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SEQUENTIAL ORBIT-ESTIMATION WITH SPARSE TRACKING

John H. Seago,* Jacob Griesbach,’
James W. Woodburnt and David A. Vallado$

A properly initialized sequential orbit estimator will converge to less certain
state estimates whenever the density of the spacecraft tracking is relatively
low; nevertheless, these estimates should remain viable as long the estimator’s
working assumptions are met. However, when tracking data are sparse, viola-
tions of certain working assumptions may pose special problems, such as when
outliers exist. In this paper, some mitigation strategies are explored for such
cases and these are contrasted with typical batch-least-squares techniques, with
the observation that a sequential orbit estimator presents it own benefits when-
ever tracking data are sparsely distributed.

INTRODUCTION

A sequential estimator processes observations one at a time and provides an updated state es-
timate immediately after each observation is processed. A batch-least-squares estimator employ-
ing traditional normal equations processes an entire sequence of observations in a single proce-
dure, and afterwards provides a singly updated estimate at a user-specified epoch which may be
propagated forward or backward across time."*? Each method presents certain strengths and
weaknesses in the presence of “sparse” spacecraft tracking. Sparseness is a relative term depend-
ing upon the accuracy requirements of problem to be solved, but in the context of this discussion
“sparse tracking” might be the frequency and quality of observations that results from lowered
tasking of the US Space Surveillance Network (SSN) for the purposes of routinely maintaining a
space-object catalog. The two areas of consideration for this discussion are outlier rejection and
accurate prediction in the presence of sparse data.

OUTLYING MEASUREMENTS

Generally speaking, a discordant measurement exists whenever its measurement error is
highly inconsistent with the assumptions about its expected (null) distribution. Because “error” is
an offset relative to “truth”, and truth is not usually known outside of a simulation, measurement
residuals relative to some “best” estimate serve as the testable statistic.
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Batch least-squares estimators process all observational data using a common reference trajec-
tory that is smoother than that from a sequential filter. It is a (perhaps common) perception that
this specific property aids the batch-least-squares technique in the detection of outliers whose re-
siduals are “considerably larger than the average value” and therefore outlier detection is rela-
tively easier compared to a Kalman filter.* Yet, when identifying outliers by residual examina-
tion, “considerably larger” becomes somewhat subjective, so in practice this approach is made
more objective by performing a statistical test of hypothesis on suspected residuals.”® In these
situations, one tests whether

| @)/ e.>C, (1)

where | 7(#;) | is the magnitude of an individual measurement residual at time (#,), o, is some indi-
cator of residual uncertainty (sample or theoretical), and C is some user-specified threshold that
corresponds to an improbable value for (;) / 6,, the measurement residuals ratio. A rejection
threshold of C = 3 is a commonly used, this critical value intending to test a single outlier from an
otherwise normally distributed population.”

Sequential Filter

For the sequential filter case, the measurement residuals ratios are the predicted measurement
residuals divided by the measurement-error root-variance as computed from the filter. The fol-
lowing notation (due to Maybeck, 1979) specifies the definition of predicted filter residuals, or
innovations.® For a linear sequential estimator such as the Kalman filter, let the measurement up-
date equations be expressed as:

K(1,) = P(t,) H" (¢)[H(,)PGOHT (1) + R(:,)] @
() =30) + Kz, - H(@)3())] 3)
P(17)=P(1) - K@)H)P() - )

where X(#;) is the a priori state (or, state-correction) estimate array and P(¢;) is the a priori
state-error covariance matrix, K(z,) is the Kalman filter gain, X(z;") is the posteriori state estimate

array and P(¢;") is the posteriori state-error covariance matrix updated by measurement vector z;

at time (#;). The matrix H(z) is realized according to the analytical observation-state relationship
at time (), e.g.,

R(); t, =1,
0; L #1;

2(t;) = H(t)X(t) +V(5) 5 EW()}=0 , Cov(v(t,) = EN(e v (t,)}= { (5)

where Vv(¢;) is an array of white measurement noise having an expected value of zero and vari-

ance R(%;). The array of predicted filter residuals is defined as the difference between the actual
measurement and the best prediction of the measurement just before it is actually taken:

r(i) =z, ~H(B)(,) ©)

which has mean and covariance:
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Ef(6)}=0 , Efe)r" ()= Covlr ()= ()P HT (1) + R(1,) (7)

The inverse of the variance expression in Eq. (7) is identified as part of the Kalman gain K in
Eq. (2). The measurement update equation Eq. (3) is an explicit function residual at time (#;) and
its variance, such that Eq. (3) can be rewritten as:

R(7) =X()+ PO ()|Cov(r())f vty ®)

If R(#) is assumed diagonal such that all observation errors at time (z;) are independent, then z;
and r(#;) are scalar quantities, as is the covariance of r(¢;), such that Eq. (3) is a function of the
sequence of scalar residual ratios.

For the system described by Eq. (3), Eq. (5), and Eq. (7), the residual sequence r(#; ) will be

white and Gaussian.” '° Therefore, the sequence of residual ratios (the elements of r(t;) divided

by the diagonal elements the residual covariance of Eq. (7)) for ¢, i =1, 2, ... n is distributed ac-
cording to a Gaussian distribution with zero mean and unit variance, such that a statistical test can

be performed on each member of the sequence r(#; ), i =1, 2, ... n to identify outlying measure-
ments.

Sparse Data Considerations

A test of statistical hypothesis on the residual ratios tends to correctly identify outlying meas-
urements providing that the noise modeling is appropriate for the situation. To better accomplish
this, the Orbit Determination Toolkit (ODTK) uses a gravity process noise model that allows the
user to account for errors of commission (uncertainty in the gravity field coefficients) and/or er-
rors of omission (uncertainty due to truncating the gravity field)."' Relative corrections to the sat-
ellite’s nominal solar pressure coefficient and ballistic coefficient can also be modeled as an ex-
ponentially fading process, allowing for more realistic representations of the dynamical uncer-
tainty of these parameters. A test of consistency between filter and smoother solutions may be
used to verify that dynamical uncertainties are plausibly modeled for both simulated and actual
tracking data.'” Statistical tests of residual whiteness can also be used to assay goodness-of-fit."”

Consideration of Eq. (7) reveals that a large residual variance can be almost entirely due to the
uncertainty of the state rather than the measurement uncertainty R(z), creating a situation where a
measurement can have very large error but its residual ratio will not appear outlying. To illustrate,
an example of a simulated scenario is considered: a low-Earth-orbiting spacecraft in a nearly cir-
cular orbit at 35° inclination and at 350 km altitude. The spacecraft is tracked over a two-week
interval by 95 direction-cosine pairs from the Air Force Space Surveillance System (AFSSS), and
127 range and angle pairs from the Eglin radar. Figure 1 illustrates the residual ratios of the simu-
lated observation data and reveals the relative sparseness of the tracking data, showing how a se-
quential filter can maintain the orbit estimate given very low tracking levels for an object having
large dynamical uncertainties. Figure 2 illustrates how this dearth of tracking data affects the tan-
gential uncertainty of the estimated spacecraft location, where the 99% uncertainty grows to
40 km to 50 km when large gaps occur in the sparse tracking span. Figure 3 illustrates how the
Eglin range-residual uncertainties are largest at the start of the pass due to large satellite position
uncertainty, but once the satellite position uncertainty is consequently reduced from measurement
processing, the residual uncertainty is reduced per Eq. (7).

Studies with SSN tracking data have observed discordant observations occasionally at the be-
ginning of a radar tracking sequence.'® The hypothesis for their origin is that the radar’s tracking
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filter prematurely reports while still in an acquisition mode that is much noisier than typical. For a
filter experiencing high process noise with sparse tracking, it is possible that this type of discor-
dant observation could go undetected due to the large state uncertainty at the end of lengthy track-
ing outage. One might assign higher uncertainties to the first observation of radar tracks to miti-
gate this.

Filter Divergence

Filter divergence is the persistent condition where the state is no longer meaningfully updated
despite the availability of observations. Processing a discordant measurement can drive the state
to an incorrect solution and simultaneously reduce the uncertainty of the state, causing the filter to
become overconfident about an incorrect state estimate. When undue authority is given to the
prior state, measurement that were not “sufficiently close” to the incorrect state may be unneces-
sarily rejected. Or, future measurements may be processed, but their uncertainty is large relative
to the supposedly high confidence of the estimate, resulting in small and ineffective gain. Some-
times called smugness, this situation may be symptomatic of highly optimistic process noise
modeling.

Filter divergence tends to be readily identified by a lack of measurement processing. In ODTK
for example, divergence is practically defined by the maximum number of measurements sequen-
tially rejected before some corrective action needs to take place. Once the established divergence
criterion is reached, the divergent condition might be remedied in various possible ways.

= The rejection threshold for residual ratios could be temporarily relaxed to allow the accep-
tance of measurements. (This is the option exercised in ODTK via its dynamical editing
criterion.)

= The uncertainty of the state could be sufficiently inflated to allow the acceptance of new
data.

= Sequential estimates could be saved over time; the state prior to any evidence of diver-
gence could be used to restart the recursive process, with expert analyst involvement to
discover what went wrong.

= Sequential processing could be restarted by a short-arc solution from a batch-least-squares
estimation (discussed in the sequel) or possibly an initial orbit determination.

In practice, SSN tracks tend to be short, typically three observations spaced about 10 seconds
apart. If a divergence criterion is considering more than a few observations, it will span multiple
trackers. In sparse-data environments, the operational definition of divergence criterion might
consider a sequence of tracks rather than a sequence of measurements. The probability that a sin-
gle sensor is producing discordant data is much greater than two sensors independently producing
discordant data.

Nonlinearity Effects. The classic behavior of a filter in the presence of non-linearity effects is
to over-correct, meaning that the filter reduces the state error covariance too much during the
measurement update, which then can lead to filter divergence."” Over-correction can be addressed
by reducing the influence of the measurements during the period of time when non-linearity ef-
fects are significant. A number of so-called “de-weighting” methods may be utilized to limit the
Kalman filter gain K(#,), including both ad-hoc techniques and higher order filters. In a second
order filter, for example, a term is added to the measurement error variance which effectively
lowers the filter gain thus reducing the state correction and the reduction of the state error covari-
ance."” A possible ad-hoc approach would temporarily add to the measurement uncertainties R(z)
in Eq. (2) to limit the gain. The indicator for such replacement would likely be governed by the
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magnitude of r(#;) in Eq. (6) or the resultant state correction in Eq. (3) and Eq. (8). However, in

the routine maintenance of Earth-orbiting space-objects, non-linearity effects tend to be ignored
for detecting outliers; the evidence for this partly being that the vast majority of current orbit de-
termination programs which have been used successfully for decade are based on linearized esti-
mation theory.

Filter Initialization

The true error in the initial state estimate must be consistent with the initial state-error covari-
ance.'® When there is limited information a priori, often a “Kalman filter may be initialized using
a very large initial covariance and any convenient initial condition, with the hope that the filter
will eventually converge to a statistically correct behavior.”'” An initial state-error covariance
populated with relatively large values minimizes the influence of a highly approximate initial
state as observations are processed. An additional constraint is that the initial state-error covari-
ance matrix must be positive definite; this requirement is met by populating the off-diagonal ele-
ments of initial state-error covariance with zeroes to create a diagonal matrix.

Often with sparse-data, the first observations are far from the initializing epoch. Thus, a rela-
tively lengthy propagation from uncertain initial conditions might cause the state uncertainties
can grow to very large levels. The uncertainty will reduce to more realistic levels after sufficient
observations have been processed; however, with sparse observations this may take a relatively
long time. The time-interval over which the state-error covariance may be considered unrealistic
is known as the filter-initialization period. This interval varies depending on the accuracy of the
initial state and state-error covariance, and the observability of the state parameters over time
based on the processing of measurement data across the filter-initialization time interval.'®
Figure 4 illustrates simulated growth in tangential position uncertainty caused in part by an unre-
alistic diagonal state-error covariance.

A potential alternative to diagonal initialization is to start with the covariance from a batch-
least-squares solution from a relatively short sequence of observations. If the time interval is rela-
tive short, the accumulated dynamical modeling error will not be significant enough to adversely
influence the realism of the covariance. However, extending the state space beyond spacecraft
position and velocity will almost certainly result in additional observability problems. Therefore,
initializing the covariance with a short least-squares fit will tend to be problematic with short arcs
of sparse data.

Using a short-arc least-squares covariance may hold more advantage when re-initializing a di-
vergent filter. In this case, one likely has access to reasonably accurate force-model parameter
estimates from prior catalogued solutions. Combining such information with the improved real-
ism of a least-squares covariance is an interesting area for future study, although experience sug-
gests that using nominal initial covariance matrices based the spacecraft orbital regime oftentimes
works satisfactorily.

Batch Least Squares

Consider the situation where all observations are considered together as a batch, such that z;,
i=1,2,...n=2z Then, the traditional linear weighted batch-least-squares normal equations,

%=[H"WH] 'HTWz, ©)

result from a minimization of the scalar cost function
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J=1z-H&]' W[z, - HX]. (10)

where the matrix H is realized according to the analytical observation-state relationship

z=Hx+v, (1)

V being an array of white measurement noise having zero expected value and weighted according
to W' By analogy to the sequential estimator, the weight matrix W may be recognized as being
equivalent to R, The residual model for the batch case is also analogous to that of the sequential
case, such that a computed measurement is subtracted from the observed measurement, i.e.,

r=z-HxX (12)

where each element of r is a residual with respect to the batch solution. Substituting Eq. (9) into
Eq. (12), it can be shown that for an array of batch residuals r,

r=z-H[H'"WH| 'H"Wz= (I —H[HTWHFHTW)Z —(1-A)z (13)

where

A=H[H"WH]'H'W. (14)

is sometimes known as the (weighted) hat matrix, or projection matrix, and which might be
thought of as a batch-least-squares analog to the Kalman gain K. For the linear model of Eq. (11),
E{zz'} = E{vv'} = W', such that the n x n covariance matrix of the batch residuals may be ex-
pressed as

Cov(r)=E{1- AY((1 - A)2) }=(1- AEfzz" J1-A) =(1-A)W ' (1-A)".  (15)
This can be further reduced to

Cov(r)=W~ —H[H"WH| 'H" =(1- A)W ", (16)

If a priori information is available, the prior state and state uncertainty can be included as an ob-
servation, with the observation-state relationship being identity.'’ Residual ratios of unit variance
may be created by dividing the elements of r by the diagonal elements the batch-residual covari-
ance Cov(r), similar to what was previously suggested for the sequential case.

Per Eq. (14), the diagonal elements of the batch-residual covariance Cov(r) are entirely func-
tions of the n x n hat matrix A, the content of which is dictated by H. Even if W™ were diagonal,
the (symmetric and idempotent) hat matrix A is generally non-diagonal; therefore, Cov(r) is non-
diagonal and the batch-fit residual ratios are not independently distributed.

The lack of statistical independence in the elements of r complicates the application of statis-
tical tests to identify outlying measurements in batch-least-squares problems. An assumption of
Cov(r) ~ W (or A = 0) would result in incorrect residual uncertainties. Even if A were computed
to improve the realism of Cov(r),” its contribution is still likely to under-represent the true level

* A is a not an ordinarily computed byproduct of the batch-least-squares process.
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of residual uncertainty, due to no dynamical process noise within the batch-least-squares formula-
tion. Therefore, the use of theoretical residual variance tends to be impractical for testing batch-
least-squares residuals.

Mitigation Strategies. Particularly during the earliest iterations of the batch-least-squares or-
bit-determination procedure, the residuals are affected by slowly-varying systematic errors caused
by the errors in the state parameters and uncompensated sensor biases.”* The root-mean-square
(RMS) of the batch-least-squares residuals is sometimes used post facto to establish the scale fac-
tor o, in Eq. (1), RMS being computed as:

(a7

While RMS editing is commonly practiced, the following are notable disadvantages.

= Because batch-least-squares residuals are not independently and identically distributed,
and are heteroskedastic in practice,” the RMS is not a reliable estimate of residual vari-
ance, such that a C x RMS criterion may not reject data at the rate presumed.

= There is no RMS value before the first iteration through the data. To reject data on the first
pass usually requires an initial guess or an initial pass through the observations to compute
residual RMS without any state update.

= The RMS is estimated directly from the sample post facto; therefore, it can already be
contaminated by outlying observations not previously detected. This weakens the test and
potentially masks the presence of discordant observations.

= Because the convergence of non-linear batch-least-squares estimator is often gauged by
changes in the (weighted) RMS, inefficient outlier editing can substantially affect changes
in the RMS and can result in slow convergence of the batch-least-squares estimator.

Unfortunately, when tracking data are sparse, a criterion based on C x RMS can be completely
ineffective. If the RMS is estimated from a sample of size n, then

max{|ri|, [rl, ... [ra]} < (n)* x RMS, (18)

which is to say, outlier detection based on C x RMS is impossible whenever C >(n)”." To illus-
trate by example, 10 x RMS is an example of an operationally practiced criterion that initially
screens for “impossible” values; however, the sample size » must first be greater than 100 (that is,
C?) to detect an outlier.’

Also, RMS calculations for data-rejection purposes are typically unweighted and may be
based on observations only of a specific measurement #ype. For example, while twenty-four
tracking measurements of azimuth, elevation, and range may be available for maintaining an or-
bit, only eight of those measurements may be ranging measurements. With only eight observa-
tions per measurement type, a 3 x RMS editing criterion could never reject a single ranging
measurement because 3 > (8)”. Of course more robust estimators of scale beyond RMS could be
used, although their reliability tends to presume that the data are independently and identically

* Heteroskedasticity is when the variance functionally varies over time.
T This inequality is proven as an Appendix.
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distributed with known distributional characteristics, and their reliability also decreases with very
small sample sizes.’

Another operationally practiced alternative to RMS editing includes variate-difference meth-
ods that look for outliers within a sequence of residual differences.”® Editors based on first- or
second-differences can be successful at finding isolated outliers or outlier pairs, although their
usage adds complexity to the estimation process. There are also certain drawbacks to the outlier
methods based on residual differences:'*

= Two or more successive outliers may mask each other when differenced, thus requiring
higher-order differences.

= An outlying variate difference often consists of an acceptably small deviate subtracted
from an unacceptable large one. Identifying which of these two is becomes increasingly
cumbersome with higher order differences.

= Residual differences relative to the un-converged solution may exhibit large amounts of
nonrandom behavior, which may not appear very Gaussian. Preliminary outlier identifica-
tion based on a Gaussian assumption may be too aggressive.

= Differencing of successive residuals is uninformative on short sequences typical of some
types of US space-surveillance tasking, e.g., three (3) observations.

Non-Statistical Rejection Schemes

Certain rejection schemes, which are not based on the distribution of measurement residuals,
can be applied to batch and sequential estimators. A hard limit may be imposed on what is an ac-
ceptable magnitude for a measurement. Geometry constraints may be imposed, such as rejection
of very low elevation tracking, or tracking data that appear to have originated outside the field of
regard of the sensor. As previously mentioned, the probability of a faulty measurement at the start
of a pass is greater than subsequent measurements, and these tend to occur only in particular
classes of sensors (e.g., radars); therefore, one mitigation strategy might down-weight these spe-
cific measurements as a rule.

Cross-Tagged Measurements

Another common source of outlying data is the association of an observation with the wrong
spacecraft, known as cross-tagging. This is a particular issue for objects within the geosynchro-
nous belt, where multiple spacecraft can be in close spatial proximity, and where optically-based
angular measurements are the dominant means of tracking. The observation association process-
ing that assigns the observations to a certain spacecraft can be inaccurate due to the inherent limi-
tations of angles-only techniques, and the proximity of the observational data values.

This sparse-tracking situation is one for which the outlier-rejection capabilities of the filter is
thought to provide significant benefit. The force-model uncertainties tend to be much less for
those orbits; the probability of accepting cross-tagged observations is lowered and their rejection
by the filter aids in their identification. Figure 5 provides an illustration of how sparsely distrib-
uted residual ratios respond to the insertion of mis-tagged observations from a nearby spacecraft,
after which original tracking data are restored about a day later. In contrast, the inability of an
RMS-based editor to reject cross-tagged measurements might coax a batch-least-squares estima-
tor away from the object of interest and onto the nearby orbiting spacecratft.

Maneuvering Spacecraft

Maneuvering spacecraft are another special class of sparse-data problem to which the sequen-
tial filter can provide benefit. Observations after the time of the maneuver will tend to be rejected
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by a sequential estimator, or, the solution will adjust to the new orbit if the maneuver is small
enough. For a batch-least-square estimator, the fit span is usually segmented at the time of the
maneuver if the maneuver time is detectable or otherwise known in advance. In situations where
the maneuver is small or is not detected, the solution over the entire fit span can effectively de-
grade.

PREDICTION

In principle, the physical modeling can be made the same for sequential and batch-least-
squares estimators. The question becomes whether one estimator provides an estimate that fore-
casts more accurately than the other given that model. For both types of estimators, the solution at
the end of the data span will be conditioned on all available data. If the dynamic force modeling
is the same, the difference in solutions is generally due to how the observational data influence
the final state in the presence of process noise. In a sequential filter, the influence of an observa-
tion lessens as the observation time gets farther from the epoch of solution due to the influence of
process noise. With a batch-least-squares estimator, the lack of process noise allows observations
to remain more influential over long time spans.

This effect of process noise could lead one to conjecture that a sequentially-based estimate at
the end of the fit span may better reflect the local tendencies of the time-varying estimate,
whereas the batch least-square estimate may better reflect the global tendencies of the time-
varying estimate. For orbit determination applications, it may be reasonable to hypothesize that
global averages will forecast in the very long term better than more localized solutions. Hence, a
least-squares estimate may forecast more accurately in the very long term whereas a sequential
estimate may forecast better in the very near term. For example, an extended Kalman fil-
ter/smoother was demonstrated in at least one situation” to predict less accurately during extended
data gaps compared to a batch-least-squares estimator.”'

Two Parameter Gauss-Markov Sequence

There are different approaches for modeling stochastic (random) process noise for state, accel-
eration, and measurement errors, which may improve the predictive tendencies of a sequential
estimator. The stochastic process-noise model historically used in ODTK is a two-parameter
Gauss-Markov sequence having the scalar representation:

)=l (e, )1l o 20 ) s ke {2,k ze)~ N(O,1)  (19)

where o7 is the root-variance scale factor applied to independent (white) draws Z(#;) of a Gaussian
distribution of zero mean and unit variance, and o is a positive constant prescribing the degree of
sequential autocorrelation. In practice, the user defines o through the exponential half-life 7,
=-In(*4) / o." These two parameters are generically known in ODTK as the white-noise sigma
and the process half-life.

The model expressed in Eq. (19) is Gaussian in the sense that a population of independent re-
alizations of x(#;) will be distributed multivariate normal at time (#). It is Markov in the sense that

* The example cited used a reduced-dynamic orbit determination technique involving estimated empirical accelerations
fit densely distributed GPS-receiver observations, which is not really a sparse-data application.

T For a time interval equal to the half-life %%, an estimated bias will decay by a factor of two (2) during estimation to its
a priori value, in the absence of measurements.
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the relationship of x(#;) does not extend beyond the preceding observation.” The mean and vari-
ance as a function of time interval can be expressed as:

Efx(e, }=e " (e, )} 20)

Var(s(o,)) = E{ste, )~ 6, ) |- o

The expected value of the sequence x(#;), k= {1,2,... } asymptotically approaches zero as
(t - tk—l) — 00,

The recursive Gauss-Markov sequence x(t;) requires two additional values for initialization at
time (fy). For many estimation and modeling purposes within ODTK, x(#) in Eq. (19) represents a
difference or offset from some a priori constant value of the state parameter being estimated or
modeled; therefore, an a priori constant value is needed for initialization. The second additional
parameter is known as the bias sigma, which the user prescribes as the square root of the error
variance of the a priori constant value.

Three-Parameter Vasicek Sequence

A stochastic model related to the Gauss-Markov sequence is the three-parameter Vasicek
(Wah-SI-check) sequence, its scalar representation being:

—a g “a Tl —eafl =l o .
Vit )=e i ‘V(lk-1)+[1—e s ‘]b+\/l—e 2aft =t ‘Ez(tk—l) ;

ke{l,2,--;Z(t,)~ N(0,1)

21

The Vasicek stochastic sequence is a more general, mean-reverting sequence that separates
both short-run and long-run time-varying bias estimation with a single stochastic sequence.” The
Vasicek sequence also has the same exponentially decaying correlation function as the Gauss-
Markov sequence. (Sequences with exponentially decaying autocorrelation are sometimes de-
scribed in literature as originating from, or as specialized solutions for, an Ornstein-Uhlenbeck
process.**) The original application of the Vasicek sequence was for financial applications, e.g., to
simultaneously model a short-run interest rate level together with a long-run interest rate level.
The mean and variance as a function of time interval can be expressed as:

EWe = s el

Var((,))= E{V 6, )- EIV )])2}:%:(1_@24%.\) ;

(22)

As (t - tr1) — o, the expected value of the sequence V(#), k= {1,2, ...} asymptotically ap-
proaches b. The variance of the sequence asymptotically approaches ¢*/2a.

Implementation in ODTK

The three-parameter Vasicek sequence is an added feature to ODTK Version 6.1. The Vasicek
sequence of Eq. (21) can be viewed as an extension to the two-parameter Gauss-Markov se-
quence of Eq. (19) as it produces a numerically equivalent result providing that » =0, a = ¢, and
o/\2a = o;. For simplicity of implementation and to leverage user familiarity with ODTK’s two-
parameter Gauss-Markov model, ODTK’s three-parameter Vasicek model defines a through the
exponential half-life 7, = -In('%) / a. The user also specifies the asymptotic root-variance (6/Y2a)
as the so-called short-term sigma, just as if it were the white-noise sigma oy in the Gauss-Markov
model.
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Suppose one makes the two notational substitutions ct—a, and o,—(6/N24a) in Eq. (19) as pre-
viously mentioned. Considering that x(#) in Eq. (19) is a modeled offset relative to some a priori
constant value, suppose one also replaces x(#;) with an explicit expression representing the offset,
i.e., x(ty) = W(ty) — b, where b is a constant. One then finds Eq. (19) becoming:

(V(tk )_b): el (V(tk—l )_ b)+ vV1- e 2l gZ(tk—l) (23)

2a

which reduces to Eq. (22) by inspection. Therefore, the three-parameter Vasicek model of ODTK
extends the original two-parameter Gauss-Markov sequence by explicitly including the constant
offset b within the Gauss-Markov sequence. Doing this allows b to become another parameter
that can be estimated, together with V(¢) within the state space. Therefore, given enough tracking
data, the constant parameter (or, more correctly, a correction to the user’s specified constant) can
be directly estimated. ODTK refers to the estimated correction to the user’s specified constant the
long-term bias.

Prediction Using a Long-Term Bias

Because the Gauss-Markov sequence x(;) is a modeled offset to some user-specified constant,
in the absence of measurements its expected value reverts to its asymptotic value of zero at a rate
of decay that is dependent on the exponential half-life 7, = -In(’2) / o Thus, a forecast of a bias-
state estimate modeled as a Gauss-Markov sequence will revert back to the a priori constant
value specified by the user sooner or later. In this case, the accuracy of very long-term predictions
is governed by the correctness of the a priori constant value specified by the user.

The Vasicek sequence addresses this issue by estimating an additional correction b to the
a priori constant value which does not decay with time. Rather, at the end of the fit interval, the
estimated short-term component of the sequence (i.e., V(¢)) will fade at a rate of decay that is de-
pendent on the exponential half-life 7, = -In(2) / a, reverting to the estimated long-term compo-
nent b. Thereby, the forecast will be influenced more by the long-term estimate as the prediction
extends farther from the end of the fit interval.

The Vasicek long-term parameter is therefore entirely analogous to modeling an estimated
constant in batch-least-squares, such that one might expect the prediction with the long-term pa-
rameter to behave like estimated constants propagated in batch-least-squares. This seems relevant
considering that some research and development with the US space-object catalog oftentimes pre-
sumes that a long-term average is a suitable operational proxy for a spacecraft parameter’s “true”
value. For example, in the development of the Air Force HASDM atmospheric model, a batch-
least-squares algorithm was used to estimate approximately 3200 ballistic-coefficient (B) esti-
mates per spacecraft, all of which “were used to obtain an average value, the ‘true’ B value, over
the 31-year time period.”” When data are sparse, estimation of such constant parameters is less
practical with least-squares; however, a recursive approach using the Vasicek long-term parame-
ter will asymptotically approach the long-term mean with a conveniently single fit span that can
be indefinitely long.

Examples

An example of a simulated observation set is now considered: a low-Earth-orbiting (LEO)
spacecraft in a nearly circular orbit at 98° inclination and at 750 km altitude, tracked over a one-
month interval by 274 direction-cosine pairs from the Air Force Space Surveillance System
(AFSSS) and 477 range and angle pairs from various SSN radar sites. The simulated measure-
ments were fit by the sequential filter using a Vasicek model for the ballistic coefficient and solar
radiation pressure coefficient; however, the filter was initialized with coefficient values too low
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by 10%. Figure 6 shows that ballistic coefficient estimate over time increases to approximately
10%, that is, back to the correct value used to simulate the measurements. The short-term and
long-term components of the solar-radiation-pressure coefficient estimate did not separate signifi-
cantly during the two-week time interval under consideration, which assumed a solar-radiation-
pressure coefficient half-life of two days. It is conjectured that the long-term behavior of the so-
lar-radiation-pressure coefficient was not likely observable for the scenario being considered.

Another scenario was considered; a geosynchronous spacecraft in a nearly circular orbit at
7.5° inclination, tracked over a four-month interval by 276 range and angle pairs from a simulated
radar, and 1352 angle-pairs from four SSN optical sites. In the same way, the filter was initialized
with a solar-radiation-pressure coefficient value too low by 10%. Using a coefficient half-life of
seven days, Figure 7 shows that ballistic coefficient estimate over time increases back to ap-
proximately 10% over a period of several months. The experiment was repeated using a coeffi-
cient half-life of one-half day, with the outcome illustrated in Figure 8. In this case the long-term
bias component appeared to regress faster toward the simulated value.

Using the LEO scenario, Figure 9 illustrates that improved prediction accuracy may be ex-
pected when using the Vasicek sequence in lieu of the Gauss-Markov sequence. Here, simulated
data were generated using a Gauss-Markov sequence for the ballistic-coefficient correction of
with sigma of 20% and half-life of 90 minutes. The a priori ballistic coefficient was decreased by
10% and the coefficient was filtered assuming a Gauss-Markov sequence. The estimate was re-
peated using a Vasicek sequence for the ballistic coefficient with a long-term sigma of 10% and a
short-term sigma of 20% and half-life of 90 minutes. In both cases the solution was allowed to
predict an additional nine days, and then each result was differenced against the original simula-
tion case. The idea was to simulate a scenario with the spacecraft having variable area throughout
the orbit. Both filtered solutions looked comparable to each other and reasonably matched the
simulation during the data-processing interval. In the prediction interval, the Vasicek produced a
better absolute prediction than the Gauss-Markov, which is expected. Also, the Gauss-Markov
prediction error is not strongly consistent with its covariance in this example.

CONCLUDING SUMMARY

Sparse data present special challenges to the orbit-determination problem. Limited observa-
tions result in larger parameter uncertainties and degraded prediction accuracy on average. If out-
lier contamination exists, sparse data make it hard or impossible to identify faults. This is true for
both batch and sequential estimation, but the problem will manifest itself in different ways. With
the sequential filter, limited data can result in larger residual uncertainties which might increase
the probability of accepting bad data using a statistical hypothesis test. With a batch estimator,
outliers can contaminate the iterated global estimate as well as the scale estimate (such as RMS)
used to identify outliers, making ad hoc detection schemes less efficient or insufficient, and po-
tentially slowing or prevent solution convergence. It is therefore reasonable to conclude that nei-
ther a batch-least-squares approach nor a filtering approach is ideal at rejecting outliers from
sparse data.

Under certain circumstances, the two methods can complement each other. For example, a
least-squares solution can be used to initialize a sequential filter, and the filter’s autonomous edit-
ing of mis-tagged data and inherent maneuver detection capability can be used for these situations
which can be more problematic for batch-least-squares. Also, outlier mitigation schemes which
are not statistically based can be useful with either approach.

For prediction, a capability has been added to ODTK Version 6.1 to separate a stochastic
model parameter into a varying short-term estimate and an asymptotic long-term estimate, assum-

292



ing that there is a long-term component to the behavior that is approximately constant. This so-
called long-term bias should have long-term predictive behavior more like batch-least-squares
estimates, which allows for an asymptotic constant parameter to be estimated with sparse data
over an indefinitely long fit span.

APPENDIX A: MAXIMUM LIMIT FOR RMS EDITING

The following derivation is an extension of a result by Shiffler (1988) which accommodates
RMS as a scale estimate when testing for outliers within a sample.26 Let {ry, r2, ... Fu1y} denote a
random sample of size (n-1), reordered from smallest value to highest value. Let RMS,.;, denote
the root-mean-square computed from this sample according to Eq. (17).

Let us propose to add to this set an even larger value 7(,) > 7.1, which is possibly outlying.
From Eq. (17), it is straightforward to show that

2
(n=1) , "o
n n

(24)

(RMS(m)z = (RMS(n—l)y

>

where RMS, is the RMS computed via Eq. (17) after r, is added to the ordered set. The ques-
tion of interest is: what is the maximum possible value of the ratio R, = 7, / RMS,)?

Following an argument posed by Shiffler (1988), it is obvious that the ratio R, is maximized
when the denominator RMS,, is minimized; this minimization occurs when RMS,.;, = 0 (or al-
ternately, when all members of the set {r;, s, ... .1} are exactly zero). In this minimizing situa-
tion,

}" 2 ’ 2 }" 2
" - 7 7 25
o s, ez [ @
n n n

Identical reasoning can be used to show that the maximum possible value for Ry as caused by a
large negative value r(g) is also 7.

Such arguments prove that | 7,/ RMS, | < (n)"* always, regardless of the magnitude of the
outlier r(,, and an equality only holds under the highly implausible condition that every other
member of the set {r, 72, ... .y} 18 exactly zero. Neglecting the implausible circumstance then,

cC<m” . (26)

is a necessary condition for identifying (, as an outlier if using the criterion | 7, | > C x RMS.
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