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GLOBAL ATMOSPHERIC DENSITY ESTIMATION USING A 
SEQUENTIAL FILTER/SMOOTHER 

James W. Woodburn* and John H. Seago† 

Sequential estimation algorithms are applied to the problem of global atmos-

pheric density estimation. An optimal sequential filter is combined with a vari-

able lag smoother to investigate the estimation of corrections to intermediary 

temperature parameters in the Jacchia 1970 atmospheric density model. Of spe-

cific interest are the time lag required to provide the most accurate definitive es-

timates of temperature corrections, and the observability and correlation associ-

ated with several parameterizations of the temperature corrections. 

INTRODUCTION 

A predominate source of dynamical model uncertainty for low Earth-orbiting (LEO) space-

craft is due to the mis-modeling of atmospheric density at orbital altitudes. The estimation of cor-

rections to global atmospheric models, deduced from the observed behavior of artificial satellites, 

has moved from an area of research to an operational practice within the space surveillance com-

munity.
1, 2, 3

 Estimated corrections are applied to improve the orbit determination and prediction 

accuracy for other LEO objects. Objects included in the calibration set are preferably non-

maneuvering with nearly constant ballistic coefficients. 

The global atmospheric-density-correction model developed and maintained by the US Air 

Force Space Command (AFSPC) is known as the High Accuracy Satellite Density Model 

(HASDM). HASDM is based on a modified form of the Jacchia 1970 density model which has 

been extended to utilize corrections to two internal temperature parameters, the nighttime mini-

mum exospheric temperature, Tc , and the inflection point temperature at 125 km altitude, Tx . The 

process of estimating corrections to the modified Jacchia 1970 model is referred to as the dy-

namic calibration of the atmosphere (DCA).
4
 HASDM also predicts temperature corrections as a 

function of predicted space weather indices (E10.7, ap).
5
 

The estimator used by AFSPC is based on batch weighted least squares (BWLS) algorithms. 

In BWLS orbit determination, a set of constants are estimated which, along with associated dy-

namical models, describe the trajectory of the spacecraft. Typical elements of the estimation state 

include the orbit position and velocity at a fixed epoch, a ballistic coefficient, and a solar pressure 

coefficient. The period over which observations are processed is called the least-squares fit span. 

When necessitated by temporally changing conditions across the fit span of the BWLS process, 

state parameters may be estimated as segmented time constants over intervals shorter than the 

global fit span. In this case, multiple values of the ballistic coefficient, for example, are estimated 
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over the fit span, where each segmented estimate has been fit to a shorter, pre-determined time 

interval. This segmentation procedure allows the state element to approximate a time varying pa-

rameter under the restriction that enough data exist over each sub-interval of the fit span to allow 

for the solution of BWLS normal equations. 

In HASDM, corrections to the temperature parameters of the global density are modeled as 

segmented time constants, as are the so-called local density compensators (LDC).
3
 LDCs are pro-

portional density modifiers used to accommodate local density variations to each satellite which 

are not predicted by the global model. Temperature-correction estimates for the global atmos-

pheric density model and LDC’s are segmented into 3-hour intervals. For non-calibration satel-

lites, ballistic coefficients are estimated as a constant plus a series of segmented constants, where 

segment lengths can vary between one-half hour and three hours depending on the particular resi-

dent space object.
2
 

The purpose of this study is to investigate the potential benefits of applying sequential estima-

tion technology to the problem of global atmospheric density estimation. Sequential estimators 

have been used to compute corrections to the atmospheric density local to the spacecraft loca-

tion—similar to LDCs used in HASDM—and to demonstrate simultaneous estimation of ballistic 

coefficients and local atmospheric density corrections.
6, 7
 Estimation of time-varying parameters 

is supported natively in sequential estimation, requiring no specialized logic or operator involve-

ment. Sequential estimators also eliminate concerns over the tuning of fit spans, eliminate discon-

tinuities in estimated corrections at segment- and fit-interval boundaries, and improve potential 

computational efficiency. The technology used in this investigation consists of the optimal se-

quential filter and variable lag smoother implemented in the Orbit Determination Tool Kit 

(ODTK) product developed by AGI.
8, 9, 10

 The goals of this effort are: 

• to determine the viability of using sequential estimation for generating corrections to 

global atmospheric density models, 

• to analyze the effect of the correction model parameterization on observability and recov-

ery of density errors, and 

• to illustrate the relationship between latency and accuracy of the correction estimates. 

 

HASDM estimates corrections to two temperature parameters of the global atmospheric den-

sity model, expressed as spherical harmonic expansions in a coordinate system referenced to the 

direction of the Sun. Previous research has analyzed the correlations between the correction state 

estimates and investigated the selection of a modified set of temperature parameters to reduce the 

correlation.
3
 This study further investigates the presence of such correlations under sequential 

estimation. In addition, comparisons of lower order correction model parameterizations are made 

in terms of observability and the ability to provide spatially dependent corrections to the global 

atmospheric density model. 

Timely density information has great operational value. A time lag, relative to real time, may 

be experienced when estimating corrections to atmospheric density due to the manner in which 

modeling errors are sensed. HASDM reportedly estimates corrections to atmospheric density 

based on the observed motions of orbiting objects influenced by atmospheric drag. While drag 

contributes to the overall acceleration of a spacecraft, Space Surveillance Network (SSN) obser-

vations are primarily indicative of the spacecraft position. The local atmospheric density is, there-

fore, not directly observable; the effects of atmospheric density must integrate from acceleration 

space into position and velocity space before they can be observed. As a result, density estimates 

cannot be deduced from tracking data in real time. 



 3 

The time lag required to reduce the uncertainty of density-correction estimates of is a focus of 

this study. Specifically, the relationship between the time scales involved in atmospheric density 

variations and the lag required to achieve full accuracy in the correction estimates is examined 

using the recently introduced Variable Lag Smoother (VLS) which produces improved estimates 

at historical epochs while running forward in time with the filter.
11
 The VLS has the desirable 

characteristic of providing minimum variance estimates at historical epochs based on real time 

observation processing. The processing of in-situ observations—such as space-borne accelerome-

ter measurements—could potentially reduce the latency of density correction estimates in the fu-

ture, but this is beyond the scope of this study.  

CORRECTION PARAMETERIZATIONS 

The Jacchia 1970 atmospheric density model is selected as the baseline global density model 

for this study. 
11
The Jacchia 1970 model used in this study is not identical to the modified form of 

the same model used in HASDM, but is sufficiently similar for simulation purposes. A predeces-

sor to HASDM, the Modified Atmospheric Density Model (MADM), also used the Jacchia 1970 

model as its baseline. 

Corrections to Tc and Tx as Spherical Harmonic Expansions 

This study follows the work performed in the development of HASDM, where corrections to 

the nighttime minimum exospheric temperature, Tc , and the inflection point temperature at 

125 km, Tx , are estimated as coefficients of low degree and order spherical harmonic expansions: 

 )sin()(sin)cos()(sin ,,,, λϕλϕ mPSmPCT mnmnmn

n m

mn +=∆ ∑∑  . (1) 

The corrections are referenced to a coordinate system with the Z axis aligned with the pole of 

the true equator and the X axis constrained to the direction of the Sun. The corrected temperature 

parameters drive the computation of density through the physics of the baseline model. This 

parameterization is implemented and investigated for this study because it is in operational use 

and therefore allows for the possibility of results comparisons in the future. A zero degree and 

order expansion (scalar representation) in both temperature corrections is analyzed first, followed 

by a 1×1 expansion in Tc and finally the operational 1×1 expansion in Tx with a 2×2 expansion in 

Tc. 

SEQUENTIAL ESTIMATION 

Sequential estimation techniques are used to estimate the coefficients of the spherical har-

monic expansions representing the corrections to the atmospheric density model temperature pa-

rameters. Simulated tracking data for a set of low altitude satellites are processed through an op-

timal sequential filter and VLS.
10
 Because atmospheric density errors influence the orbit trajec-

tory through acceleration, there is a lag between when the errors are experienced and when they 

are observable to the filter through measurements in velocity or position space. As a result, filter 

estimates of atmospheric density corrections lag, making them undesirable for use in the compu-

tation of trajectories of other satellites or for incorporation in regression analyses used to predict 

future atmospheric corrections. The smoothing process removes the time lag in the estimates.  

Time-Varying Estimates 

The errors associated with the a priori density model result from inaccurate and incomplete 

knowledge of time-varying atmospheric drivers such as solar and geomagnetic activity. Imperfect 

physics within the density model also contribute to these errors, and the corrections to the model 
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will therefore be naturally time varying. While a BWLS algorithm generating segmented time 

constants can account for the time variation of the density and drag profile mis-modeling, a more 

innate technique is available via sequential estimation. 

The sequential filter implementation in our modified version of ODTK uses exponentially cor-

related stochastic sequences to represent the correction coefficients for each of the temperature 

parameters. The resulting estimates can vary over time and are therefore free to reflect changes in 

the atmosphere as sensed through observations, given an appropriate specification of the error 

correlation over time. Because each filter/VLS run is started using the final state and state error 

covariance from the prior filter run, there are no discontinuities in the smoothed estimates result-

ing from segmentation of the estimation process. There still exists, however, the possibility that 

discontinuities in the estimates may be required, dependent upon the treatment of the solar flux 

and geomagnetic indices used to drive the density model. If these inputs are treated as step func-

tions, then discontinuities would be needed in the computed atmospheric density correction pa-

rameters to produce a smooth density function. For this reason, we choose to interpolate the input 

solar flux and geomagnetic indices.
12
 

The scalar exponential Gauss-Markov sequence used to represent each temperature correction 

coefficient is defined as 

 ( ) ( ) ( ) ( ) ( ) ...}2,1,0{,,1, 1
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where α is a constant less than zero which is related to the half-life, τ , of the sequence via  
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This sequence is well suited for the estimation of corrections to an a priori model in that the 

expected value of the correction goes to zero and the variance returns to a constant initial value in 

the absence of measurements. The rate at which estimates decay to zero is controlled through the 

specification of the parameter half-life. The specification of an infinite half-life would cause a 

parameter to behave as a time constant while the specification of a zero half-life results in a 

Gaussian white noise process. When processing real data, half-life values are determined by ob-

serving the behavior of estimates during an initial calibration exercise. For the purposes of simu-

lation, half-life values are typically selected based on the time scales of the physical processes 

being analyzed. Exponential half-lives can be set independently for each estimated parameter al-

lowing each to evolve at its own rate. Figure 1 shows simulated temperature correction behaviors 

using half-lives of three hours and one day. 
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Figure 1. Simulated temperature correction profiles. 

The VLS runs forward in time in conjunction with the filter producing smoothed estimates at 

historical epochs. Observations in the present are mapped back to a set of selected historical ep-

ochs sequentially until the estimates at those historical epochs are deemed to be “converged”. The 

relationship between filter and a single VLS epoch is illustrated in Figure 2. The set of historical 

epochs can be selected at any granularity based on a goal of being able to accurately interpolate 

the results. Convergence can be defined in many ways, but an intuitive method is to identify when 

the covariance on the smoothed estimate is no longer reduced significantly by the processing of 

new measurements. This study opts to identify a time lag which satisfies this criterion based on 

trial runs. The use of a static time lag, though potentially not optimal, is simpler to implement in 

an operational framework. 

 

Figure 2. VLS incorporates current time observations into historical estimates. 

Estimate Combination 

The sequential filter and VLS both perform a large number of matrix operations. The compu-

tational expense of these operations increases significantly with increasing size of the state esti-

mate. To partially offset the computational expense related to the large state size of a full simul-

taneous solution, this study experimentally separated a population of 75 calibration satellites into 
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three subsets of 25 satellites. The separation was performed roughly in terms of the satellite alti-

tudes, resulting in high, medium and low altitude subsets. A final smoothed estimate of the global 

atmospheric density model correction states is constructed by combining the variable lag 

smoother estimates from the sub-set solutions.
13
 Common state and state-error covariance infor-

mation from each sub-group solution is combined at each variable lag smoother epoch. The state 

estimate for the i
th
 filter has the structure 
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where 
ix are the states unique to the satellite orbits estimated in the i

th
 filter and c  is a vector of 

parameters common to all satellites in all filters which includes the atmospheric density model 

correction states. The covariance of 
iX  is then partitioned as 
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We assume that all filters start with the same a priori information for the common states, 

which we designate as a mean estimate 0c  with covariance 
0

ccP . Common parameter estimates 

from individual estimation runs are combined by first computing the information matrix (the in-

verse of the covariance) and information vector as 
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Independent information is combined in information form through simple addition to produce the 

combined estimate and covariance. We note, however, that the solutions for the independent sat-

ellites are correlated through the use of common a priori information. The a priori information is 

therefore subtracted from each individual estimate and added back in once to remove this correla-

tion: 
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where 
0

cd and 
0

ccΛ  are the information vector and information matrix capturing the a priori in-

formation.
*
 Finally, the combined estimate and covariance are computed as: 

 [ ] 1−
Λ= ccccP , (12) 

                                                      

* One could alternatively not subtract the a priori information from one of the individual solutions. 
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The described method for combining estimates can be applied to either filtered or smoothed 

estimates. For this study, smoothed solutions are combined for reasons provided above. It is im-

portant to note that this method of combining solutions is only strictly valid for cases where the 

common parameters are time constants. If the common parameters are time varying, as they are 

presumed to be for this application, the individual filter and smoother estimates will be correlated 

through common process model errors. This topic will be revisited in the sequel. 

ANALYSIS 

To explore the observability of the two temperature parameters currently estimated in the 

HASDM process, this analysis first examines the case where each temperature parameter correc-

tion is represented as a scalar, and then the analysis is extended to cases where low degree and 

order spherical harmonic expansions represent the temperature corrections. All simulation test 

cases are performed with a simulated set of 75 satellites tracked by SSN sensors, with the orbital 

distribution of the satellites in the simulation test set given in Table 1 in a manner consistent with 

published HASDM information.
2
 

Table 1. Satellite orbit distribution. 

Altitude 

Range 

(km) 

190-

250 

250-

300 

300-

400 

400-

500 

500-

600 

600-

700 

700-

900 

Inclination (°)        

20-30 2 3 1     

30-40 5   1  1  

40-50 1  3 1 2 1  

50-60 1 1 1  1   

60-70   2 2   2 

70-80  1 4    1 

80-100  2 10 6 12 4 4 

Total 9 7 21 10 15 6 7 

 

Tx Scalar, Tc Scalar 

Scalar representations of the nighttime minimum exospheric temperature, Tc , and the inflec-

tion point temperature at 125 km, Tx , were used in the generation of simulated time histories of 

the temperature parameters, shown in Figure 3. Use of a scalar representation is equivalent to the 

0×0 spherical harmonic expansion where only its C0,0 coefficient is estimated. Simulated tracking 

data were produced for all 75 satellites whose trajectories were computed using the deviated tem-

perature profiles in the Jacchia 1970 atmospheric density model. The deviated temperature pro-

files are generated based an initial Gaussian random draws for each temperature correction coef-

ficient which are transitioned through time using stochastic sequence defined by Equation 2. The 

resulting deviated temperature history generates perturbed densities when processed through the 

Jacchia 1970 atmospheric density model during orbit propagation. The resulting orbit trajectories 
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are then used in the generation of simulated tracking data. The initial simulation was run using a 

half-life of 3 hours, based on the frequency of reported geo-magnetic data and the current 3-hour 

segmented time constants in HASDM, for both temperature parameters. Based on published time 

histories of estimated temperature corrections, the one-sigma uncertainties on the Tc and Tx cor-

rections are set to 50 K and 15 K respectively.
3
 Ballistic coefficient uncertainty was set to 3% for 

all satellites with a correlation half-life of 1 × 10
10
 minutes. Estimation was performed with the 

simulated tracking data using the sequential filter and the VLS with a maximum lag of 12 hours. 

Estimates of temperature correction from the VLS were generated on a 15-minute time grid.  

 

Figure 3. Simulated temperature correction profiles with 3-hour half-life. 

The estimated temperature corrections from the VLS are illustrated with simulated time histo-

ries in Figure 4. The smoothed solution is in phase with the simulation, indicating that lag in the 

filter estimates have been sufficiently removed. Errors in the smoothed solution are displayed in 

Figure 5 along with associated 95% (2-sigma) probability bounds. The smoothed solutions for 

both temperature parameters are seen to be consistent with their formal uncertainties. This is an 

indication that the process of combining estimates is not adversely affecting the final solution. 

The degree to which the 2-sigma bounds are reduced from their a priori values (100 K for Tc , 

30 K for Tx) is an indication of the observability of the parameter. 

The uncertainty bounds on the temperature coefficients drop initially, remain at a fairly steady 

level for the majority of the run, and rise again at the end. This behavior may be best explained in 

reverse time order. Starting at the end of the estimation interval, the smoothed solution contains 

the same information as the filter solution. The uncertainty at the end time of the estimation inter-

val therefore represents the steady state filter uncertainty. Estimates at earlier epochs in the 

smoother solution contain information from all historical measurements and from all future 

measurements that reside within the maximum lag of the VLS. The use of information from both 

sides of the smoothed solution point generates an improved solution relative to the filter solution. 
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Figure 4. Estimated and simulated Tc and Tx correction profiles. 

 

 

Figure 5. Errors in smoothed Tc and Tx correction estimates. 

The higher uncertainty at the beginning of the run is an artifact of filter initialization (prior to 

the filter reaching steady-state performance) and will not be present operationally when filter runs 

are started using the full state and state error covariance from the end of the prior filter run. The 

time interval required for the smoother solution to reach a steady-state level moving backwards 

represents the latency of the smoothed solution: the lag relative to real time with which a con-

verged smoothed solution is available. The VLS maximum lag was set to 12 hours. This is much 

longer than the time required to reach the smoother steady state uncertainty; thus the VLS maxi-
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mum lag is not the driving the smoother uncertainty profile. In practice, the maximum VLS lag 

might be shortened to be slightly longer than latency period. As shown in Figure 6, a VLS lag of 

2 hours appears adequate for this parameterization. To determine the effect of the chosen tem-

perature correction half-life values on the required VLS lag, additional simulations were run with 

half-lives of 6 hours and 12 hours, with both resulting in the same VLS lag of 2 hours. 

 

Figure 6. Selection of the maximum lag for the VLS. 

The correlation of the Tc and Tx corrections from the smoother solution is shown in Figure 7. 

The strong negative correlation will be revisited as higher degree and order representations of the 

temperature corrections are analyzed. The correlations were examined for additional simulations 

using temperature correction half-lives of 6 and 12 hours. Comparing the results of the 3 runs, the 

correlation is noted to become slightly stronger as the half-life of the temperature estimates is 

lengthened. 

 

Figure 7. Tc-Tx cross-correlation 
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Part of the rationale for estimating corrections to two temperature parameters in HASDM is 

that Tc more strongly influences density at higher altitudes while Tx provides stronger influence at 

low altitudes.
5
 The relative observability of both Tc and Tx can be examined by plotting their re-

spective formal uncertainties using the subsets of the 25 highest altitude satellites and the 25 low-

est altitude satellites. These results are shown in Figure 8 and Figure 9, which display one-sigma 

uncertainties instead of two-sigma uncertainty bounds as shown in Figure 5. The reduction in un-

certainty of Tc corrections is reduced by approximately 50% and 75% via estimation of the high-

est and lowest altitude satellite subsets respectively while analogous reduction in uncertainty of 

Tx corrections was approximately 14% and 75%. While both temperature parameters are highly 

observable based on the processing of low altitude satellites, Tx appears only marginally observ-

able from higher altitude satellites. 

 

Figure 8. Tc uncertainty using subsets of high and low altitude satellites. 

 

 

Figure 9. Tx uncertainty using subsets of high and low altitude satellites. 

          High Altitude             Low Altitude 

          High Altitude             Low Altitude 
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Tx Scalar, Tc 1×1 

Changing the parameterization of corrections to Tc to be a 1×1 spherical harmonic expansion, 

the total number of estimated temperature correction coefficients becomes five: four for Tc, and 

one for Tx. Storz et al. indicate that the original segmentation of the temperature coefficients in 

HASDM was constructed to solve for updates to the C0,0 terms every three hours while all other 

coefficients were updated every 12 hours.
5
 A more recent 2003 HASDM description states that 

all coefficients are updated every 3 hours, but autocorrelation constraints are placed on all coeffi-

cients using a 3 hour half-life for C0,0 terms and an 18 hour half-life for all higher degree and or-

der terms.
2
 

For this study, C0,0 terms are constrained using a 3-hour half-life while an 18-hour half-life is 

used for all other terms, out of consideration of the 2003 HASDM description. Lacking HASDM 

time histories for the additional Tc correction coefficients, one sigma uncertainties of 20 K are 

arbitrarily selected. Errors and error ratios for the smoothed estimates are shown in Figure 10 and 

Figure 11 respectively. Error ratios are defined as the error in the estimated parameter divided by 

its root variance. The horizontal lines at ±3 in the error-ratio plot represent the 99% confidence 

interval. Once again the errors are mainly consistent with their formal uncertainties, although the 

estimate combination process causes a few significant excursions. The apparent lag of the con-

verged smoothed solution from real time has not changed significantly from the scalar case. Cor-

relations between the estimated coefficients were examined and one significant correlation, Tc 

C0,0 – Tx, was identified (Figure 12). This finding is also consistent with the correlation identified 

in the scalar case above. 

 

Figure 10. Errors in smoothed Tc 1×1 and Tx coefficient correction estimates. 

 



 13 

 

Figure 11. Error ratios for smoothed Tc 1×1 and Tx coefficient correction estimates. 

 

 

Figure 12. Tc C0,0 – Tx cross correlation. 

Tx 1×1, Tc 2×2 

The parameterization used operationally in HASDM is examined, modeled as a 2×2 spherical 

harmonic representation of corrections to Tc and a 1×1 spherical harmonic representation of cor-

rections to Tx . The total number of estimated temperature correction coefficients is now thirteen: 

nine for Tc , and four for Tx . Excepting the C0,0 coefficient, the a priori one-sigma uncertainty of 

20 K for Tc coefficients is maintained. An a priori one sigma uncertainty value of 10 K is used 

for the Tx coefficients other than the C0,0 . Errors and error ratios for the smoothed temperature 

correction estimates are shown in Figure 13 and Figure 14 respectively. Again there are a few 

excursions where the errors are not consistent with the covariance, which is an artifact of the es-



 14 

timate combination process. While undesirable, these excursions are not expected to result in a 

significant degradation in the overall accuracy of the solution. An examination of the smoother 

convergence reveals that while the solution is mostly converged at the 2-hour lag, some of the 

temperature corrections continue to reduce in uncertainty until the lag reaches approximately 6 

hours. Further analysis is required to determine if there is a significant difference in orbit accu-

racy between the 2 and 6 hour lag solutions. Correlations between the estimated coefficients were 

examined and significant correlations were identified between all coefficients of like degree and 

order (Figure 16 through Figure 19). This result is consistent with the findings from the lower 

degree and order expansions analyzed above and results reported by Casali et al.
3
 

 

Figure 13. Errors in smoothed Tc 1×1 and Tx 2×2 coefficient correction estimates. 

 

 

Figure 14. Error ratios for smoothed Tc 1×1 and Tx 2×2 coefficient correction estimates. 
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Figure 15. Selection of the maximum lag for the VLS (Tc 1×1, Tx 2×2) 

 

 

Figure 16. Tc C0,0 – Tx C0,0 cross correlation. 
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Figure 17. Tc C1,0 – Tx C1,0 cross correlation. 

 

 

Figure 18. Tc C1,1 – Tx C11 cross correlation. 
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Figure 19. Tc S1,1 – Tx S1,1 cross correlation. 

CONCLUSION 

Sequential estimation has been shown to be viable for the estimation of corrections to a global 

atmospheric density model. Performance of the estimation algorithms with simulated data is as 

expected and appears to track temperature variations over short time periods. The process of 

combining estimates from three (3) smoothed solutions is seen to produce a small number of arti-

facts where solution errors are inconsistent with the covariance function, but in the opinion of the 

authors their magnitude is not enough to be of significant concern. The specific parameterizations 

of the correction model were chosen to be consistent with the operational capability of AFSPC 

because published results were available and this could facilitate future comparisons. However, 

the estimation architecture in ODTK is general in nature, supporting alternative parameteriza-

tions. 

The application of sequential estimation technology to the estimation of corrections to a global 

atmospheric density model has the desirable characteristics of: 

• producing a continuous time history of corrections without the need for solution seg-

mentation, 

• eliminating fit-span considerations, as estimation always starts with the final state and 

state error covariance from the prior run and processes only new observations, and 

• identifying the latency with which converged solutions are available for space-object 

catalog orbit determination. 

The logical next steps in evaluating the application of sequential estimators to correct global-

density models are to evaluate orbit accuracy improvement for resident space objects outside of 

the calibration set, evaluate the effect of additional satellites on solution latency and observabil-

ity, and test the capability using real data. 
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