community, the Center for Space Standards & Innovation 
(CSSI) began offering SOCRATES1—Satellite Orbital Conjunction Reports Assessing 
Threatening Encounters in Space.  Twice each day, limited only by data availability, CSSI runs a 
list of all satellite payloads on orbit against a list of all objects on orbit using the catalog of all 
unclassified NORAD two-line element sets (TLEs) to predict conjunctions within 5 kilometers 
over the next seven days.  As of June 6, 2011, SOCRATES regularly processes 14,435 tracks in 
earth orbit, of which 3,078 are designated as payloads or primary objects.  While not all of these 
payloads are still active, about a third of them are and they perform a variety of important tasks, 
many vital to the global economy.  For the purposes of this work, a conjunction is defined as a 
point in time when the relative range rate is zero and the range is below the desired threshold. 

For the all-on-all conjunction problem the set of primary objects contain all of the secondary 
objects.  When dealing with such large numbers of space objects and pairings, timely processing 
becomes a concern.  Conjunction filters provide an efficient mechanism for eliminating further 
analysis by providing quick identification of primary/secondary pairings which cannot come 
close enough over the time interval to yield a conjunction.  Because each pairing of objects must 
be considered independently, the assessment of the entire catalog lends itself well to 
parallelization as detailed by Coppola et al2.  As they pointed out, software performance can by 
markedly improved by foregoing direct search methods on each and every pairing in favor of 
more selective algorithms which can quickly eliminate pairs of objects based on characteristics of 
orbital motion.  They accomplish this through a series of geometrical and temporal filters to 
quickly reduce the search space.   
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Hoots et al3 described a series of three screening filters through which candidate pairings 
should pass before determining their close approach distance. Two of the filters are geometrical 
and one uses the known properties of the orbital motion of the two objects.  These filters serve to 
screen each pairing of objects in the catalogue, eliminating many of those from further scrutiny 
and thus greatly reducing the number of computations needed. After the screening, the 
trajectories of the remaining candidate objects are sampled to determine the actual close approach 
periods.  The three filters are referred to as the Apogee/Perigee filter, the orbit path filter (also 
known as the geometric pre-filter) and the time filter.  Woodburn et al4 examined these filters and 
subsequently discovered occasional inadequacies when implemented as originally described.  The 
work presented in this article concerns itself only with the orbit path filter. 

The goal of the orbit path filter is to eliminate pairings which cannot produce conjunctions 
because the distance (geometry) between their orbits remains above some user-defined threshold, 
irrespective of the actual locations of the satellites along their paths.  Woodburn’s team stated that 
such filters define a proxy for the distance between a candidate conjunction pair and then either 
eliminate the pair from further consideration or limit the time periods requiring further analysis.  
They further explained that such filters use approximations based on known characteristics of 
orbital motion to maximize the efficiency of the computation.  Care must be taken that the 
accuracy of the results not be compromised by these approximations.  One simple method of 
accounting for approximations is to use distance pads to increase the size of the conjunction 
threshold distance during the filtering process.  Such padding increases the number of candidate 
pairs passing through each filter in order to reduce the likelihood that those pairs will be 
improperly eliminated which could lead to a missed conjunction. 

Rather than use an orbit path filter that assesses the minimum conjunction threshold distance 
between two orbit trajectories, this work employs a torus with differing in-plane and out-of-plane 
tube boundaries to give the user more versatility.  The primary orbit’s instantaneous, Keplerian, 
mean elements are used to define a focus-centered elliptical ring torus with user-defined 
thresholds.  An assessment is then made to determine if the secondary orbit can touch or penetrate 
this torus.  If it cannot, then this pair can be eliminated from further consideration. 

FUNDAMENTAL TORUS EQUATIONS 

This section shows how to modify the standard torus equation to accommodate an elliptical 
orbit with different radial and out-of-plane tube boundaries.  All surface points (x, y, z) of a ring 
torus radially symmetric about the z-axis must satisfiy  

 R x
2

y
2

 2 z
2

 r
2 (1) 

where R is the radial distance from the center of the torus to the center of the tube, and r is the 
circular radius of the tube as shown in Figure 1.   
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Figure 1. Ring torus. 

For an elliptical cross section the tube surface points can be expressed by  

 
R x

2
y

2
 2

R
b 2

z
2

O
b 2

 1 (2) 

where Rb is the in-plane (radial) axis boundary and Ob is the out-of-plane axis boundary as shown 
in Figure 2. 
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Figure 2. Cross section of elliptical tube. 

 The radial distance from the center of the torus to the center of the tube can be represented as 
an ellipse by modifying R.  As a function of an orbit’s true anomaly eccentricity ecc, and semi-
major axis a, the torus radius becomes 

 R
a 1 ecc

2
 

1 ecc cos ( )
 (3) 

By aligning the x and y axes with P and Q in the perifocal coordinate frame, the cosine of true 
anomaly becomes  

 cos ( )
x

x
2

y
2



 (4) 

These can now be substituted into Equation 2 to produce 

 

 
a ecc2 1  x2 y 2 ecc x 

2

x2 y 2 ecc x 2

x2 y 2 
Rb 2


z2

Ob 2
 1 (5) 

 
The in-plane axis boundary Rb is measured along the radius vector direction as shown in 

Figure 3. 



 4

V



Figure 3. In-plane axis representation of Rb. 

For noncircular orbits, the velocity vector will only be perpendicular to the radius vector at 
perigee and apogee.  If one desires to define the in-plane boundary Vb with respect to the in-track 
(velocity) direction, then Equation 5 must be modified in accordance with Figure 4 by assuming 
R >> Vb. 

V


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Figure 4. In-plane axis representation of Vb. 
 

where  is the in-plane flight path angle measured from the local horizon to the velocity vector.  
From simple orbital dynamics we know that the magnitude of the angular momentum h is related 
to orbital radius R, velocity V, and flight path angle  through 

 h R V cos ( )  (6) 

Angular momentum can also be found through  

 h
2

a 1 ecc
2

    (7) 
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where  is the gravitational constant.  V is simply  

 V 2


2 a



R






  (8) 

Equations 6-8 can now be used to produce the expression  

 cos ( )
2 a

2
1 ecc

2
 

R 2 a R( )
 (9) 

Equations 3 and 4 yield R in terms of x and y.  Equation 5 can now be altered by substituting 
Vb/cos() for Rb and expressing all in terms of x, y, z, and the constant orbital parameters a and 
ecc.   

a ecc2 1  x2 y 2 ecc x 
2

x2 y 2 ecc x 2
ecc2 y 2

x2 y 2 
V b 2


z2

Ob 2
 1 (10) 

When compared to Equation 5, the in-plane boundary Vb with respect to the in-track (velocity) 
direction causes an extra eccentricity-dependent term to appear in the denominator.  For a circular 
orbit, eccentricity is zero, Rb and Vb are equivalent, and Equation 10 becomes identical to 
Equation 5.   

Both equations completely define a focus-centered elliptical ring torus in the x,y plane 
bounded by Ob and Rb (or Vb).  Equation 5 represents a radially-bounded elliptical tube over the 
torus path while Equation 10 represents an in-plane-bounded elliptical tube; both have an 
independent bound Ob for the out-of-plane axis.  Given any position (x, y, z) and boundaries Ob 
and Rb (or Vb), one can immediately know if that position is inside, outside, or just touching the 
torus by simply determining if the left-hand side of Equation 5 (or 10) is less than one, greater 
than one, or equal to one respectively.  

THE PERIFOCAL COORDINATE SYSTEM 

 As summarized by Xue and Li5, for a Keplerian orbit with elements a, ecc, inc, , and , 
the unit vectors of eccentricity (P), semi-latus rectum (Q), and orbital angular momentum (W) are 
defined as 

 P   inc( )

cos ( ) cos ( ) sin ( ) sin ( ) cos inc( )

sin ( ) cos ( ) cos ( ) sin ( ) cos inc( )

sin ( ) sin inc( )











 (11) 

 

 Q   inc( )

cos ( ) sin ( ) sin ( ) cos ( ) cos inc( )

sin ( ) sin ( ) cos ( ) cos ( ) cos inc( )

cos ( ) sin inc( )











 (12) 
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 W  inc( )

sin ( ) sin inc( )

cos ( ) sin inc( )

cos inc( )











 (13) 

The transformation matrix T from the PQW frame to the IJK frame is simply 

 T(,inc) = [ P | Q | W ] (14) 

The positional vector p can be expressed in terms of the true anomaly  as 

 p ( )
a 1 ecc

2
 

1 ecc cos ( )
cos ( ) P sin ( ) Q( )  (15) 

or alternately expressed in terms of eccentric anomaly E as suggested by Baluyev and 
Kholshevnikov6 in their approach to determining minimum distance between two orbital paths 

 p E( ) a cos E( ) ecc( ) P 1 ecc
2

 sin E( ) Q   (16) 

If a primary orbit (1) is not coplanar with a secondary orbit (2) then the vector of the line of 
mutual nodes J can be obtained from the angular momentum vectors of the two orbits 

 J W 
2

inc
2

  W 
1

inc
1

   (17) 

 J

cos 
1  cos inc

2  sin inc
1  cos 

2  cos inc
1  sin inc

2 

sin 
1  cos inc

2  sin inc
1  sin 

2  cos inc
1  sin inc

2 

sin 
1


2

  sin inc
1  sin inc

2 











 (18) 

The closest approach distance between the two elliptical, non-coplanar paths are not necessarily 
along this line of mutual nodes (Hoots et al3).  It can, however, be used as a starting value for 
iteration to determine the minimum orbital intersection distance (MOID).  For this work, it can 
also be used to begin a search to determine if the secondary orbit traverses the primary orbit’s 
torus. 

METHODOLOGY 

Given primary (1) and secondary (2) Keplerian orbital elements, Equations 11-14 are used to 
express the components of the unit vectors of eccentricity (P), semi-latus rectum (Q), and orbital 
angular momentum (W) of the secondary orbit in the perifocal frame of the primary orbit. 

 

P
x

P
y

P
z

Q
x

Q
y

Q
z

W
x

W
y

W
z











T 
1


1
 inc

1
 T T 

2


2
 inc

2
   (18) 

Using Equation 16 and the true anomaly v2 in this frame, the position vector of an object along 
the secondary orbit is 
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x

y

z











a
2

1 ecc
2 2





1 ecc
2

cos 
2 

P
x

P
y

P
z

Q
x

Q
y

Q
z












cos 

2 
sin 

2 








  (19) 

If preferred, this vector can be found from the eccentric anomaly through Equation 16. 
A secondary object with position (x, y, z) is on or inside the primary orbit’s torus bounded by 

Rb and Ob if the following relationship from Equation 5 is satisfied. 

 
a1 ecc1 2 1  x2 y 2 ecc1 x 

2

x2 y 2 ecc1 x 2

x2 y 2 
Rb 2


z2

Ob 2
 1  (20) 

Alternately, the object is on or inside the torus bounded by Vb and Ob if the following relationship 
from Equation 10 is satisfied. 

 
a1 ecc1 2 1  x2 y 2 ecc1 x 

2

x2 y 2 ecc1 x 2
ecc1 2 y 2

x2 y 2 
V b 2


z2

Ob 2
 1  (21) 

The three variables (x, y, z) in the above torus equations are all functions of only one variable, the 
true (or eccentric) anomaly of the second object.  If no value for anomaly can be found on the 
interval [0, 2 to satisfy the appropriate torus equation, then the secondary orbit can be 
eliminated from further consideration because it won’t intersect the torus.  Regrettably, due to the 
transcendental nature of the torus equation, no analytical solution for anomaly exists. 

NUMERICAL SEARCH 

 As previously mentioned, if the orbits are not coplanar then the vector of the line of mutual 
nodes J can be used to start a search to determine if the secondary orbit intersects the torus of the 
primary orbit.  In this chosen frame  

 J

W
y

W
x



0













 (22) 

The dot product of P and J is used to find the secondary orbit’s true anomaly for nodal crossing 

 cos ( )
P

x
W

y
 P

y
W

x


W
x 2 W

y 2

 (23) 

The above has two possible solutions.  At the node, the z component of Equation 15 must be zero.  
Therefore, the correct value of true anomaly is chosen to satisfy the equation 

 cos ( ) P
z

 sin ( ) Q
z

 0 (24) 
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The antinode’s true anomaly will be half a revolution from this node.  Eccentric anomaly can 
easily be determined from these values if preferred.  The nodal anomaly can then be used to start 
a search to determine if torus intersection can occur. 
 If z2 > Ob

2 the torus equation cannot be satisfied.  This condition can be used to bound the 
anomaly search by determining the limiting angles.  In an approach similar to that taken by 
Woodburn and Dichmann7, setting the z component of the secondary orbit to Ob in Equation 15 
yields the expression  

  (25) 

The terms are rearranged to form 

 A sin ( ) B cos ( ) 1 (26) 

where  

  (27) 

  (28) 

Using the intermediate angle , the following substitutions are made 

 C A
2

B
2

  (29) 

 A C cos ( )  (30) 

 B C sin ( )  (31) 

into Equation 26 to produce  

 sin  ( )
1

C
 (32) 

If C is less than one, then the secondary orbit never reaches the out-of-plane limit Ob. and no 
bounding anomalies exist.  In this case, the two orbits are considered sufficiently coplanar that the 
entire range of anomaly [0, 2 must be searched to determine if the torus equation can be 
satisfied.  Woodburn and Dichmann7, using a simple distance function, suggested skipping the 
orbit path filter under this condition.   
 By comparing the z component to Ob through Equation 32, the limits of anomaly are found to 
be 
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 

asin
1

C








  asin
1

C




















 (33) 

This pair of solutions is found for both possible signs of Ob to yield a total of four solutions, two 
for each nodal crossing.  Any torus intersection that might exist must occur within these limits. 
 If it is determined that the second orbit cannot traverse the primary orbit’s torus, then this pair 
can be eliminated from further analysis.  This method uses simple two-body orbital dynamics 
which do not account for the changing geometry due to the precession of the orbital plane and the 
argument of perigee.  It is therefore recommended7 that this filter be employed throughout the 
time of interest at discrete intervals based on the distance settings and specific orbit 
characteristics.  Conversely one can set the discrete time interval and then determine appropriate 
distance settings.  These approaches are discussed in the sections that follow.  If the second orbit 
cannot traverse the primary orbit’s torus for all the interval times, only then should this pair be 
eliminated from further analysis.   

PADDING 

Filters such as this one are subject to false positive identifications (Type I errors) as well as 
false negative identifications (Type II errors).  A Type I error occurs when the filter determines 
the satellite pair should be assessed further but no conjunction is then predicted.  This is to be 
expected because the screening is based on the minimum distance between orbits.  It will always 
be possible that the actual satellite positions will not come as close as their orbits, so Type I errors 
will occur because of the nature of the orbit path filter.  A Type II error occurs when the filter 
determines the satellite pair should not be assessed further but a conjunction is then predicted.  
This reveals that the predicted satellite positions will come closer than the computed minimum 
distance between orbits. 

Type II errors result from the simplifying assumptions that went into the path filter’s 
development.  One should add a pad or buffer to the desired distance threshold to reduce such 
errors and avoid missing possible conjunctions.  Type II errors can be eliminated only with an 
excessively large distance pad which will, in turn, add a greater computational burden.  A pad 
should account for the precession of the nodes and apsidal rotation as well as the secular and 
short-periodic variations for all the orbital elements (semi-major axis included).  This pad should 
be chosen to strike a balance between timeliness and accuracy. 

It is important for the user to configure the pad settings such that operational requirements are 
met in a timely fashion with an acceptable limit of Type II errors.  This requires both step size 
control and distance bounds based on natural motion.  Pad settings should be chosen in a manner 
that allows the end user to know whether the tool was exercised with a focus on accuracy or 
speed.  If accuracy alone is important, one must be absolutely certain that the filter will not 
prematurely eliminate a pair of satellites from consideration that might be found to have a 
conjunction; Type II errors are not permitted.  Such assurance comes with increased processing 
time as the computations would take much longer due to very conservative (large) pad settings.  
To absolutely assure no Type II errors, the simplest approach is to turn the orbit path filter off and 
assess every pair, accepting the increase in downstream computations.  The padding strategies 
presented in the following test cases assume natural relative motion and should not be used if the 
ephemeris of either satellite contains maneuvers. 

TEST CASE 1 

To compare and contrast the torus- and distance-path filters, the entire Iridium constellation 
was screened for the day of April 19, 2010.  This involved finding close approaches with all 
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objects in the public, TLE (Two Line Element), space catalog with a minimum range of less than 
10 KM.  The mid-day Keplerian mean elements were used by all filters.  Tables 1a and 1b show 
the various pad settings as well as the number of pairs not eliminated by the Apogee/Perigee filter 
(Pairs Evaluated).  The number of pairs eliminated by the orbit path filter (Pairs Eliminated) and 
Type II errors are included along with the total number of predicted conjunctions.  

Table 1a. Test Case 1 for distance-path filter 

Distance threshold (KM) 10 10 10 

Apogee/Perigee Pad (KM) 30 30 30 

Distance Pad (KM) 30 50 60 

Pairs Evaluated 581759 581759 581759 

Pairs Eliminated 479817 335898 226108 

Conjunctions Predicted 714 1077 1260 

Type II Errors 546 183 0 

 
The numerical columns of Table 1a show the results of using a distance-path filter.  For the 

case where the distance pad was set to 30 KM there were 546 Type II errors.  Enlarging the pad 
to 50 KM yielded 183 Type II errors.  Further enlargement of the pad to 60 KM yielded no Type 
II errors for the filter; when compared to the 30 KM distance pad case, however, the number of 
pairs to be evaluated downstream more than tripled. 

Table 1b. Test Case 1 for torus-path filter 

Distance threshold (KM) 10 10 10 

Apogee/Perigee Pad (KM) 30 30 30 

Vb Pad (KM) 30 30 50 

Ob Pad (KM) 50 60 60 

Pairs Evaluated 581759 581759 581759 

Pairs Eliminated 390489 325991 254404 

Conjunctions Predicted 1070 1258 1260 

Type II Errors 190 2 0 

 
The last numerical column of Table 1b reveals that the torus-path filter, with Vb and Ob pad 

values of 50 KM and 60 KM respectively, had no Type II errors.  It also reduced the number of 
pairs to consider by 28,296 (over 12%) when compared to the 60 KM distance pad case in the last 
column of Table 1a.  Comparing the previous Table 1b column (Vb pad set to 30 KM) to the 60 
KM distance pad case, there are almost 100,000 less pairs to consider (over 44%) but two Type II 
errors appear.  The first column, with Vb and Ob pad values of 30 KM and 50 KM, is included for 
comparison with the first two numerical columns of Table 1a.   

The results for both types of filters can vary from day-to-day and the pads used here should be 
considered provisional for the Iridium constellation.  As pointed out by Woodburn4, the event 
detection logic needs to include a sampling strategy that accounts for important trends in the 
sampled metric.  Several approaches involving pad-setting and sampling are presented in the 
following sections to address this. 
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TEST CASE 2 

 For this test, a large scale conjunction screening analysis was undertaken.  This involved 
finding all conjunctions for 11,807 objects in the public TLE catalog with a minimum range of 
less than 10 KM for the seven day period beginning at 2009-02-10 16:00:00 UTC.  Over 100,000 
possible conjunctions were predicted with the path distance filter pad set to 30 KM and only 
employed once at the start of the scenario.  This test case examines a resulting Type II error 
involving the premature elimination of a pair of satellites that would eventually come within 1.2 
KM of each other.  Table 2a provides the test case TLEs for this pair consisting of a SL-3 Rocket 
Body (NORAD ID 09904) and Fengyun 1C debris (NORAD ID 31921). 

Table 2a. Test Case 2 TLEs 

Object Two Line Element Set 

Primary 1 09904U 77024B   09041.51364740 +.00000011 +00000-0 -50667-6 0 05030 

2 09904 081.2589 194.8154 0053721 273.2500 086.2545 14.06530205634195 

Secondary 1 31921U 99025CLY 09041.35799252 +.00000428 +00000-0 +49823-3 0 01655 

2 31921 099.3114 007.3534 0224626 349.6882 009.9561 13.64007839081997 

 
 For this analysis, Equation 21 is used to form the toroid distance function f(2)  

                 

f 
2 

a
1

ecc
1 2 1



 x

2
y

2
 ecc

1
x





2

x
2

y
2

 ecc
1

x





2

ecc
1 2 y

2


x
2

y
2

 
V
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where x, y, and z are found from Equation 19 as functions of the secondary satellite’s true 
anomaly 2.  It is valid for coplanar and non-coplanar orbits.  For comparison with a distance-
based orbit path filter, the values of Vb and Ob are both set to 40 KM (30 KM pad + 10 KM 
threshold).  If the minimum value of f for all [0o ≤ 2 < 360o] is positive then the secondary orbit 
never touches the primary orbit’s toroid.  If the value is zero, then the secondary orbit just touches 
the toroid surface.  If the value is negative, then the secondary orbit pierces the toroid.   
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Figure 5. Miss Distance Between Orbits. 

 

 
 Figure 5 was created by propagating the TLEs in five minute increments to create 
ephemerides for both objects, determining the classical orbital elements for each instance of those 
ephemerides, and then determining the minimum distance between orbit paths.  Such analysis is 
not limited to TLEs and will work with natural-motion ephemerides generated from any source.  
The left vertical axis of Figure 5 is the ordinate for the minimum Cartesian path-to-path distance 
between orbits (not satellite-to-satellite) over the seven day period.  The right vertical axis is the 
ordinate for the minimum values of the toroid distance function f.  As expected the two plots 
appear identical with only a difference in scale.  The graph shows considerable frequency content 
and a wide range of variability over the seven day screening period.  At scenario start (Day 0) the 
two orbit paths will not come within 100 KM of each other.  Evaluating only this single data 
point, the orbit path filter would erroneously eliminate this pair from further consideration.  Near 
Day 2.65 the orbit paths will come within 0.6 KM each other.   
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Figure 6. Minimum Time Interval to Assure Capture 

 

 Figure 6 focuses on the resulting orbit path behavior between Days 2 and 3, showing the time 
span that the minimum distance between orbits stays below 40 KM.  For this specific case, the 
orbit path filter must be evaluated every 0.6 days or less to properly capture the minimum 
distance below the combined threshold (10 KM) and pad (30 KM).  Returning to Figure 5, the 
diamond symbols show half-day sampling intervals.  The orbit path filter would be evaluated 
each half-day until reaching Day 2.5, at which time the result would show the orbits coming 
sufficiently close to warrant further analysis.  
 A more complete approach to defining suitable pad limits is to determine the maximum path-
to-path distance variability for a specific time interval within the period of concern.  This goes 
beyond simply accounting for the differences between the mean and osculating orbit 
representations.  Returning to Figure 5, one can plot the maximum variability to arrive at Figure 
7.  The time sampling intervals were examined in multiples of 2 hours, ending at half the scenario 
period. 
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Figure 7. Time Sampling Interval versus Distance Variability 

 

 As Figure 7 illustrates for this satellite pair, an orbit path filter evaluation every 0.5 days 
would actually require a distance filter pad of 93 KM or in- and out-of-plane pads of 79 KM and 
60 KM respectively.  A larger pad or threshold allows a greater span and fewer orbit path filter 
evaluations.  A time interval of one full day would require a total distance pad of 131 KM; two 
full days would require 155 KM.  The larger pad would also identify more pairs for further 
consideration, many of which would be eliminated later in the process.  Computational time 
would thus be reduced for filter evaluation but increased for further processing.  Conversely, a 
smaller pad or threshold would require a smaller span and more filter evaluations.  A time 
interval of four hours would only require a total distance pad of 60 KM.  This would increase the 
computational time for filter evaluation but eliminate more pairs and reduce further processing 
time.  For small time intervals the filter’s computational burden may outweigh its benefit, 
meaning it might be faster to just assess the differences in satellite position and not use the path 
filter at all. 

Settings of Vb = 89 KM (79 KM pad + 10 KM threshold) and Ob = 70 KM (60 KM pad + 10 
KM threshold) with evaluation at the mid-time of each day are used to produce the last column of 
Table 2b.  When compared to the 93 KM distance padded filter with the same evaluation times, 
the torus filter screened out 17% more pairs without introducing any Type II errors.  The first 
numerical column of Table 2b simply shows the results of using a 30 KM distance pad.  

Table 2b. Test Case 2 padding results 

Distance threshold (KM) 10 10 10 

Apogee/Perigee Pad (KM) 30 30 30 

Distance Pad (KM) 30 93 NA 

Vb Pad (KM) NA NA 79 
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Ob Pad (KM) NA NA 60 

Pairs Evaluated 40883 40883 40883 

Pairs Eliminated 33958 10725 12548 

Conjunctions Predicted 160 185 185 

Type II Errors 25 0 0 

 
As with the previous test case, it must be emphasized that the pad sizes determined in this 

example are provisional.  Many pairs must be assessed using the methodology used to create 
Figure 7 to assure no candidate pairs are erroneously eliminated by a pad size that is too small or 
a time sampling interval that is too big.  This is demonstrated in the test case that follows. 

TEST CASE 3 

 This case illustrates the conditional nature of the pad size by examining a case cited by 
Woodburn et al4.  Table 3a provides the test case TLEs for this pair consisting of Thor Ablestar 
debris (NORAD ID 00130) and Delta 1 debris (NORAD ID 10730).  Woodburn’s team used a 
conjunction threshold of 5 KM for the seven day period beginning at 2009-02-12 05:00:00 UTC.  
These satellites come within 2.7 KM of each other within the first six hours of the scenario. 

Table 3a. Test Case 3 TLEs 

Object Two Line Element Set 

Primary 1 00130U 61015Q   09042.53163123 -.00000058  00000-0  13804-4 0  1891 

2 00130  66.7709 101.1030 0080133  49.8006 311.0048 13.98086160426145 

Secondary 1 10730U 75027E   09041.68856875 -.00000310  00000-0 -10589-3 0  6011 

2 10730 114.9454 275.4040 0122342 287.9987  70.7850 13.92737619721619 

 
 Figure 9 was created using the previous test case methodology.  Because no pad value was 
explicitly given in Reference 4, the 30 KM pad is again used with both Vb and Ob each set to 35 
KM (30 KM pad + 5 KM threshold).   
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Figure 8. Toroid Function Values. 

 

As can be seen in Figure 8, the pair would be eliminated if analysis was only done at the scenario 
start.  With a very slight shift of scenario start time, however, even half-day incremental analysis 
would be insufficient to capture this pair for the pad setting of 30 KM. 
 Once again, suitable pad limits for this pair are determined by examining the maximum path-
to-path distance variability for a specific time interval within the 7 day period of concern.  Time 
sampling intervals of 2 hour multiples were used to produce Figure 9.   
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Figure 9. Time Sampling Interval versus Distance Variability 

 

 Based on Figure 9 and using a time sampling interval of 3.5 days, Vb is set to 123 KM (118 
KM pad + 5 KM threshold) and Ob is set to 33 KM (28 KM pad + 5 KM threshold) to produce 
the third numerical column of Table 3b.  When compared to the 30 KM distance padded filter 
with the same mid-span evaluation time, the torus filter screened out 3.4% fewer pairs and only 
eliminated one Type II error: the one associated with this specific conjunction.  Comparison with 
the second numerical column using a distance pad of 118 KM shows that there are 11 other 
conjuncting satellites exceeding the torus’ out-of-bounds pad, thus revealing the inadequacy of 
this pad size to eliminate all Type II errors.  A sufficient number of pairs must be assessed for 
variability to assure completeness; this is an area of future research.  As shown in the last column, 
increasing Ob to 60 KM eliminates all Type II errors while eliminating 38% more pairs than the 
distance-filter pad of 118 KM. 

Table 3b. Test Case 3 padding results 

Distance threshold (KM) 5 5 5 5

Apogee/Perigee Pad (KM) 30 30 30 30

Distance Pad (KM) 30 118 NA NA

Vb Pad (KM) NA NA 118 118

Ob Pad (KM) NA NA 28 60

Pairs Evaluated 6428 6428 6428 6428

Pairs Eliminated 6191 1608 5980 2232

Conjunctions Predicted 4 16 5 16

Type II Errors 12 0 11 0
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CONCLUSION 

A toroidal approach to an orbit path filter was presented that provides more versatility than a 
simple distance function.  This method uses the primary orbit to define a focus-centered elliptical 
ring torus with separate, user-defined, in-plane and out-of-plane bounds.  An assessment is then 
made to determine if the secondary orbit can touch or penetrate this torus.  After transformation 
to the primary satellite’s perifocal coordinate system, the torus equation is derived as a function 
of only one variable, anomaly of the secondary orbit.  The function is valid for coplanar, as well 
as non-coplanar, orbits.  A numerical search method was presented due to the toroid function’s 
transcendental nature.  Three test cases were presented to compare and contrast the torus filter 
with a distance-only filter while also emphasizing the importance of properly choosing pad sizes.  
The test cases suggest that the torus filter can eliminate 10% or more candidate pairs than the 
distance-only filter without increasing Type II errors provided the pads are properly set.  The 
padding strategies presented in the test cases assume natural relative motion and should not be 
used if the ephemeris of either satellite contains maneuvers.  The results of these test cases can 
vary from day-to-day and should be considered provisional. 
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