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A SURVEY OF THE METHODS AVAILABLE FOR THE DESIGN OF
MANY-REVOLUTION LOW-THRUST PLANETOCENTRIC

TRAJECTORIES

Pradipto Ghosh∗

The mission use of electric propulsion (EP) systems providing continuous, low thrust has
steadily increased over the past several years. As EP technology continues to mature, the
upward trend in its efficient utilization is expected to persist. A particularly challenging and
long-studied low-thrust trajectory design problem is Electric Orbit Raising, i.e. the design
of many-revolution, long duration transfers in the planetocentric space. Numerous methods,
both analytical and numerical, optimal and sub-optimal, open-and-closed-loop, and involv-
ing models of various degrees of complexity, have been proposed. This paper attempts to
characterize and classify the more popular of these methods and their variants.

INTRODUCTION

Investigation into the methods for the design of multi-revolution, low-thrust trajectories in the planeto-
centric space has received fresh impetus in recent years, due, in no small parts, to the rapid development
and increasing adoption of Electric Propulsion (EP) technology in missions involving Geostationary com-
munication satellites. Continuous thrust generation using EP is not a new concept per se, having been first
tested in flight in the 1960’s.1 Even though the primary advantage of low thrust levels, namely, a large ac-
cumulated ∆V while expending relatively little propellant mass compared to chemical propulsion systems,
was recognized early on, its adoption has historically been gradual. In the 1980’s and 90’s, EP found appli-
cations in station-keeping maneuvers for GEO satellites, but its serious use as primary propulsion for orbit
raising applications was deferred until the early 2000’s, perhaps mainly because of its perceived risk as a
still-maturing technology, and also because of delayed revenues resulting from long transfer duration. In
2001, the Artemis mission fired its ion engines for 18 months, a major portion of its GTO to GEO journey.
Launched in 2003, SMART-1 was the first spacecraft to complete a full GTO to GEO transfer and beyond (a
lunar orbit) using low-thrust propulsion exclusively. Since then, several all-electric, low-thrust orbit raising
missions have flown successfully, one of the more recent ones being the 4-month-long transfer of the Eutelsat
172B (launched June 2017) to GEO using only EP, in particular, a SPT-100 Hall Effect Thruster.2

The problem of designing multi-revolution (hundreds or even thousands of revolutions) low-thrust trajec-
tories around a central body, is, however, non-trivial, research into which started more than half a century
ago and continues to this day.3–6 Starting with the early work of Lawden and Edelbaum, the majority of
trajectory design methods have tackled the problem from an optimization, although not necessarily from a
modern Optimal Control Theory, perspective.3, 4 Since computational power was at a premium in the early
days, especially in 1960’s, 70’s and the early 80’s, many of the early trajectory optimization algorithms are
based on lower-order and/or one-revolution-averaged dynamical models. Averaging the dynamics allowed
larger integration step sizes, and a smaller state-space dimension allowed for the derivation of convenient,
semi-analytical formulae for estimating the maneuver duration, ∆V , and the thrust program.

Propellant and flight-time optimization of spiraling, low-thrust trajectories using indirect (Pontryagin’s
Minimum Principle) and direct ( e.g. transcription-with-nonlinear-programming) methods have been re-
ported in numerous works. Developed in the mid-1970’s and still used by NASA for geocentric trajectory
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optimization, SEPSPOT is an indirect-method-based software that utilizes orbital averaging instead of direct
integration of the osculating orbital dynamics to keep program run time in check.7 A relatively early work
by Scheel and Conway used a Runge-Kutta (R-K) parallel shooting method to compute an equatorial LEO-
to-GEO transfer trajectory with about 100 revolutions.8 Their model was of medium fidelity, involving lunar
perturbation and the Earth J2 effect. However, applying a direct method to many-revolution transfers has
its challenges, the greatest of which is the large number of decision variables (upto hundreds of thousands)
and constraints (of similar order). Generating an initial guess for such a direct method is also non-trivial,
absent an a priori intuition for a simple thrusting strategy, in terms of thrust spherical angles in a satellite-
centric frame, for instance. In spite of this, several authors have solved the many-revolution optimization
problem using various flavors of direct collocation with nonlinear programming, including Betts, who reports
a 578-revolution spiral using the SOCS software.9 More recently, Graham and Rao have solved month-long,
minimum-time LEO-to-GEO transfer problems using a variable-order Legendre-Gauss-Radau orthogonal
collocation method.10 Aziz et al. have used a Hybrid Differential Dynamic Programming (HDDP) algorithm
to optimize a 500-revolution spiral trajectory under J2 and lunar gravity.11

Apart from trajectory design from within pure Calculus of Variations (CoV) or Computational Optimal
Control frameworks, there are other methods as well, such as those based on the “blending” of thrust vectors
that instantaneously maximize orbit element rates, examples of which are the Kleuver method and Q-law.12, 13

Such methods tend to be computationally more tractable compared to collocation-based ones modeling oscu-
lating dynamics, yet, at the same time allow accounting for practical mission scenarios such as intermittent
thrusting, thus making them attractive as “seed” methods for high-fidelity, high-dimensional optimization-
based methods.

In the light of the foregoing discussion, the low-thrust, planetocentric, many-revolution trajectory design
methods surveyed in this paper are classified into the following three categories:

i) Simplified Model-based Analytical/Semi-analytical Methods (SMASM)

ii) Computational Optimal Control Methods (COpC)

iii) Sub-optimal Trajectory Design Methods (SubTD)

There is considerable variation among these trajectory design formalisms in terms of the fidelity of the
physics modeled and the assumptions made in order to produce a solution. Some account for eclipsing
and accordingly introduce a natural bang-off-bang thrusting pattern expected from a typical Solar Electric
Propulsion (SEP) engine, while some others that assume constant thrust acceleration over the transfer dura-
tion. Again, some formulations consider more realistic engine models than others, with a throttable thrust
magnitude, a dedicated power processing unit, and solar cell performance degradation in the Van Allen ra-
diation belts, while there are others assume ideal models of Constant Thrust and Specific Impulse engines.
In terms of the resulting control policy, some of the surveyed methods provide feedback laws useful for
guidance purposes, while the majority solve the open-loop problem from which feedback policies may sub-
sequently be synthesized. In a similar vein, some of these methods formulate path constraints, such as thrust
direction or minimum periapsis, while others do not. Thus, a developer interested in implementing a low-
thrust, multi-revolution, trajectory design library, or integrating an existing one into a larger software system,
has several options at their disposal. If the intention is to develop a quick trajectory “calculator” for initial
phases of a mission, perhaps with a view to implementing more complex methods at a later stage, some of
the reduced-order semi-analytical methods (SMASM) or sub-optimal ones (SubTD) may be sufficient. On
the other hand, a high-fidelity, high-precision library may be designed based on collocation methods, one that
will intelligently select a computationally inexpensive “seed” method depending upon a user setting, such as
the choice of whether to account for shadowing or whether a rendezvous solution is requested instead of an
orbit transfer solution. The purpose of this paper is not to present an exhaustive review of literature dealing
with low-thrust, multi-revolution spiral trajectory design methods, nor to document the algorithmic details
of each method, but rather to summarize and categorize the more common ones with the hope of providing
initial guidance to the trajectory design and optimization software tool developer in selecting a tool or method
appropriate for their specific requirement in terms of development effort and fidelity/accuracy goals.
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SIMPLIFIED MODEL-BASED ANALYTICAL/SEMI-ANALYTICAL METHODS

The Edelbaum-Kèchichian Method

In his seminal analysis, Edelbaum presented analytical solutions to the problem of maximizing the incli-
nation change between two circular orbits of specified semi-major axes under constant thrust acceleration
and fixed transfer time.3 With the thrust yaw angle (control) held constant per revolution, Edelbaum used the
following one-revolution-angle-averaged, circular orbit GVEs for velocity and inclination:

di

dt
=

2

π

α siny

V
(1)

dV

dt
= −α cosy (2)

and then posed the fixed-time inclination-maximization problem in the form of an ordinary parameter opti-
mization problem using velocity as the independent variable:

max
y

∫ Vf

V0

di

dV
dV, s.t

∫ Vf

V0

dt

dV
dV = constant (3)

Although Eq. (3) results in an expression for the optimal control angle y∗, and closed-form formulae for the
maximum inclination change ∆i∗ and the maneuver ∆V ∗, the formula for ∆i∗(V ) is a piece-wise function
involving a somewhat inconvenient conditional expression (Eqs. (44a-b) in reference [3]). It must also
be noted that the orbit is assumed to remain quasi-circular during the maneuver, an assumption that can be
justified if the constant yaw angle switches sign at the orbital anti-nodes, effectively making ∆h = 0, ∆k = 0
(and also ∆p = 0, ∆q = 0) per revolution. Later, Kèchichian, using time as the independent variable,
reformulated the original Edelbaum problem as an Optimal Control Problem and, through direct application
of the PMP, obtained a closed form expression for the control history y∗(t) valid for the entire transfer
duration.14 Apart from resulting in an ephemeris-generating algorithm, the Kèchichian formulation also
provides a single formula for the evolution of the orbit inclination as function of time. The Optimal Control
formulation consists in minimizing the Lagrange cost (maneuver duration, and for constant acceleration, also
minimum ∆V )

∫ tf
0

1.dt subject to Eqs. (1, 2). For a spacecraft equipped with a constant-thrust-acceleration
engine, the procedure for generating a minimum-time, multi-revolution trajectory between the given initial
conditions {a0, i0} and final conditions {af , if}, can be summarized as follows:

i) Compute the initial optimal yaw angle from:

tany∗0 =
sin(π2 |if − i0|)√

af
a0
− cos(π2 |if − i0|)

(4)

ii) Calculate the simulation/maneuver duration from:

t∗f =
1

α

√
µ

a0

(
cosy∗0 −

siny∗0
tan[π2 |if − i0|+ y∗0 ]

)
(5)

iii) Compute the optimal thrust yaw and pitch angles from:

y∗(t) =

√
µ
a0

siny∗0√
µ
a0

cosy∗0 − αt
(6)

p∗(t) = 0 (7)

iv) Numerically integrate the equinoctial GVEs forward in the [0, tf ] interval with the known initial states
using controls Eqs. (6,7). However, during simulation, care must be taken to only change y∗ from one
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revolution to the next while holding it constant within a revolution. Also, the yaw sign must switch at
the anti-nodes to prevent drift in the average eccentricity and line of nodes under the above two-body-
and-thrust model.
Analytical expressions are also available for the semi-major axis and inclination as function of time:

a∗(t) =
a0

1 + a0
µ α

2t2 − 2
√

a0
µ αt cosy∗0

(8)

|∆i∗(t)| =
2

π

[
tan−1

(αt−√µ

0
cosy∗0√

µ
a0

siny∗0

)
+
π

2
− y∗0

]
(9)

Note that as is the case with many trajectory optimization methods based on angular-position-averaged dy-
namical models, the Edelbaum-Kèchichian method is not intrinsically suitable for rendezvous problems be-
cause the spacecraft position in the orbit does not appear in the dynamics. However, the method has proved
suitable for quick estimation of flight time and propellant consumption even for design techniques formulated
under less restrictive assumptions, including cases in which shadows are modeled.15, 16

Kèchichian has extended the analytic averaging approach for circular orbits by accounting for the averaged
J2 effect.17 An extra state, Ω, was appended Eqs. (1, 2) by including its averaged rate dΩ

dt due to J2. With this
added effect, the orbit now rotates around the instantaneous line of nodes, which itself exhibits precession.
The averaged, 3-state trajectory optimization problem is again formulated and solved via an indirect method,
with piecewise constant thrust yaw angle switching signs at the relative anti-nodes, although closed-form
analytical expressions such as those presented in Eqs. (4- 9) are no longer available. The corresponding
semi-analytical method is therefore rendered somewhat less competitive relative to other purely numerical,
averaging-based direct methods discussed below. In reference [15], Kleuver presents a semi-analytic al-
gorithm for predicting the flight-time for circle-to-circle inclination change maneuvers in the presence of
shadows. Key results from the Edelbaum-Kèchichian formulation are utilized, but the Kleuver method does
not produce an ephemeris and thrust attitude history that could be exploited by a COpC method. An analyt-
ical method for quasi-circular orbit transfer in the presence of shadows was developed in reference [18] by
extending the Edelbaum method described above. Thrust orientation is constrained to maintain circularity.
In reference [19], an analytical method is developed from geometric considerations for circular orbit raising
in the presence of earth shadow. The thrusting strategy is to maximize the ∆a per revolution while keeping
∆e to zero under eclipsing. However, both of these methods consider the special case of co-planar transfers
only, and are sub-optimal due to steering losses incurred in constraining the eccentricity.

The Wiesel-Alfano Method

Yet another semi-analytical, low-thrust orbit transfer algorithm based on a two-state dynamical model was
developed by Wiesel and Alfano.20 Similar to the original Edelbaum method, the Wiesel-Alfano method also
determines an inclination-maximizing yaw steering control law for a single revolution circular transfer, but
instead of using averaged dynamics, it uses an osculating two-state model. This results in a continuously-
varying yaw profile in each revolution as opposed to Edelbaum’s square-wave yaw profile (constant magni-
tude, sign switches at anti-nodes). Furthermore, in separately considering a “fast time scale” problem (per
orbit) and a “slow time scale” problem (the entire transfer), the Wiesel-Alfano method is able to remove the
constant acceleration restriction inherent in the Edelbaum-Kèchichian method, replacing it instead with a
more realistic constant-thrust-constant-Isp engine model. Acceleration is assumed to be constant only within
a revolution, but increases from revolution to revolution, thus accounting for propellant loss. Earth-eclipsing
is not modeled, thereby limiting the method’s utility for SEP missions.

The osculating counterparts of Eqs. (1, 2) with f as the independent variable and {i, a} as the dependent
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ones are:

di

df
=

a2

µ
α siny(f) cos f (10)

da

df
=

2a3

µ
α cosy(f) (11)

Note that as before, pure tangential thrusting is assumed, thus p = 0. Also, α is the engine acceleration
magnitude assumed constant over the short time scale of one orbit, but not on the longer time scale, as
explained below. The objective of the fast time scale problem is to program y(f) so as to maximize the
one-revolution inclination change with a specified change in semi-major axis, ∆a:

max
y

J(y) =

∫ 2π

0

a2

µ
α siny cos fdf, s.t C(y) =

∫ 2π

0

2a3

µ
α cosydf −∆a = 0 (12)

The standard one-variable optimization necessary condition ∂
∂y (J +λC) = 0 leads to the following optimal

yaw program valid per orbit with initial semi-major axis a:20

y∗(f) = tan−1
( cos f√

1
u − 1

)
, where u :=

1

4λ2a2 + 1
(13)

With this control, analytical expressions are derivable for the changes in a, i, e and Ω per orbit, i.e. over

intervals of δT = 2π
√

a3

µ ( [20]):

δa =
8a3α

µ

√
1− u K(u), K(·) : elliptic integral of the first kind (14)

δi =
4a2α

µ

[√ 1

u
E(u) +

(√
u−

√
1

u

)
K(u)

]
, E(·) : elliptic integral of the second kind (15)

δe = 0 (16)
δΩ = 0 (17)

The long time scale dynamics can now be modeled by considering the per-orbit evolution of the states {a, i}
in the “long” time scale T, over which the acceleration is no longer a constant:

δa

δT
=

4a3/2

π
√
µ

α0

1− ṁT

√
1− u K(u) (18)

δi

δT
=

2

π

√
a

µ

α0

1− ṁT

[√ 1

u
E(u) +

(√
u−

√
1

u

)
K(u)

]
(19)

Here α0 = |T |
m0

is the initial thrust acceleration, T the thrust, and ṁ the mass flow rate. Changing the
independent variable in Eqs. (18, 19) from T to the velocity-like variable

V = −α0

ṁ
ln(1− ṁT) (20)

Wiesel and Alfano solve the following minimum-∆V transfer problem with u(V) as the control variable:

WA



min
u

∫Vf

0
1.dV

δa
δV = 4a3/2

π
√
µ

√
1− u K(u)

δi
δV = 2

π

√
a
µ

[√
1
u E(u) +

(√
u−

√
1
u

)
K(u)

]
[a(0), i(0)]T = [a0, i0]T specified
[a(Vf ), i(Vf )]T = [af , if ]T specified, Vf free

(21)
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Solution of WA via a numerical technique such as the shooting method would yield a(Vf ), i(Vf ), u(Vf ).
From the resulting a, i,Vf map, it is easy to read off the Vf value for a given set of terminal conditions, which
in turn can be mapped to the total transfer time using Eq. (20). Note that unlike the Edelbaum-Kèchichian
procedure which provided purely analytical formulas for estimating the transfer time, ∆V , a(t) and i(t), the
Wiesel-Alfano method requires the solution of an optimal control problem for the long time scale transfer,
although analytic expressions are available for some of the quantities of interest, e.g. one-revolution change
in the elements, with the corresponding thrust program, Eqs. (13-17). A method for generating an ephemeris
and control time history is however, not explicitly discussed in the Wiesel-Alfano paper. In order to produce
this information, useful for higher-fidelity direct trajectory optimization methods, for example, the following
procedure could be adopted:

i) Numerically solve the minimum-∆V optimal control problem for a circle-to-circle transfer based on
Eqs. (18, 19), i.e. use T as the independent variable instead of V. This should yield u(T)

ii) Numerically integrate the GVEs (in Keplerian elements) forward with the pitch profile given by Eq. (13),
interpolating to evaluate u at the current time step.

COMPUTATIONAL OPTIMAL CONTROL METHODS

An Averaging-based Indirect Method for Orbit Transfers

One of the earliest low-thrust geocentric trajectory optimization tools incorporating high-fidelity physics
and sophisticated numerics was the Solar Electric Control Knob Setting Program by Optimal Trajectories
or SECKSPOT (subsequently renamed to SEPSPOT and currently maintained by NASA Glenn Research
Center) developed by Sackett, Malchow and Edelbaum.7 SEPSPOT models eclipses to faithfully account for
the operation of SEP engines, includes an option to account for the delay in thruster start-up upon exiting
shadow, considers thrust level decay caused by solar cell power degradation due to the damaging effect of
charged particle flux, incorporates the averaged J2 effect, and has the ability to add thrust attitude constraints.
In spite of being a sophisticated and time-tested software program, the main deficiency of SEPSPOT in the
light of more recent (over the past three decades) developments in computational optimal control is the fact
that it is based on an indirect method, and thus involves a user to provide, in addition to the initial (or from) and
final (or to) orbit states, also initial guesses for co-states. As is well-known in the Optimal Control literature,
the co-states are notoriously hard to estimate, which typically limits the usefulness of indirect method-based
software.21 To reduce simulation time, SEPSPOT utilizes numerically-averaged orbit states and co-states in
the Euler-Lagrange formulation, which allows large integration steps (days) to be taken compared with an
unaveraged system of differential equations (minutes). A brief outline of the SEPSPOT averaging principle
follows.

Let ξ = [a h k p q]T denote the five equinoctial elements of a satellite at a given instant. The Gauss
Variational Equations (GVEs) describing the evolution of ξ can be compactly written as:

ξ̇ = α(t)
∂ξ

∂ṙ
û = α(t)P(ξ, F )û (22)

where P(ξ, F ) ∈ R5×3 is the velocity partials matrix derived in detail by Sackett et al.7 . For a minimum-time
transfer problem with a Mayer cost, J = tf , the unaveragaed Hamiltonian is:

H = α(t)λTξ P(ξ, F )û (23)

where λξ ∈ R5×1 is a vector of costates associated with ξ. From Pontryagin’s Minimum Principle (PMP)
the thrust program that point wise-minimizes the Hamiltonian, and the corresponding minimized unaveraged
Hamiltonian are:

û∗ = − PT (ξ, F )λξ
‖PT (ξ, F )λξ‖

(24)

H∗ = −α(t)
∥∥PT (ξ, F )λξ

∥∥ (25)
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A first-order approximation to the states and the costates, [ξ̃, λ̃ξ] which follow slower dynamics compared
to their osculating counterparts is then derived from the averaged Hamiltonian H∗av as follows. Define:

H∗av =
1

T

∫ t−T
2

t+ T
2

H∗(ξ̃, λ̃ξ, F (t))dt =
1

T

∫ π

−π
H∗(ξ̃, λ̃ξ, F (t))

dt

dF
dF (26)

Here T is the orbital period at fixed (constant) values of ξ̃, and pure Keplerian motion is assumed over the
averaging interval. Letting

w(ξ̃) =
1

T

dt

dF
=

1

2π
(1− k̃ cosF − h̃ sinF ) (27)

the Eq.(26) may be simplified to:

H∗av =

∫ π

−π
H∗(ξ̃, λ̃ξ, F (t))w(ξ̃)dF (28)

The Euler-Lagrange differential equations in terms of the first-order-approximate states and costates for the
constraint-free problem under continuous thrusting are then derived in terms of the averaged Hamiltonian,
which is itself computable using an N−point Gaussian quadrature:

˙̃
ξ = (

∂H∗av

∂λ̃ξ
)T =

∫ π

−π
(
∂H∗

∂λ̃ξ
)Tw(ξ̃)dF (29)

˙̃
λξ = −(

∂H∗av

∂ξ̃
)T = −

∫ π

−π
[(
∂H∗

∂ξ̃
)Tw + H∗(

∂w

∂ξ̃
)T ]dF (30)

ˆ̃u∗ = − PT (ξ̃, F )λ̃ξ∥∥∥PT (ξ̃, F )λ̃ξ

∥∥∥ (31)

The two-point boundary value problem is solved using standard techniques,21 but large integration steps
are now allowed because the short-period variations in the states and costates have been eliminated through
averaging. In SEPSPOT, this procedure has been generalized to include thrust attitude constraints, some
environmental perturbations (J2, SRP and 3rd.-body gravity, but not drag), shadow effects etc.7 Note also,
that since averaging of the dynamics have been performed relative to the spacecraft angular position, this
particular formulation is not suitable for solving orbital rendezvous problems, where the target orbit specifi-
cation would include all the six orbital states. Numerical examples of GTO-to-GEO transfers of spacecraft
with an initial thrust acceleration level ∼ 10−4m/s2, Isp = 2900 seconds and transfer time 100-200 days are
documented in reference [7].

Averaging-based Indirect Methods for Rendezvous

Averaging-based indirect methods for many-revolution problems, in addition to offering the convenience of
reduced sensitivity to costate initial guesses, are also advantageous because they allow parameterization of an
optimal control problem in terms of relatively few parameters, namely, initial costate values, other constant
Lagrange multipliers, and the terminal time if free. Such methods are not only restricted to orbit transfer
scenarios, but have also been extended to handle rendezvous cases.22 In reference 22, the authors have used
a multiple time scales formulation to reduce the original minimum-time rendezvous problem to an averaged
optimal control problem, which is then formulated as a two-point boundary value problem. The resulting
averaged control (the thrust steering angles) obtained by the application of PMP, is then substituted back
into the osculating dynamics and numerically integrated forward. The minimum-time rendezvous problem in
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terms of osculating variables can be posed as:

P



min
|α|≤ε

∫ tf
0

1.dt

dζ
dt = f(ζ, L)α
dL
dt = g(ζ, L) + hT (ζ, L)α

[ζ(0), L(0)]T = [ζ0, L0]T specified
[ζ(tf )− ζf , ψ(L(tf ), tf )]T = [0, 0]T specified, tf free

(32)

where ε, the thrust acceleration upper-bound, is a “small” parameter (∼ 10−4 m/s2 or less), ζ = [n h k p q]T

are the slowly-evolving states, L is the fast state dominated by Keplerian dynamics, f(, ·, ) is the (slow)
state dynamics matrix periodic in L, g(, ·, ) and h(, ·, ) are the two-body and the perturbation influences
on L, respectively, and ψ(·) is a known function of the terminal longitude. See references [22, 23] for
detailed mathematical expressions for the problem functions. Changing the independent variable to L, or
more specifically to L := εL, introducing a new variable φ := εt, and normalizing the control vector to
αs = α

ε , problem P can be recast into the following Mayer form:22

P̃



min
|αs|≤1

φ(Lf )

dζ
dL =

f(ζ,Lε )

g(ζ,Lε )
αs

dφ
dL = 1

g(ζ,Lε )

[ζ(L0), φ(L0)]T = [ζ0, 0]T specified
[ζ(Lf )− ζf , ψ(φ(Lf ),Lf )]T = [0, 0]T specified,Lf free

(33)

Note that although the derivatives in the LHS of problem P̃ are taken with respect to regular or slow’ “time”
L, the dynamics are a function of the fast “time” L

ε , which, in turn, means that P̃ falls under the category
of a more general two-timescale optimal control problem:24

Pε


min
u∈U

∫ tf
0

L(x(t),u(t), t, tε )dt

s.t dxdt = F (x(t),u(t), t, tε )

x(0) = x0, Ψ(x(tf ), tf ) specified

(34)

which itself is a perturbation of the averaged optimal control problem:

P


min
v∈V

∫ tf
0

L(x,v(·), t)dt

s.t dxdt = F (x,v(·), t)
x(0) = x0, Ψ(x(tf ), tf ) specified

(35)

Here, x is the averaged state with dependence only on the slow/normal time scale, v(t, tε ) is the averaged
control with feedback dependence on the fast time, and F and L , are the averaged dynamics and Lagrange
cost integrand respectively:

F =
1

T

∫ T

0

F (x,v(t, θ), t, θ)dθ (36)

L =
1

T

∫ T

0

L(x,v(t, θ), t, θ)dθ (37)

with F periodic in θ = t
ε with period T. It can be shown that under certain assumptions, the control obtained

by solving the two-point boundary value problem based on the averaged Hamiltonian system:

dx

dt
= F (x,v(·), t) (38)

dλ

dt
= −(

∂F T

∂x
λ+

∂L
∂x

) (39)
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with appropriate boundary conditions is nearly optimal for the original problem Pε (or P̃).22–24 Summariz-
ing, the above-described method utilizes an averaged dynamical system including the satellite angular posi-
tion as an independent variable, allowing for the specification of the final true longitude, as is required for
rendezvous problems. Additionally, the two-timescale averaging technique results in better numerical condi-
tioning in the sense that numerical integration of Eqs. (38, 39) requires a step size ∼ h instead of ∼ h

ε for the
TPBVP corresponding to problem P̃. This averaging-based indirect method has been extended solve both
minimum-fuel and minimum-time problems, and included eclipsing using a cylindrical shadow model. Earth
oblateness and thrust-direction constraints with Constant Specific Impulse (CSI) engines. For GTO-to-GEO
rendezvous and orbit transfer test cases with initial acceleration level ∼ 10−4m/s2 and Isp = 2000 seconds,
involving hundreds of revolutions and days, see references [22, 23]. These principles are implemented in the
low-thrust optimization software MIPELEC developed by the French space agency CNES.

The T 3D optimal low-thrust trajectory optimization package for multi-revolution, transfers also uses av-
eraging techniques to compute minimum-time and minimum-fuel orbit transfer and rendezvous problems.25

However, its main difference with the MIPELEC implementation is that it retains time as an independent
variable, while keeping L as a state. This is advantageous in evaluating time-dependent perturbations in the
force model.

An Averaging-based Direct Method For Orbit Transfers

In reference [16], Kleuver has used a direct shooting method to solve both minimum-time and minimum-
propellant multi-revolution orbit transfer problems. In that work, the structure of the controls (the thrust
program) is first derived from PMP as functions of costates. Then the costates, which are treated as optimiza-
tion decision variables, are expressed in terms of node polynomial coefficients.The co-state parameterized
controls are finally substituted back into the GVEs, which are then iteratively propagated forward in time
until the associated cost function is numerically minimized and the terminal constraints met. The result of
this process is expected to be the optimal node-polynomial coefficients. In Kleuver’s analysis, the control
structure is derived based on reduced-order dynamics in the a − e − i space following the argument that
initial and terminal conditions for most transfer problems are expressed only in terms of these elements An
extension of this method using the modified equinoctial elements in presented in reference [26], in which the
authors use collocation instead of a direct shooting approach.

Let x = [a e i Ω ω f m]T ∈ R7 be the satellite state evolving according to the mass-augmented GVEs
compactly expressed as:

dx

dt
= F(x,α, t) (40)

Let xr = [a e i]T ⊂ x. The Mayer cost (minimum-time/propellant) Hamiltonian for xr is

H(xr,λr,p,y) = λaȧ+ λeė+ λii̇ (41)

and, with the thrust acceleration resolved in the NTW or Frenet frame, the GVEs for a, e, i are:

da

dt
=

2αa2v

µ
cosp cosy (42)

de

dt
=

α

v
[2(e+ cos f) cosp cosy +

r

a
sinp cosy sin f ] (43)

di

dt
=

αr

h
siny cos(ω + f) (44)

The structure of the optimal control {p∗,y∗} for this path-constraint-free problem can be obtained from the
direct application of the PMP:

∂H

∂p

∣∣∣
p=p∗

= 0,
∂H

∂y

∣∣∣
y=y∗

= 0 (45)
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which simplifies to:16

sinp∗ =
λe

r
a sin f√

4[λa
a2v2

µ + λe(e+ cos f)]2 + λ2
e
r2

a2 sin2 f

cosp∗ = −
2[λa

a2v2

µ + λe(e+ cos f)]√
4[λa

a2v2

µ + λe(e+ cos f)]2 + λ2
e
r2

a2 sin2 f
(46)

siny∗ = −
λi
rv
h cos(ω + f)√

λ2
i (
rv
h )2 cos2(ω + f) + (λa cos2 p∗ 2a2v2

µ )2 + λ2
e[2(e+ cos f) cosp∗ + r

a sin f sinp∗]2

cosy∗ = −
λa

2a2v2

µ cosp∗ + λe[2(e+ cos f) cosp∗ + r
a sin f sinp∗]√

λ2
i (
rv
h )2 cos2(ω + f) + (λa cos2 p∗ 2a2v2

µ )2 + λ2
e[2(e+ cos f) cosp∗ + r

a sin f sinp∗]2

The (time-varying) thrust magnitude is not a control variable in this formulation, and is assumed to be eval-
uated from an engine model |T | = 2ηP

g0Isp
. It is clear from Eqs. (46) that the steering laws demonstrate

(osculating) state-feedback structure, and are also functions of the current costates. In preparation for the
application of a direct shooting method, the controls are discretized as:

λκ ≈
M∑

j=0

(λ̃j)κ`j(t), κ ∈ {a, e, i} (47)

where `j(·) is a node-polynomial basis and λ̃ = [λ̃a λ̃e λ̃i] are the free parameters to be optimized. The
angle-averaged dynamic optimization problem for the 7-state system of Eq. (40) can now be formulated in
terms of the following system of differential-algebraic equations:

min
λ̃

tf or−mf

s.t.
dx

dt
=

1

P

∫ π

−π
F(x, λ̃)

dt

dE
dE

cos f =
cosE − e

1− e cosE

sin f =
sinE

√
(1− e2)

1− e cosE

x(0) = x0

[a(tf ) e(tf ) itf ]T = [af ef if ]T

(48)

where dt
dE =

√
a3

µ (1 − e cosE) assuming pure Keplerian motion. Note that as in the case of Eq. (28),
the evaluation of the orbital averaging integral in Eq. (48) can be performed using any N−point quadrature
formula (reference [16] used a 20-point trapezoidal rule), while the numerical integration itself may be ac-
complished with a fixed-step integrator with step-size ∼ days. In Kleuver’s original work, semi-major axis a
is used as the independent variable instead of time. The following points are worth noting at this stage:

i) Similar to the SEPSPOT formulation, but unlike the MIPELEC technique, the Kleuver method is based
on mean states obtained by averaging over an anomaly angle. Thus, the knowledge of the spacecraft’s
position in the orbit is lost, making the method unsuitable for solving rendezvous problems. However,
SEPSPOT, MIPELEC and T 3D all solve the trajectory optimization problem via an indirect method
as opposed to Kleuver’s direct method, the latter being typically more robust to poor initial guesses
compared to indirect methods. Furthermore, the Kleuver method offers the robustness of direct meth-
ods without sacrificing computational speed because the formulation utilizes averaging. It has also been
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adapted to a pure collocation-type approach in which both the states and the controls (costates) are dis-
cretized and the state dynamics are enforced at discrete node points through implicit integration instead
of explicit integration of the direct shooting method.26

ii) On the other hand, SEPSPOT, MIPELEC and T 3D provide built-in support for path constraints (thrust
direction), whereas the Kleuver method natively does not support path constraints. In fact, attempting
to add path constraints will cause above-described formulation to lose some of its simplicity because in
such a case, the derivation of the expressions for p∗ and q∗ must involve minimizing H among the set
of admissible controls.27

iii) If SEP-generated thrust is the only (extra-two-body) osculating perturbation under consideration, then
the lower and upper limits of the averaging integral in Eq. (48) must be replaced with Eex and Ein
respectively, where Eex is the Earth shadow exit angle and Ein the Earth shadow entrance angle. In ref-
erence [16], these angles have been calculated from a cylindrical shadow model following the algorithm
detailed in reference [28]. If other perturbations, such as gravitational harmonics, SRP, drag, third-body
etc., are modeled as well, then averaging must be carried out over the entire orbit (SEP thrust being
active over only a part of it).

iv) Referring to Eqs. (42-44), it is easy to see that the optimal controls would still be valid if additional
perturbations are modeled, but only if their average influence does not affect rates of change of {a, e, i}.
If they do, the optimal controls must be re-derived.

Test cases have been reported by Kleuver in reference [16] for minimum-time and minimum-fuel LEO-
to-GEO and GTO-to-GEO transfers with initial acceleration level ∼ 10−4m/s2 and duration ∼ 200
days, both with and without eclipsing. In his original work with control (costate) parameterization,
Kleuver obtained excellent agreement with SEPSPOT using as few as 7 NLP variables; utilizing more
NLP variables to parameterize the costates (over a denser mesh) resulted in marginal cost improvement
only. The maximum run-time was reported to be about 33.seconds. The initial guess for the transfer
time was directly obtained from the Edelbaum-Kèchichian method (Eq. (5) multiplied by 1.2 to account
for eclipsing), while the costate guesses are derivable from the same formulation. In the Falck and
Dankanich collocation approach to solving the averaged optimal control problem of Eq. (48), a minutely
improved cost was obtained (198.6 days vs. Kleuver’s 198.99 days), but the number of NLP variables
rose to ∼ 400, a still minuscule dimension compared with osculating-model-based optimization cases
discussed in a later section.

Precision-integrated Indirect Methods

Several authors have addressed the problem of determining minimum-time and minimum-fuel spiral tra-
jectories under osculating dynamical models using different variable sets.29–34 Computing minimum-fuel
multi-revolution trajectories is more challenging compared to minimum-time ones because of multiple
thrust-coast switches and the possibility of the presence of singular arcs. These difficulties are further
exacerbated if eclipsing and extra-two-body gravitational perturbations are modeled. It is perhaps due to
this reason, coupled with the problem-dependent manner of estimating the initial costates, that the suc-
cessful application of precision-integrated indirect methods to medium/high-fidelity, path-constrained,
100+ revolution, multi-month optimal trajectories has been relatively rare. Kèchichian, in references
[29, 31], presented the numerical solution of minimum-time LEO-to-GEO transfers with intermediate,
constant thrust acceleration (∼ 10−2 m/s2) using equinoctial elements augmented with true longitude.
Thrusting was assumed to be continuous throughout the transfer, the duration of which was a fraction of a
day, and analytical expressions for the state and co-state dynamics were derived with known expressions
for the J2 through J6 perturbing accelerations in a satellite-fixed frame. In a series of papers, Taheri et
al. have used a variety of sophisticated numerical techniques to solve the fuel-optimal spiral problem
using an indirect shooting method, but none of their work present results for, or discusses their frame-
work’s suitability to, many-revolution transfers with forced coasting under eclipsing.32–35 In reference
[36], Haberkorn and co-authors have adopted a homotopy-single-shooting approach to solve a very low-
thrust (∼ 10−5 m/s2), year-long, fixed-time, minimum-fuel rendezvous problem with 754 revolutions
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and 1786 thrust-coast switches. In that work, the authors employ an MEE two-body-plus-constant-thrust
model to maximize the final mass based on the usual mass dynamics, i.e., with:

ṁ = − T

g0Isp
‖û(t)‖ (49)

minimize:

min
‖û‖≤1

∫ tf

0

‖û(t)‖ dt (50)

In order to tackle the TPBVP convergence issues arising from the bang-bang control structure of (see
the derivation in reference [36] for details), two homotopic criteria:

C1 =

∫ tf

0

(λ ‖û(t)‖+ (1− λ) ‖û(t)‖2)dt (51)

C2 =

∫ tf

0

‖û(t)‖2−λ)dt, λ ∈ [0, 1] (52)

are defined to smoothly transition the solution from the relatively tractable energy problem (λ = 0) to
the mass problem by three separate continuation methods. The problem execution time was reported to
be about 7 hours (circa 2004).

Osculating Dynamics-based Direct Methods

As alluded to earlier, the main attraction of the “direct” computational optimal control methods is that
these methods are typically less sensitive to the initial guesses for the solve-for parameters in the tran-
scribed numerical problem. In indirect methods, numerically solving the Euler-Lagrange system in-
volves providing initial guesses of the costates/path-multipliers to the solver, the challenges of which
are extensively documented in the literature.21 Most direct methods, on the other hand, discretize the
state-dynamics through polynomial approximations (piecewise/local or global) to the states and the con-
trols along an estimated trajectory, and it is these polynomial coefficients that finally become the solve-
for parameters for a non-linear programming problem (NLP). Another distinct advantage of osculating
dynamics-based direct method is the ease with perturbations can be added to the right-hand-side of the
GVEs, without requiring a re-derivation of the necessary conditions for optimality. For many-revolution
orbit transfer missions powered by milli-g level (or less) engine accelerations, straight application of the
direct transcription methods to the osculating dynamical equations results in a very large NLP, which
has historically presented difficulties for NLP solver libraries in terms of speed, convergence and mem-
ory. This has been the main motivation behind the use of averaged state dynamics in the direct methods
discussed earlier. The averaging operation over the spacecraft angular position effectively removes the
dependence of the thrust direction on the rapidly-varying angular position, thus allowing the optimal
control to be faithfully captured with fewer parameters, and hence reduce the NLP size. However, it is
also the case that averaging removes information from the problem; for example, in order to synthesize
real-time feedback controls from a set of pre-generated open-loop trajectories, access to the osculating
controls would be necessary. Fortunately, the last two decades have witnessed great strides in the power
of sparse numerical optimization libraries, such as SNOPT, IPOPT and more recently WORHP, that take
advantage of the sparsity pattern of the NLP constraint Jacobian matrices generated from sophisticated
direct transcription/collocation schemes.37–39 This factor, coupled with the availability of Automatic
Differentiation libraries such as ADOL-C, CasADi, CppAD etc. that easily interface with gradient-
based optimizers, has led multiple researchers to apply direct transcription/collocation methods to the
perturbed, osculating GVE description of many-revolution, low-thrust transfers. Three direct numeri-
cal methods applied to many-revolution, low-thrust transfers are briefly examined: Runge-Kutta Paral-
lel Shooting, Collocation, and Differential Dynamic Programming (DDP), or its variant, Hybrid DDP
(HDDP). R-K Parallel Shooting and collocation are both Direct Transcription methods, and although tra-
jectory optimization using collocation was reported earlier in the literature, R-K Parallel Shooting seems
to have been applied before collocation to the specific task of optimizing many-revolution geocentric
trajectories,8 and therefore described first.
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Runge-Kutta Parallel Shooting: An early application of a direct transcription method to the optimiza-
tion of many-revolution orbit-raising was by Scheel and Conway, who used a R-K parallel shooting
method to discretize the problem, and used the dense NLP solver NZSOL to solve the resulting NLP.8

The R-K parellel shooting method discretizes both the states and controls at a set of time nodes, and uti-
lizes sequential explicit numerical integration in creating the non-linear dynamical “defect” constraints.
The feature that makes R-K parallel shooting particularly attractive for solving multi-revolution spiral
problems is the fact that this discretization scheme allows for the controls to be discretized over a denser
mesh than the states, a feature not inherent to traditional collocation schemes21 For example, using a
3-step version of this method, the number of control samples is approximately 3 times the number of
state samples. This is particularly advantageous because it is known that all the equinoctial or elliptical
states for many-revolution spirals vary slowly, excepting the angular position and the thrust direction, the
latter oscillating with a period equal to the orbit period. Briefly, the R-K discretization of the standard
optimal control problem:

P


min
u∈U

∫ tf
0

L(x(t),u(t), t)dt

s.t dxdt = F (x(t),u(t), t)

x(0) = x0, Ψ(x(tf ), tf ) specified

(53)

leads to the following standard NLP:
min
ξ

J(ξ)

s.t. C(ξ) ≤ 0

a ≤ ξ ≤ b

(54)

with cost function J(·), functional constraints C(·), decision variable vector ξ, and decision variable
box bounds [a, b]. The decision variables comprise the discrete values of the states and controls at their
respective mesh points, and other free parameters such as the final time, see reference [8] for details.
Scheel and Conway used the equinoctial elements to solve a minimum-time, 100.6 revolution, equatorial-
LEO-to-GEO orbit raising problem (i.e. not requiring a plane change) for a spacecraft equipped with
an intermediate-thrust (0.0032 m/s2) and 2000 sec. Isp engine. The J2 and lunar gravity perturbations
were modeled, but eclipsing was not considered, i.e., thrusting was assumed to be continuous. With time
as the independent variable, 5 states (a, h, k, l, m) and one control (the thrust pitch angle), 60 state
discretization nodes, and 6 R-K steps between each node pair for control discretization, the resulting NLP
had 1027 variables and 300 constraints, moderately-sized NLP by today’s standards. An initial guess
was provided by propagating the GVEs with constant tangential thrust. In order to avoid the problem of
sampling the trajectory too densely in the low-earth region and too sparsely at the GEO regime, Scheel
and Conway have recommended placing the discretization nodes unevenly in time but evenly in true
longitude.

Collocation: Collocation is perhaps the most widely-used of all transcription methods, and the litera-
ture on the theoretical and computational aspects of it is vast, and continuously growing. Therefore, an
attempt will not be made here to provide a detailed account of this technique; for a somewhat recent
tutorial on the topic and its relation with other computational optimal control methods, cf. reference
[40]. The principal idea behind collocation is to represent the state and control histories as polyno-
mials over a time grid, and solve for the coefficients of these polynomials by requiring that the DAEs
describing the state evolution be enforced at some or all of these grid points. Similar to R-K Parallel
Shooting, collocation methods also transcribe an optimal control problem of the type described by Eq.
(53) to an NLP of the form Eq. (54), which is subsequently handed over to a numerical optimization
library. An early application of local collocation algorithms (trapezoidal and Hermite-Simpson) to a
minimum-propellant, low-thrust, many-revolution LEO-to-LEO orbit raising was documented by Betts
in reference [9]. Betts modeled the problem using a set of modified equinoctial elements (MEE), a throt-
tlelable CSI engine of acceleration level ∼ 10−4m/s2, and earth oblateness perturbations upto J4. With
7 states (6 MEE + mass), 4 controls (thrust magnitude + three unit vectors), one path constraint (thrust
unit vector magnitude), and a 13782 node trapezoidal discretization, the SQP solver solved an NLP with
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152593 variables and 110974 constraints. The same problem was also discretized over 27742 nodes via
a Hermite-Simpson collocation method, resulting in an NLP with 416123 variables and 249674 con-
straints. The maneuver was executed in 578 revolutions in approximately 40 days. Mesh refinement
was used in both the cases, and time, instead of true longitude, was used as the independent variable.
Although the NLP size in this case is about 3 orders of magnitude higher compared to the Scheel and
Conway R-K parallel shooting discretization, note that a direct comparison might be unfair because the
former work used fewer states and a thrust acceleration about 2 orders of magnitude higher. The program
runtime was reported to be about 62 minutes on an SGI Origin 2000 server computer.

More recently, Betts41 and Graham and Rao10 have applied direct transcription to the osculating MEE
GVEs to solve optimal LEO-to-GEO orbit raising problems with intermittent SEP thrusting. Both re-
searches report using the conical projection eclipsing model instead of the cylindrical shadow model
utilized in references [16, 23], and both use L as the independent variable instead of time, the latter to
effectively facilitate a more favorable grid size and hence limit the NLP dimension. Partitioning the state
space into slow variables, a fast variable, and mass, references [10,41] cast the perturbation equations in
MEE Q := [q, L]T :

dq

dt
= f(q, L)ε (55)

dL

dt
= g(q, L) + h(q, L)ε (56)

dm

dt
= − ‖T ‖

g0Isp
(57)

into the form:

dq

dL
=

f(q, L)ε

g(q, L) + hT (q, L)ε
(58)

dt

dL
=

1

g(q, L) + h(q, L)ε
(59)

dm

dL
= − ‖T ‖

g0Isp(g(q, L) + h(q, L)ε)
(60)

by changing the independent variable to L. Here, g(, ·, ) is a 2π-periodic function of L. Both papers
decompose the trajectory into a sequence of thrust-coast segments, and optimize the thrust profile within
each sunlit segment. However, in each case, significant effort has been devoted to obtain an initial guess
for the number of phases and the true longitudes at which shadow entrance and exit occurs. Continuity
constraints are imposed on the states {P (L), h(L), k(L), p(L), q(L), m(L)} at the the shadow exit
and entrance interfaces, and only natural motion is considered during the coast phases. In the Betts
work, a minimum-propellant 28.5◦ inclination LEO to GEO transfer with an SEP engine with initial
acceleration of ∼ 10−3 m/s2 is reported to be accomplished in slightly more than 43 days, requiring
about 248.5 revolutions and 363 thrust-coast phases. The final true longitude was free. With successive
mesh refinement, the number of NLP (SQP) variables was 262240, and the number of NLP constraints
was 175599. The problem size is thus comparable to reference [9], although it is interesting to note
that the problem run-time (with a very good initial guess) is only about 17.5 minutes on a desktop PC
(compared with a server computer pre-2000’s), attesting to giant leaps in affordable computing power
achieved in the 15 years separating the two works. In the Graham and Rao paper, minimum-time GTO-
to-GEO test cases were solved using a Gauss Pseudospectral Method (GPM) with IPOPT as the NLP
solver. The results, one with 89 revolutions in 65.9 days and another with 165 revolutions in 121.22
days, were compared with similar test cases reported by Kleuver via averaging, and agreement was
seen to be close; a slightly lower cost was obtained in the former case and slightly higher cost in the
other case. However, as noted previously, that the shadow models used in the two works were different.
Furthermore, the NLP dimensions and run times were not reported in reference [10], although these may
be assumed to be comparable to the Betts work, as opposed to ∼ 10s of parameters and ∼ 5 seconds in
Kleuver’s.
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Hybrid Differential Dynamic Programming (HDDP) : Aziz and co-authors have recently applied the
HDDP algorithm, originally introduced by Lantoine and Russell [42], to the optimization of multi-
revolution spirals.11 HDDP extends the original Differential Dynamic Programming (DDP) algorithm43

by incorporating constraint handling through an augmented Lagrangian method, multi-phase support,
an efficient quadratic programming (QP) solver, and state propagation using state-transition matrices
(STM). DDP starts with a nominal/guess trajectory, which is divided into a number of sequential “stages”.
The final objective is to compute the optimal controls valid over each stage. The following QP problem
is numerically solved backward at each stage k to obtain controls for all the stages (more specifically,
control updates to the guess trajectory):

J̃∗k (xk) =min
uk

[L̃k(xk,uk) + J̃∗k+1(xk+1)], k = 0, . . . , N (61)

where the tilde denotes local quadratic approximation of the quantities of interest about the nominal
trajectory. At the conclusion of this backward sweep, the controls thus obtained are used to propagate
(via STMs) the states in a forward sweep, and the process is repeated until user-defined convergence
criteria are met. Therefore, if uk ∈ Rm, then HDDP sequentially solves N + 1 sub-problems each
of size m rather than solve a single large NLP of size m(N + 1) as in a direct-shooting approach. In
reference [11], the authors use HDDP to solve several minimum-fuel, fixed-revolution problems from
the literature. Instead of using equinoctial, modified equinoctial or dynamical (see Sreesawet and Dutta
[44]) slow variables, Cartesian position-velocity components in the gravitating-body-centered inertial
frame are used as dynamical states. However, to regulate the integration step size and therefore render
the problem dimensions manageable, the independent variable is changed from time to true, eccentric
and mean anomalies through Sundman transform, which allows taking a fixed number of steps (100) per
revolution without compromising accuracy. With the thrust magnitude and spherical angles as controls,
the problem size with this formulation is then 300Nrev . Following HDDP, Aziz and co-authors have
solved a gravitational-perturbation-free 2000-revolution fuel-optimal transfer problem, and also a 500-
revolution transfer problem with J2 and lunar gravity perturbations, with STM computations and stage-
to-stage propagation parallelized on a supercomputer. Path constraints, such as minimum altitude or
bounded thrust direction, are not considered. The method, is however, computationally expensive, with
main contribution from the STM computations; the 2000 revolution transfer reportedly took 48 hours
before being terminated. The run-time and number of NLP iterations were also reported to increase with
Nrev , albeit in an unpredictable manner. The algorithm is shown to faithfully capture the bang-bang
control structure expected from minimum-fuel problems.

SUB-OPTIMAL TRAJECTORY DESIGN METHODS

SubTD methods consider the problem of trajectory design from a targeting perspective rather than an opti-
mization one, i.e., the objective is to derive a thrust program with a view toward attaining a set of target orbit
elements (e.g. ideal GEO), not necessarily accompanied by the minimization of an associated path integral.
Such methods typically consider models of low to medium fidelity (e.g. most do not inherently account for
eclipsing or path constraints), as the main motivation behind their use would be to generate, without excessive
computational or development effort, ephemeris and control history for subsequent downstream utilization,
e.g. as nominal trajectories for direct methods.

One SubTD approach is the so-called “thrust-blending” method in which the main idea is to blend or
combine the thrust programs that individually cause the highest instantaneous rate of change of the orbital
elements of interest. Mathematically, such a control law may be expressed as:

T ∗κ (e) =arg max
Tκ

dκ

dt
, κ ∈ {a, e, i,Ω, ω} (62)

Tblend =
∑
κ

Wκ(t)T ∗κ (e) (63)

where the (generally time-varying) weights Wκ can be tuned to leverage the physics of the problem. The
rates dκ

dt are obtained from the GVEs. It may be noted that the analytically derived control laws of the type of
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Eq. (63) display a feedback structure. In [12], Kleuver introduced such a guidance algorithm based on a two-
body-with-thrust set of GVEs, targeting only the elements a, e and i. A constant-power, constant Isp engine
with thrust-to-mass ratio∼ 10−5 m/s2 provides the thrust, but the thrust direction is analytically computed as
a blend of directions that maximize, with respect to the pitch and yaw angles respectively, ȧ, ė and i̇. However,
analytical expressions are not available for the weights, which makes the control law semi-heuristic. In order
to effect a transfer from a circular, inclined (28.5◦) LEO to a standard GEO, Kleuver, modulated the weights
over the maneuver duration so that during the initial phase (55% of the transfer duration), pitch steering is
almost along-velocity, with the eccentricity weight decreasing linearly. This quickly raises the semi-major
axis, but is accompanied by a slow rise in eccentricity, which is gradually reduced to nearly zero over the
second half of the transfer with a quadratic weighting function. The inclination weighting function was
chosen to be linearly decreasing with two different rates throughout the transfer so as to consistently reduce
the inclination, more so during the second half when it is more economical to do so. Upon integrating the
two-body-thrust dynamical equations with this control law and thrusting when in sunlight only, this algorithm
found a transfer with duration ∼ 9% higher than the corresponding minimum-time SEPSPOT solution, and
∼ 8 % higher than an averaging-based direct method similar to the one presented in reference [16]. A similar
blending technique, called Directional Adaptive Guidance (DAG), was adopted by Falck and co-authors [45]
based on an earlier work by Ruggiero et al.46 The DAG is shown to solve months-long (200+ days) GTO-
to-GEO and LEO-to-GEO transfer with a high (constant) Isp (3300 s) engine model identical to that used by
Kleuver.16 The control law of Eq. (63) is modified to the following form, which automatically causes the
thrust to be turned off as the target elements κf are achieved:

Tblend =
∑
κ

Wκ
κf − κ
κf − κ0

T ∗a (e), Wκ tunable constants (64)

Thrust is turned off during eclipses, although the specific eclipse model employed in that work is not men-
tioned. Additionally, the DAG method also accommodates a mechanism for coasting based on maneuver
efficiency, i.e., if the vehicle angular position in the orbit is such that an element rate-of-change is much
lower (or smaller than a threshold) compared with its maximum-attainable value, thrust is turned off to lower
propellant consumption. This concept is similar to the Q-law13 maneuver efficiency, which was historically
introduced earlier and discussed next as part of Lyapunov-based transfer methods.

Several researchers have addressed the trajectory design problem from a Lyapunov control design frame-
work.13, 47–50 The basic idea is to design asymptotically stable feedback or guidance laws for targeting specific
orbit elements, resulting in orbit transfer13, 48 or rendezvous.50 Chang et al. in reference [48] have used the
dynamical variables angular momentum h and (scaled) eccentricity vectorA = µe instead of the more com-
monly encountered geometric ones, such as Keplerian, equinoctial or MEE, to define the orbit. The authors
introduce a Lyapunov function V (r, ṙ) = ‖h− hf‖2 + 1

2 ‖A−Af‖2 to quantify the error between the cur-
rent state and the target orbit, using which an asymptotically stabilizing control law (thrust program causing
V̇ ≤ 0) is derived. The method generates free-final-time transfer (not rendezvous) trajectories under a purely
two-body-thrust model. Eclipsing is not considered in the original work, but the method was successfully
exploited as a collocation seed method in reference [41] to produce an initial guess trajectory for the sunlit
passes of an SEP spacecraft.

The Q-law is a Lyapunov feedback control law originally developed in 2003 and subsequently refined in
2005 by Petropoulos “with the aim of improving approximations to and initial guesses for, propellant-optimal,
low-thrust orbit transfers which involve specified changes in all orbit elements except true anomaly”.13 In-
termittent thrusting is incorporated, although coast periods are motivated by propellant saving rather than
eclipsing. Furthermore, the original analysis is based on a two-body-plus-(constant) thrust model described
in terms of the classical Keplerian elements, although an MEE formulation has been reported in [51]. At the
core of the Petropoulos Q-law is the candidate Lyapunov function or proximity quotient that quantifies the
proximity between the current and target orbit elements:

Q = (1 +WPP )
∑
κ

WκSκ
[d(κ, κf )

κ̇max

]2
(65)
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where P is a minimum-periapsis penalty function, WP is the periapsis-penalty weight, Wκ are non-negative
scalar weights, d(, ·, ) is a distance function, κ̇max is maximum rate of change of the element κ over the
thrust pointing spherical angles and the true anomaly (as modeled by the respective GVEs), and Sκ are
scalars, unity except Sa, that help convergence to the final semi-major axis. Refer to [13] for more details on
synthesizing an analytical expression for Q. Note that the quantity within the square brackets is a “time-to-
go”-like quantity, so that Q embodies a blended, minimum time to attain the target. Following the standard
Lyapunov control design paradigm, the thrust program at any point during the transfer can be obtained by
minimizing Q̇ and can be obtained analytically:6, 51

[p∗ y∗] =arg min
[p y]

Q̇, (66)

In order to ensure thrusting over the “most effective” (in terms the reduction of Q) range of angular positions
of the orbit,Q-law incorporates the concept of thrust effectivity or efficiency by defining absolute and relative
efficiencies:

ηa =
Q̇n

Q̇nn
, ηr =

Q̇n − Q̇nx
Q̇nn − Q̇nx

(67)

where

Q̇n =arg min
[p y]

Q̇, Q̇nn =arg min
f

Q̇, Q̇nx =arg max
f

Q̇, (68)

The quantities Q̇nn and Q̇nx are determined numerically. Propellant saving can be achieved if thrusting is
allowed only above user-specified values of ηa or ηr, although at the expense of increased the maneuver
duration. Petropoulos provides examples of such trade-off scenarios through multi-month, several-hundred-
revolution trajectories. The Q−law has been used in obtaining sub-optimal spiral trajectories in numerous
researches including in the interplanetary trajectory design tool Mystic,52 and most recently by Jackson and
co-authors in a part-Q−law/part optimal transfer.6 In [6], a Q-law transfer is made up to a certain fraction
(25%, 50%, 75%) of approximately a 4-month-long GTO-to-GEO journey, beyond which a collocation-
based direct method takes over. This results in an NLP smaller in dimension compared with one that would
have been obtained from optimizing the entire transfer.

Recently, Dutta and his co-workers have adopted a sub-optimal orbit raising algorithm to solve several
LEO-to-GEO and GTO-to-GEO planar and 3-dimensional orbit transfer test cases with eclipsing, involving
up to thousands of revolutions and ∼ 1 year+ transfer time.44, 53 The slow variables of the problem are the
angular momentum and eccentricity vectors as in reference [48]. Thrust pitch and yaw angles are programmed
in the sunlit portion of each orbital revolution so as to minimize the deviation of the per-revolution terminal
states from the GEO target states, i.e., the objective is to minimize:

J = wi(hGEO − h2π)2 + w2 ‖e‖22π + w3 ‖hXY ‖22π (69)

by optimizing the thrust pointing angle history within the sunlit arc of each revolution. Here, hXY projection
of h on the equatorial inertial plane. The sunlit arc within each revolution is subdivided into sub-arcs, within
each of which a piecewise linear control profile is assumed; the optimization decision variables are then the
thrust angle values at the delimiting nodes. The algorithm is terminated once the state targets are met to within
a specified tolerance. The computation burden is small, ∼ 10’s of seconds, although the algorithm has been
reported to suffer from an “optimality gap” compared to the results published for identical problems solved
in reference [16]. However, a direct comparison may not be justified because both the problem formulations
and numerical approaches of the two sources differ.
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Figure 1. A Classification of Many-revolution Trajectory Generation Methods

CONCLUSION

A classification of the existing methods for the design and optimization of multi-revolution, low-thrust,
spiral trajectories around a gravitating central body was studied, a summary of which appears in Fig.(1).
The increasing commercial adoption of Solar Electric Propulsion systems, especially in GEO-bound com-
munication satellites, combined with a healthy projected growth in the small satellites market, is expected
to motivate continued effort into efficient trajectory design software supporting such applications. Over the
past 6 decades, numerous methods have been proposed to address this problem; some of the early methods,
such as the Edelbaum analytical method, adopted reduced-order models and simplifying assumptions (e.g.
quasi-circular nature of the transfer orbit) with a view to developing quick, convenient analytical formulae,
while more recent researches were seen to have produced purely numerical algorithms leveraging the power
of supercomputers, e.g. HDDP. The available methods were categorized into three broad types, namely,
Simplified Model-based Analytical/Semi-analytical Methods, Computational Optimal Control Methods, and
Sub-optimal Trajectory Design Methods. The first and the third types are trajectory design methods, rather
than optimization methods, and in a software implementation, would be ideal as seed methods for the more
computationally involved (and potentially higher fidelity) Optimal Control methods. Among the latter types,
those that are based on averaged dynamics appear to be the most promising because they retain the advan-
tages of direct methods, such as extensibility to higher fidelity force models without the need to re-derive the
optimality necessary conditions, with the added benefit of tractable NLP size.

NOTATION

[a e i ω Ω f m] [semi-major axis eccentricity inclination argument of periapsis RAAN
true anomaly spacecraft mass]

[h k p q] [e sin(ω + Ω) e cos(ω + Ω) tan( i2 ) sin Ω tan( i2 ) cos Ω]
e [a e i ω Ω f ]

F , E, l, L Eccentric Longitude, Eccentric anomaly, Mean Longitude, True longitude
q [P h k p q]
P Semi-latus rectum

α(t), α(t) Engine thrust acceleration vector, magnitude at time t
û(t), ṙ Thrust direction at time t, spacecraft inertial velocity
µ, n Earth gravitational parameter, spacecraft mean motion
p, y Thrust pitch, yaw angle
r, h Satellite radial distance from the attracting center and specific angular momentum

Isp, P, η Propulsion system specific impulse, generated power, power efficiency
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