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Abstract: Orbit determination (OD) analysis results are presented for the Lunar 

Reconnaissance Orbiter (LRO) using a commercially available Extended Kalman Filter, 

Analytical Graphics’ Orbit Determination Tool Kit (ODTK). Process noise models for lunar 

gravity and solar radiation pressure (SRP) are described and OD results employing the models 

are presented. Definitive accuracy using ODTK meets mission requirements and is better than 

that achieved using the operational LRO OD tool, the Goddard Trajectory Determination System 

(GTDS). Results demonstrate that a Vasicek stochastic model produces better estimates of the 

coefficient of solar radiation pressure than a Gauss-Markov model, and prediction accuracy 

using a Vasicek model meets mission requirements over the analysis span. Modeling the effect of 

antenna motion on range-rate tracking considerably improves residuals and filter-smoother 

consistency. Inclusion of off-axis SRP process noise and generalized process noise improves 

filter performance for both definitive and predicted accuracy. Definitive accuracy from the 

smoother is better than achieved using GTDS and is close to that achieved by precision OD 

methods used to generate definitive science orbits. Use of a multi-plate dynamic spacecraft area 

model with ODTK’s force model plugin capability provides additional improvements in 

predicted accuracy. 

 

Keywords: LRO, Orbit Determination, Extended Kalman Filter, Solar Radiation Pressure, 

Moon. 
 

1. Introduction 

 

The Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF) has performed orbit 

determination (OD) and related mission support for the Lunar Reconnaissance Orbiter (LRO) 

since LRO launched in June 2009. The LRO mission achieved an initial elliptical commissioning 

orbit after lunar orbit insertion. A series of descent maneuvers were performed to navigate LRO 

into a 50-km circular orbit around the Moon, where it remained from September 2009 until 

December 2011. In December 2011, LRO was returned to an elliptical (40 km x 180 km) orbit, 

similar to its early mission commissioning orbit.  

 

Since LRO launch, the FDF has employed the Goddard Trajectory Determination System 

(GTDS) for operational LRO OD. GTDS is a batch least-squares (BLS) estimator, employing 

high-order gravity modeling and a spherical spacecraft model for solar radiation pressure (SRP) 

as the primary forces for routine OD. In support of mission science objectives, the requirements 

established for LRO OD were: 
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 Definitive ephemeris accuracy of 500 meters total position root-mean-squared (RMS) and 

18 meters radial RMS, 

 Predicted orbit accuracy less than 800 meters root-sum-squared (RSS) over an 84-hour 

prediction span. 

 

Definitive and predictive accuracy requirements for LRO were easily met using GTDS during 

the 50-km circular orbit mission phase. However, predictive accuracy has been poorer in the 

elliptical commissioning orbit, both following initial lunar orbit insertion and currently, 

particularly during high beta-angle periods. Previous work [1] has shown that the use of a more 

detailed spacecraft area model, with definitive attitude modeling for the spacecraft and solar 

array, can greatly improve prediction accuracy in the elliptical orbit.  

 

This paper examines the use of a commercially-available Extended Kalman Filter (EKF), the 

Orbit Determination Tool Kit (OTDK), for LRO OD. ODTK implements an EKF and fixed 

interval smoother with high-fidelity force modeling for OD around the Earth or other central 

bodies, and supports over 150 different observation types, including the Universal Tracking Data 

Format (UTDF) range and range-rate observations used in this study. Sequential range and total 

count phase measurements from the NASA Deep Space Network (DSN) are available in small 

quantities for LRO and supported by ODTK but were not used in this study.  

 

An EKF has a few natural advantages over a BLS estimator for LRO OD. For example, an EKF 

delivers faster OD processing, because an EKF only processes the measurements once rather 

than multiple times. This can save a significant amount of processing time when a high-order 

gravity model is used. In addition, the filter can provide a covariance estimate that is time-

dependent and potentially more realistic than is achievable by GTDS because of the inclusion of 

dynamical process noise. Furthermore, ODTK implements, via a plugin programming interface, 

a more capable box and wing spacecraft area model than currently available in GTDS. This 

offers an opportunity for improving the predicted accuracy for daily operations. 

 

2. Dynamical Process Noise Model 

 

When used in an optimal manner for operational OD, the Extended Kalman Filter can be 

described as a continuously running recursive machine. Although operational workflows 

typically involve running the OD process at one or more discrete times each day, each run of the 

EKF starts with final state estimate and state estimate error covariance from the prior run. The 

resulting filter estimates are, therefore, equivalent to the case where the filter is run continuously. 

Starting each OD process with the final state and error covariance from the prior run is desirable 

since it is operationally straightforward and allows for current time estimates to reflect the 

maximum possible amount of measurement information. 

 
The recursion inside the EKF consists of an alternating series of time updates and measurement 

updates. Time updates are performed to advance the state and state error covariance estimates to 

the next measurement time. In OD, the time update includes the nonlinear propagation of the 

orbit and stochastic parameters and the linear propagation of the state error covariance. 

Dynamical process noise is incorporated during the time update and can be described as 

additional uncertainty injected into the state error covariance to account for the inaccuracies in 
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the model of the dynamics of the system. The inclusion of additive dynamical process noise in 

the covariance portion of the time update takes the form 

 

     11|1|1 ,,,   kkkk

T

kkkkkk ttQttPttP  , (1) 

 

where kkP |1  is the state error covariance at time 1kt including measurement information through 

time kt ,  1,  kk tt is the linear state error transition function and  1, kk ttQ  is the additive 

process noise matrix, which accounts for dynamical uncertainty over the interval from time kt  to 

time 1kt . As seen in Eq. 1, the dynamical process noise matrix is added to the propagated state 

error covariance at time 1kt . 

 

Measurement updates are performed to fold in measurement information, producing an improved 

state estimate at the time of the measurement and a corresponding reduction in the uncertainty of 

the estimate as expressed in terms of the state error covariance. It is the role of the dynamical 

process noise to ensure that the covariance is realistic at the time of measurement processing. If 

the dynamical process noise is too small or nonexistent, the filter can become smug. A smug 

filter estimate is characterized as having an error covariance that is significantly too small, which 

leads to the excessive rejection of measurement data and eventually to filter divergence. If the 

dynamical process noise is too large, the automatic data editing of the filter may not be able to 

effectively discern good data from bad data, which will result in degraded state estimates and 

may also lead to filter divergence. For the filter to perform optimally, the dynamical process 

noise must be specified to appropriately account for deficiencies in the model of the dynamics. 

 

While dynamical process noise can be introduced into the time update in many ways, the 

preferred methodology in ODTK is to associate dynamical uncertainty directly with the physical 

models used in the propagation of the spacecraft trajectory. Wright [2] lists this relationship in 

his requirements for optimal OD. When such “physically connected” process noise is used, the 

filter becomes more robust to variations in orbital conditions, provides a more realistic measure 

of orbit uncertainty and requires less operator intervention. Notable sources of dynamical model 

uncertainty for most space missions include the modeling of central body gravity, atmospheric 

drag, and SRP. In the case of LRO, atmospheric drag is not significant leaving the lunar gravity 

model and SRP as the main sources of dynamical model uncertainty.  

 

The uncertainty in historical lunar gravity field solutions has been a limiting factor in achievable 

orbit accuracy [3]. Large uncertainties in lunar gravity field solutions were reflective of the lack 

of tracking data for satellites on the far side of the moon for use in gravity model development. 

While the uncertainty in lunar gravity has been greatly reduced with the introduction of the 

Gravity Recovery and Interior Laboratory (GRAIL) mission derived gravity solutions [11, 15], it 

is still important to model the remaining uncertainty in the gravitational acceleration to achieve 

optimal estimation performance. Accordingly, a process noise model based on the GRAIL 

gravity solution has been developed. The gravity process noise model is based on the integration 

of acceleration errors averaged over a sphere where the radius of the sphere is derived from the 

location of the spacecraft [4, 5]. The output of the gravity process noise model is a 6x6 

symmetric matrix, which is inserted into the appropriate location in  1, kk ttQ , see Eq. 1. 
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 1, kk ttQ  incorporates the increase in the orbit state uncertainty from the integration of the 

averaged acceleration errors over the time update interval.  

 

The lunar gravity process noise model is comprised of two main components: modeling of errors 

of commission and modeling of errors of omission. Errors of commission are errors in the values 

of the gravitational coefficients used in the computation of the gravitational acceleration. Errors 

of omission are errors experienced in the computation of the gravitational acceleration from the 

use of a truncated model of the gravity field. A spacecraft in orbit about the Moon can travel at 

very low altitude allowing its motion to be influenced by the structure of the mass distribution in 

the upper layers of the lunar mantle. Accurate modeling of the acceleration from lunar 

gravitational forces therefore requires the evaluation of the spherical harmonic potential function 

to a high degree and order. The intense nature of such computations motivates the truncation of 

the available fields to a lower degree and order as a matter of practicality. The increase in error 

in the dynamical model as a result of truncation is accounted for in the gravity process noise 

model as errors of omission [4]. 

 

The gravity process noise model implemented in ODTK is driven by a set of precomputed inputs 

generated from the formal error covariance associated with the gravity field solution [6]. The 

generation of the gravity process noise model inputs for the GRAIL derived gravity fields 

followed the same general procedure that has been validated during the generation of multiple 

gravity process noise models for Earth gravity models [7], but required minor updates in the 

implementation to account for the much higher degree and order of coefficients in the GRAIL 

gravitational field solutions. At the heart of the gravity process noise computation is the 

evaluation of a set of double integrals where the outer integrals are evaluated analytically using 

an approximation enabled by the mean value theorem and the inner integrals are evaluated using 

pre-computed polynomials in the orbit radius, which are specific to the degree of truncation in 

the gravity field [6].  The time required for generation of the inner integral polynomial 

representations grows significantly with increasing degree and order of the gravity field for 

several reasons. First, the integrand requires the computation of a sum of Legendre polynomials 

to the degree of the gravity field. Second, polynomials are generated for each possible user 

selected degree of truncation. Finally, higher degree gravity effects add higher frequency content 

to the integrand, which subsequently requires smaller step sizes in the numerical quadrature to 

produce an accurate result. Fortunately, these burdensome computations are only required in the 

pre-processing step and do not affect the performance of the filter during estimation. 

 

SRP induced accelerations are analyzed using two different models for comparison purposes and 

to determine the importance of detailed spacecraft modeling in the prediction of the orbit of 

LRO. The first SRP acceleration model assumes a uniform spherical spacecraft body augmented 

with a stochastic parameter to allow for variations in the magnitude of the acceleration along the 

Sun line. The stochastic scale factor of acceleration for SRP accommodates the injection of 

dynamical process noise along the Sun line. This “along-axis” process noise is incorporated by 

setting the diagonal element of  1, kk ttQ  associated with the SRP scale factor to a value 

computed based on the selected stochastic sequence for the given time update interval. In 

addition, ODTK provides the option to include fractional white noise in directions orthogonal to 

the Sun line to account for the effects of a non-spherical spacecraft body. This “off-axis” SRP 

process noise is specified by the operator as a fraction of the nominal acceleration along the Sun 
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line. These “off-axis” SRP acceleration uncertainties are integrated over the time update interval 

using a localized approximation of two body motion to yield a 6x6 symmetric matrix, which is 

added to the gravity process noise in  1, kk ttQ . We note that the use of white noise in the 

directions orthogonal to the Sun line is appropriate for cases where a changing attitude profile 

allows for such off-axis accelerations to average out, but is less so for cases where off-axis 

accelerations are significant and slow to change in direction.  

 

The second model for SRP is a more detailed physical model of the spacecraft implemented 

using the ODTK SRP plugin interface. The particular solar pressure plugin used for LRO 

implements a box-wing model of the spacecraft where each surface has an associated area, 

specular and diffuse reflectivities, and orientation in the body frame of the satellite or a frame 

aligned to the Sun vector. This model can directly compute SRP-induced accelerations in 

directions on and off the Sun line. Furthermore, model parameters can be selected for estimation 

and be associated with stochastic descriptions to allow the addition of dynamical process noise 

related to uncertainties in the reflective characteristics of modeled spacecraft components. 

Dynamical process noise for the box-wing model is incorporated by setting the diagonal 

elements of  1, kk ttQ  associated with the estimated characteristics of the model to values 

defined by the selected stochastic sequences for the given time-update interval. A feature of 

dynamical process noise that is physically connected to the SRP acceleration is that no process 

noise is added when the satellite is in eclipse. 

 

3. Analysis Time Span and Methodology 
 

To facilitate comparisons between GTDS and ODTK performance, the analysis time span 

chosen, March 11, 2013 to July 13, 2013, is the same as used in the previous analysis on LRO 

OD accuracy using GTDS [1]. This time period spans low to high beta angle orbit conditions and 

includes a full-Sun orbit period, five momentum unloads, and one station-keeping maneuver. 

 

Over this analysis time period, LRO tracking consisted primarily of S-band range and range-rate 

measurements from a NASA tracking station at White Sands, New Mexico (WS1S), and from 

Universal Space Network (USN) stations in Perth, Australia; Hawaii, USA; Weilheim, Germany; 

and Kiruna, Sweden. During this period, the NASA Deep Space Network (DSN) provided 

occasional tracking passes during momentum unloads and station keeping maneuvers, but this 

constitutes a small fraction of tracking data. Therefore, DSN data was not included in the 

analysis.  

 

A number of relevant LRO tracking data issues have been described previously [1, 8] and for 

brevity are summarized here. They are: 

 

 An approximate range-rate bias of -1.0 cm/sec on all USN stations, 

 An approximate measurement time-tag bias of +6 milliseconds on WS1S range tracking, 

 An approximate measurement time-tag bias of -2 millisecond on USN range tracking, 

 Various differential range measurement calibration biases among all stations. 

 

The analysis automation was configured to run the filter as it would be in an operational daily 

use scenario. After initialization, the filter restarts each day in “warm start” mode from a restart 
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record at 12:00 UTC and processes 24 hours of tracking data from the prior day at 12:00 UTC to 

the current day at 12:00 UTC. At the conclusion of each daily filter run, the filter generates a 5-

day prediction using the filter ending state estimate. Following the filter execution, the fixed-

interval smoother is run backward in time for a total of 96 hours, starting at the filter end time 

and ending on the 4
th

 prior day at 12:00 UTC. A 4-day definitive ephemeris is generated by the 

smoother process. No prediction is generated from the smoother. Because the smoother start 

state and filter end state are identical, any prediction from the smoother would be identical to that 

from the filter. This processing workflow matches what would be required for operational use of 

the filter for daily LRO operations with OD beginning at around 7 a.m. EST each day.  

 

Once the filter and smoother processing are complete, a separate utility runs to perform the 

McReynolds’ filter-smoother consistency test [9]. The McReynolds’ filter-smoother consistency 

test computes a unitless metric at each point of overlap between the filter and smoother that is 

the ratio of the difference between the filter and smoother state estimates to the difference in 

filter and smoother formal covariance. For each point at which the metric is less than 3, the filter 

and smoother state estimates are demonstrated as consistent with their associated covariances 

and the test is passed. Formally, 99% of all tested points are expected to pass the test, however, 

from a practical standpoint passing the test for the vast majority of the time based on visual 

inspection is considered sufficient. On the other hand, persistent excesses of the test metric are 

an indication that some observable effect is ignored, mis-modeled, or poorly tuned. The filter-

smoother consistency test may be applied to any estimated parameters, including biases and the 

components of the SRP model. 

 

In addition to the filter-smoother consistency test, a suite of other quality assurance (QA) reports 

and graphs were generated after each analysis series run. These included graphs of the filter 

covariance, values of any estimated parameters, and residual ratios or scaled residuals, which are 

the raw observation residuals divided by the root sum of the covariance and measurement noise. 

Residual ratio plots are very useful for ensuring that the filter remains in a converged state, and 

also provide insight into the magnitude of the actual versus modeled measurement noise. If the 

residual ratios are excessively narrowed around zero, this indicates that the either the 

measurement noise or (less often) the process noise is too large.   

 

The accuracy of the ephemeris, both definitive and predictive, generated by the filter and 

smoother was assessed using the filter and smoother formal covariance and by comparison to 

precision orbit ephemeris files generated by the LRO Lunar Orbiter Laser Altimeter (LOLA) 

team using the Orbit Determination and Geodetic Parameter Estimation (GEODYN II) Program 

[10]. The comparisons between ODTK and GEODYN ephemerides are described in more detail 

in Section 4.6. Predictive or definitive spans crossing maneuvers or momentum unloads were 

excluded from the statistics. 

 

For this study, the quality of each tuning scenario was evaluated primarily based upon its 

performance against the mission requirements, especially the predicted accuracy requirement. 

Nearly all tunings achieved definitive accuracy results well below the requirements, with radial 

RMS definitive accuracy (as measured by comparison to the GEODYN solutions) typically close 

to 1 meter, and RMS total definitive accuracy, similarly measured, between 7 and 20 meters. As 

one would expect a filter with dense tracking to easily perform well for definitive accuracy, 
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predicted accuracy – and in particular the number of failures of the 800-meter 3-day predicted 

accuracy requirement – was a critical metric for evaluating the quality of each tuning scenario. 

Nevertheless, in addition to the definitive and predicted accuracy, the value and behavior of 

estimated parameters, in particular SRP and the filter-smoother consistency of both the orbit and 

estimated parameters, were also used as discriminating criteria in evaluating filter tuning. 

 

4. Filter Tuning 
 

The major forces affecting LRO OD are lunar gravity and SRP. Second order forces such as 

lunar albedo, thermal radiation pressure, and Earth oblateness were ignored in this study. The 

goal of filter tuning is to develop a filter configuration that runs autonomously or with minimal 

intervention, achieves the best definitive and predictive orbit accuracy possible, and generates a 

realistic covariance. To achieve this goal, the orbit analyst must study and consider all of the 

relevant forces and sources of error and model them more carefully than is generally required for 

operational BLS OD. The filter tuning process requires the analyst to address both the nominally 

modeled accelerations of these forces and their presumed errors. In addition, the filter analyst 

must establish realistic models of all included orbit measurement types, taking into account their 

white noise and potential measurement and time-tag biases. ODTK offers a variety of stochastic 

models that may be applied to estimation of bias and force model parameters. In most cases 

operator experience or empirical testing must be used to select a preferred model and which 

parameters should be estimated versus being applied. More than 70 runs were performed over 

the entire analysis span to study tuning options in a parametric fashion. The following sections 

describe the results from these runs and the motivations for the selected modeling parameters of 

the major forces and measurement types. 

 

4.1. Gravity Model Selection 
 

The GL0660B lunar gravity model [11] was chosen for this study. Preliminary ODTK runs were 

conducted to determine an appropriate truncation of the model which would provide a 

manageable balance of OD accuracy and computation time.  A 100x100 truncation performed 

poorly, producing 43 failures of the 800-meter predicted accuracy requirement. Higher order 

truncations performed much better, with the 150x150 truncation giving 15 predicted accuracy 

failures and 200x200 producing 12 failures. Both the 150x150 and 200x200 truncations had 

better definitive accuracy than the 100x100 case, with the 200x200 truncation performing about 

1 meter better in mean total position accuracy than the 150x150 case.  As a 200x200 truncation is 

currently used in operational GTDS OD for LRO and the processing time of about 9 minutes to 

filter 24 hours was considered manageable, the 200x200 truncation was selected for the ODTK 

analysis runs. Truncations larger than 200x200 are currently impractical for rapid daily OD using 

GTDS but may possibly be practical for use with a filter due to the filter’s need to only iterate 

once on the measurement data. 

 

4.2. Solar Radiation Pressure Modeling 

 

SRP is the largest non-gravitational perturbation affecting the LRO orbit and inadequate 

modeling of SRP is the primary cause of large prediction errors for LRO, particularly during 

high-beta angle periods [1]. ODTK supports estimation of SRP using a random walk, Gauss-
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Markov, or Vasicek stochastic model. The Vasicek model is a hybrid model that acts like a 

superposition of a random walk and Gauss-Markov model, facilitating separation of long-term 

and short-term effects [12]. For all models the user may also specify, as a fraction of the nominal 

acceleration from SRP, supplemental off-axis SRP process noise both perpendicular to the Sun 

line in the ecliptic plane and normal to the ecliptic plane, to account for SRP force model errors 

caused by using a coarse area model. 

 

Analysis runs were performed using both the Gauss-Markov and Vasicek models with various 

levels of additional SRP process noise. Prediction accuracy using the Gauss-Markov SRP model 

was found to be sensitive to the level of additional off-axis SRP process noise. As the process 

noise was increased, the prediction accuracy improved and the number of predicted accuracy 

requirement failures decreased. The best runs in this series used SRP process noise as high as 

200% of the nominal acceleration. Note that the off-axis model assumes that acceleration errors 

can be modeled as white noise. The large percentage of the nominal SRP acceleration used 

within the model is indicative of a violation of this assumption and that actual off-axis 

acceleration errors are likely strongly correlated over significant time spans.  

 

The Vasicek model was preferable for SRP modeling. While comparable prediction accuracy 

was achievable for various tunings of the Gauss-Markov and Vasicek models, for many cases 

estimation of the correction to the nominal SRP using a Gauss-Markov model showed large 

variations without any apparent converging behavior. In contrast, estimation of the SRP 

correction using the Vasicek model was less variable and exhibited a converging behavior to a 

stable long-term mean value, with some short-term variations still apparent. Even when using the 

Vasicek model, off-axis SRP process noise was still required. A run utilizing the Vasicek model 

and no off-axis SRP process noise diverged very close to the time LRO entered full-Sun 

exposure near the end of May 2013. Estimation of the correction to the nominal SRP coefficient 

using the Vasicek model consistently showed convergence to a correction of about -0.71, so the a 

priori coefficient of solar radiation pressure was adjusted for later runs from 1.67 to 0.96. We 

were able to confirm that this value is consistent with the values of coefficient of SRP obtained 

by the GEODYN precision OD team, so this gives additional confidence to the use of the 

Vasicek model. The following figures show examples illustrating estimation of the correction to 

the coefficient of SRP using a Gauss-Markov (Fig. 1) and Vasicek (Fig. 2) model. 
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Figure 1. SRP correction estimate using a Gauss-Markov model 

 

 
 

Figure 2. SRP correction estimate using a Vasicek model 
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It is interesting to note that the filter enables estimation of the coefficient of SRP. Prior attempts 

to estimate SRP with GTDS were never successful, typically yielding inconsistent or unrealistic 

values. GTDS does not account for process noise, therefore gravity model error easily aliases 

into the estimate of the coefficient of SRP. It is conjectured that the estimation of corrections to 

SRP requires a long time period of observation over which the unique dynamical signature can 

be isolated to provide observability. In such a case, the inclusion of off-axis SRP process noise 

provides additional freedom for the estimator to allocate state corrections into the orbit states and 

avoid aliasing localized errors into the SRP state. From Fig. 2, the apparent time to convergence 

for the estimated correction to the coefficient of SRP is about seven weeks, much longer than the 

GTDS BLS fit span of only 1.5 days. However, it is noted that the filter and smoother estimates 

of SRP state may still not reflect physical SRP force model changes. Over the time span, a 

number of discrete changes to the LRO solar array configuration occur at known epochs, 

discussed in greater detail later. Neither the Gauss-Markov nor Vasicek estimates provide clear 

indications of these changes. 

 

4.3. Range-Rate Data Modeling 
 

Initial tuning efforts focused on using only the range-rate tracking data in the solution and 

excluded the range data. Prior LRO OD mission experience using GTDS has shown that range-

rate only solutions are adequate to meet mission requirements. In addition, although the LRO 

range-rate data does have measurement biases, excluding range data simplifies the tuning 

process by the eliminating uncertainties from transponder delay and station range calibration 

biases, and avoids the issue of the anomalous time-tag biases associated with the LRO range 

tracking.  

  

Mission requirements specify that range-rate tracking provided by the USN should have an 

accuracy of 3 mm/sec and that provided by the WS1S should have an accuracy of 1 mm/sec, 1-

sigma. For sake of simplicity, all stations were initially configured with 1 mm/sec of 

measurement white noise. With this setting it was quickly apparent that, at least over the analysis 

span, range-rate tracking from the USN Kiruna stations was noisier than the other stations. As a 

result, the range-rate noise for both Kiruna tracking stations was adjusted to 5 mm/sec. 

 

As previously mentioned, the USN range-rate tracking is known to have an 

approximate -1.0 cm/sec bias for all USN stations. Test cases were run that either applied this 

bias or estimated it, as well as the approximately 0.0 cm/sec White Sands range-rate bias, using a 

Gauss-Markov stochastic model. As the bias was well known from the GTDS solutions, an initial 

uncertainty of 1 mm/sec was assumed and test cases were run to vary the half-life of the 

estimated bias. The predicted accuracy improved and the number of prediction accuracy 

requirement failures decreased steadily as the half-life increased. Employing a long half-life with 

small uncertainty approximates applying a bias, so it was decided to apply the nominal mean 

values of range-rate biases and not to estimate them at all. 

 

Although nominally orbiting the Moon in a nadir-pointing attitude, LRO performs frequent slews 

(about 2 to 8 per week, but sometimes more) to off-nadir attitudes for science observations or 

instrument calibration. These slews were evident as numerous large range-rate residual 
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excursions and were easily observable in the scaled residual plots. Aside from these slews, a 

close examination of the range-rate residuals revealed that most passes had a lower-order 

parabolic or sinusoidal signature (Fig. 3). This signature is induced by the motion of the LRO 

antenna relative to the line of sight during the pass. Most LRO tracking is performed using the 

high-gain antenna (HGA) which is mounted atop a mast extending approximately 2.7 meters 

from the spacecraft center-of-mass. LRO has two additional omni-directional antennas, mounted 

on the +X and –X spacecraft axes, but these antennas are only typically used during certain 

momentum unloads or spacecraft anomalies. 

 

 
 

Figure 3. Range-rate scaled residuals without HGA motion modeling 

 

ODTK provides the capability of modeling range-rate effects from antenna motion relative to the 

spacecraft center of mass, a capability not available in GTDS. Because the FDF receives both 

definitive and predicted spacecraft attitude history files, we were able to execute analysis runs 

using the antenna center-of-mass offset and definitive spacecraft attitude history in the range-rate 

measurement modeling. Modeling the HGA motion using attitude data cleaned up the range-rate 

residuals considerably (Fig. 4), yielding residual distributions closer to white noise. A few 

residual excursions remain, particularly during targeted attitude slews, such as near 17:00 UTC 

on March 12 in Fig. 4. Most dramatic, however, was the improvement in filter-smoother 

consistency (Figs. 5 and 6). Once HGA motion is accounted for, only a couple brief large 

excursions still remain. This result illustrates the power of the filter-smoother consistency test in 

the indication of modeling deficiencies. 
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Figure 4. Range-rate scaled residuals including HGA motion modeling 

 

 
 

Figure 5. Filter-smoother consistency without HGA motion modeling 
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Figure 6. Filter-smoother consistency including HGA motion modeling 

 

4.4. Range Data Modeling 

 

Inclusion of range tracking in the filter solutions expands the complexity of the tuning process, 

as it requires the analyst to address the modeling of range measurement biases, LRO’s 

transponder delay, and tropospheric delay corrections to the range observations. These separate 

effects tend to be highly correlated which means that there is no easy choice about whether to 

apply or estimate each. In the case of LRO range tracking, there are also time-tag biases affecting 

the range data that are not present in the range-rate tracking. 

 

With preprocessing of the tracking data, it is possible to separate the range and range-rate 

measurements, enabling application or estimation of time-tag biases solely to the range 

measurements. When this was done, the best solutions using only range data performed 

comparably to the best range-rate-only and combined range and range-rate cases for definitive 

accuracy, but this range-only case was worse for prediction accuracy, producing two failures of 

the predicted accuracy requirement. The best range-rate only cases had no failures of the 

predicted accuracy requirement. The best runs combining range and range-rate data applied 

transponder, troposphere, and measurement time-tag biases and estimated an individual range 

bias on each tracking station. However, this combined data type run yielded definitive and 

predictive accuracy identical to that obtained using only range-rate data. This lack of 

improvement makes it generally undesirable to take on the added complexities of using the range 

data in the state estimation. 
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4.5. Supplemental Generalized Process Noise 

 

Determining an ideal level of process noise is perhaps the most difficult part of the filter tuning 

process for cases where a dominant noise source is not present. ODTK provides physically 

connected process noise to account for errors of commission and omission in the gravity field 

and along-axis and off-axis acceleration errors from SRP as described above. In some cases, 

however, additional process noise is required to account for unknown and un-modeled forces or 

forces for which a deterministic model is not known or not included in the dynamical model 

(such as out gassing, thermal re-radiation, and lunar albedo). Quantifying process noise in detail 

is a daunting task. To account for such circumstances, ODTK allows the user to specify 

supplemental generalized white process noise not specifically correlated with any force model. 

In the case of LRO, this additional process noise would primarily account for potential deficits in 

the presumed SRP process noise and gravity model error, as well as soaking up effects of the 

unmodeled second- and higher-order forces. 

 

It was found that the addition of generalized process noise at the level of 1 mm/sec per orbit, 

equivalent to an acceleration of approximately 1.4x10
-10

 km/sec
2
, on all axes (radial, in-track, 

and cross-track) was beneficial to both predicted accuracy and filter-smoother consistency. For a 

low lunar orbiter, this magnitude of acceleration is on the order of SRP [13]. The inclusion and 

effect of the generalized white process noise is similar to what was described earlier for the off-

axis SRP process noise where the effect on the state error covariance is much smaller than would 

be seen by modeling a serially correlated error of a similar magnitude. Further increases in the 

level of generalized process noise qualitatively improved filter-smoother consistency even more, 

but degraded both definitive and predictive accuracy.  

 

4.6. ODTK Definitive Accuracy 

 

One natural measure of filter definitive accuracy is the filter formal covariance. Fig. 7 shows the 

3-sigma filter covariance for the best-performing tuning scenario. The large, off-scale spikes in 

radial and in-track variance are from modeling of momentum unloads or maneuvers at those 

times. The effects of orbit viewing geometry are apparent in both the in-track and cross-track 

uncertainties, with the in-track uncertainty peaking sharply when the LRO orbit plane is viewed 

face-on.  
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Figure 7. Position uncertainty, 3-sigma, for the range-rate-only scenario 

 

As noted in Section 3, the LRO LOLA science team produces precision orbit ephemerides for 

LRO using the GEODYN program [14]. The latest release of GEODYN-derived ephemerides 

use the GRGM900C gravity model [15] truncated at degree 600. These ephemeris files are 

described as having an orbit accuracy of about 10 meters RMS total position error, with about 1 

meter or better RMS radial error [16]. The GEODYN GRGM900C solutions were employed as 

the “truth” orbit for comparisons to the ODTK ephemeris over ODTK definitive and predicted 

spans.  

 

Definitive comparisons were performed between GEODYN solutions and the ODTK 24-hour 

forward filtered definitive ephemeris, a smoother definitive ephemeris smoothed backwards 

48 hours, and a smoother definitive ephemeris smoothed backwards 96 hours. Comparisons 

between the best-case ODTK runs and GEODYN are shown in Tab. 1. For background on the 

GTDS solutions, please see Ref. [1]. 



16 

Table 1.  Definitive Accuracy Results 

 

 Radial 

Mean / RMS 

(meters) 

In-track 

Mean / RMS 

(meters) 

Cross-track 

Mean / RMS 

(meters) 

Total Pos. 

Mean / RMS 

(meters) 

LRO requirement None / 18 None None None / 500 

GTDS BLS using a spherical 

area model and constrained 

plane 

0 / 2 -12 / 35 0 / 29 30 / 45 

GTDS BLS using a multi-

plate area model and 

definitive attitude and 

constrained plane 

1 / 3 10 / 25 0 / 16 21 / 30 

ODTK filter definitive 0 / 10 4 / 59 0 / 16 14 / 62 

ODTK 2-day back-smoothed 

definitive 
0 / 3 2 / 13 0 / 6 7 / 14 

ODTK 4-day back-smoothed 

definitive 
0 / 2 0 / 10 0 / 5 6 / 12 

 

Both smoothed ephemeris files have better accuracy than the filter because the smoother 

dramatically improves the accuracy of the definitive ephemeris during periods immediately after 

momentum unloads and maneuvers, when the filter is still reconverging from coarse delta-V 

modeling. Filter radial and in-track performance is worse than GTDS because of the increased 

error in the filter ephemeris during these reconvergence periods. Steady-state (excluding 

reconverging periods) filter definitive accuracy is better than both GTDS cases, with a mean total 

position error of 9 meters, and RMS total position error of 15 meters. The smoothed ephemeris is 

more accurate than the filter ephemeris, as it removes maneuver modeling errors, but the 

improvement between the 2-day smoothed definitive and 4-day smoothed definitive is small. 

 

A particular challenge to GTDS OD for LRO is the poor observability of certain components of 

the orbit that occurs periodically as the orbit rotates from a face-on to an edge-on view to the 

Earth. In a face-on view, radial and along-track accuracy are poor. In an edge-on view, cross-

track accuracy is poor. With GTDS, cross-track errors can be somewhat ameliorated by 

application of a constrained plane during edge-on viewing geometry [1]. However, the filter’s 

dynamic covariance has the advantage of naturally retaining knowledge of the orbit plane 

estimate from good to poor viewing geometry. RMS definitive cross-track error using GTDS 

without a plane constraint was 60 meters, which was reduced to 29 meters when a constrained 

plane method was applied. In contrast, ODTK’s filter RMS definitive cross-track error was 

16 meters, which came down to 5 meters with 4-day smoothing. 
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5. Filter Performance Using a Multi-Plate Area Model 
 

As noted in the previous analysis of LRO OD using GTDS [1], a box-wing model performs 

better than a spherical model for LRO prediction, at least in the case of BLS estimation. 

However, for simplicity the initial analysis and tuning effort employed a spherical spacecraft 

model.  

 

ODTK supports the ability to model a user-defined box-wing SRP model by the use of a force 

model plugin. ODTK supplies plugin points for arbitrary forces, as well as specific interfaces for 

SRP and drag forces. The SRP plugin point allows a single light reflectance area vector to be 

computed and returned to ODTK in a variety of reference frames, including the spacecraft body 

frame. This area vector is then used to compute the SRP force in the inertial frame by 

 

 

(2) 

 

where  is the mean solar flux at 1 astronomical unit (AU), c is the speed of light, Rs is the 

distance from the Sun to the spacecraft in AU and I is the area vector expressed in the inertial 

frame. The area vector can be thought of as incorporating the effects of area, reflectance and 

directionality. For a simple spherical spacecraft model,  would lie along the direction from the 

spacecraft to the Sun and have a magnitude equal to the product of the frontal area and the solar 

pressure coefficient. The plugin also allows the user to add model parameters from the plugin 

into the state space for estimation by the filter and smoother. 

 

A multi-plate SRP model utilizing this plugin interface has been created by Analytical Graphics, 

Inc., (AGI) and was used for this part of the study. This SRP plugin allows the user to define an 

arbitrary number of flat plates by specification of area (in m
2
), specular and diffuse reflection 

coefficients, and the unit normal vector components in either the body or Sun frame. The body 

frame is defined by ODTK’s current spacecraft attitude definition, in this case using LRO’s daily 

predicted attitude files supplied by the LRO mission operations center (MOC). The Sun frame is 

defined as the +Z axis aligned to the vector from the spacecraft to the sun and the +Y axis 

constrained to the body +Y axis, with +X completing the orthogonal system. 

 

For each user-defined plate, the plugin will compute the area vector along with partial 

derivatives of the SRP force with respect to elements of the state space. These calculations are 

simplified greatly by a variety of helper functions in the plugin interface. The area vector for a 

collection of plates representing the spacecraft is simplified from [17] to be 

 

 

(3) 

 

where N is the number of plates, i is the fraction of sunlight reflected off the plate, i is the 

fraction of sunlight diffused off of the plate,  is the unit vector from the spacecraft to the Sun, i 

is the unit vector normal to the plate, Ai is the area of the plate, and i is the angle between i and 
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. We note that contributions to the area vector are only included for plates with 0° < i < 90° 

[18]. Specular and diffuse reflectivity values for the LRO bus and solar array were available 

from pre-mission measurements. The plugin does not consider self-shadowing of the plates. 

 

The LRO solar array was used in a number of separate modes during the timeframe of interest. 

When the beta angle, I,  is low, the solar array tracks the Sun with an offset of 30°. For 

moderate and high beta angles, the solar array is fixed at particular positions. The solar array 

configurations as supplied by the MOC are shown in Tab. 2. 

 

Table 2. Solar Array Management During the Analysis Span 

 

Start Stop Description 

3/11/2013 00:00 3/12/2013 00:00 

Solar array tracks the Sun, with a 30° 

offset from the Sun vector in the body +Y 

axis 

3/12/2013 00:00 4/15/2013 13:08 

Solar array tracks the Sun, with a 30° 

offset from the Sun vector in the body -Y 

axis. 

4/15/2013 13:08 5/21/2013 17:34 Solar array fixed along the body +Y axis 

5/21/2013 17:34 7/2/2013 13:42 
Solar array fixed along the body +Y axis, 

with a 30° offset toward the body –X axis 

7/2/2013 13:42 7/13/2013 00:00 Solar array fixed along the body +Y axis 

 

This scheme was confirmed in AGI’s Systems Tool Kit (STK) using definitive solar array 

normal vector data provided by the MOC. The definitive data includes numerous brief 

excursions from the nominal behavior listed above that were not modeled. The current plugin 

assumes a constant spacecraft configuration and therefore a separate user input file must be 

supplied at the time of each configuration change. This was done through external ODTK 

automation scripts. 

 

The plate model as implemented includes a few known limitations. As previously mentioned, 

self-shadowing (e.g. the solar array shadowing the body) is not modeled in the plugin. However, 

analysis in STK using accurate spacecraft models and STK’s Area Tool indicated there was 

minimal self-shadowing in most cases. Additionally, the HGA boom and dish were not included 

in the plate model. Similarly, analysis using STK’s Area Tool indicated these errors were 

typically on the order of ~1 m
2
 or less. Despite these approximations it was found that use of the 

multi-plate area model plugin eliminated the need for supplemental SRP process noise. 

 

5.1. ODTK Predictive Accuracy 

 

Predicted accuracy for the best-case ODTK scenarios, again measured against the GEODYN 

solutions, is shown in Tab. 3. The results reported in Tab. 3 are the mean and standard deviation 

(std. dev.) of the daily maximum 84-hour total position prediction error for each run covering the 
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analysis period, along with the number of times the 800-meter prediction accuracy requirement 

was exceeded for each analysis series. 

 

Table 3.  Predicted Accuracy Results 

 

 84-hour Predicted Total 

Position Error 

Mean / Std. Dev. 

(meters) 

LRO requirement 800 

GTDS using a spherical area model 

and constrained plane 

325 / 325 

8 failures 

GTDS using a multi-plate area 

model and definitive SC attitude 

128 / 84 

0 failures 

ODTK using a spherical area 

model 

381 / 237 

0 failures 

ODTK using a multi-plate dynamic 

area plugin and predicted attitude 

243 / 116 

0 failures 

 

Both the spherical and multi-plate area plugin models met predicted accuracy requirements 

during the analysis span. Mean predicted accuracy using the plugin dynamic area model was 

nearly 140 meters better than that achieved using the spherical area model, but not quite as good 

as that achieved using the GTDS multi-plate area model. One possible reason may be that the 

GTDS predictions used definitive attitude data for the solar array and included HGA modeling, 

also with definitive HGA pointing data. Definitive attitude data is not available in time for daily 

OD, so the results of the best-performing GTDS case are not currently achievable in routine 

operations. Use of predicted attitude data, as in the ODTK case, more accurately represents what 

can be achieved operationally. Omitting the detailed SA behavior and the HGA entirely represent 

a somewhat less complex and easier to configure setup. 

 

6. Conclusion 

 

The results in this paper demonstrate that ODTK’s Extended Kalman Filter can be tuned to yield 

definitive accuracy better than GTDS batch least-squares solutions and predicted accuracy as 

good as or better than the operational GTDS OD. Modeling the effects of HGA antenna motion 

on range-rate measurements in the OD process was vital to achieving good filter-smoother 

consistency when processing range-rate data. As the analysis converged on tunings that gave 

good definitive and predictive accuracy, there was no improvement in the filter-smoother 

consistency until HGA motion was accounted for. This supports the use of the filter-smoother 

consistency test as a sensitive metric for evaluating filter performance. OD definitive accuracy 

using predicted attitude data was equivalent to that using definitive attitude data, which makes 

HGA antenna motion modeling a viable option for operational daily OD. GTDS does not have 
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the capability to account for antenna motion in range-rate measurement modeling. Estimation of 

an SRP coefficient, previously not possible with GTDS, was successful using a Vasicek 

stochastic model in ODTK. 

 

In addition to improved definitive and predictive accuracy over GTDS and the availability of a 

time-dependent covariance, orbit processing using ODTK was faster. In a test of a typical daily 

OD processing scenario, GTDS took 22 minutes to perform state estimation and generation of a 

5-day predicted ephemeris, requiring 4 iterations on a 1.5-day measurement arc. ODTK took 

only 9 minutes to filter forward 1 day of tracking, generate a 5-day predicted ephemeris, and 

smooth back 4 days. Although GTDS was originally selected as the primary tool for LRO OD 

based on its history as a trusted tool in the FDF and its heritage with the Lunar Prospector 

mission, ODTK is a viable alternative for operational LRO OD and is in a number of ways more 

advantageous for use than GTDS.  
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