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In 2006, an updated version of SGP4 was presented for general use. The propagation routine relies 
on Two-Line Element (TLE) set data provided by the U.S. Government for several decades. Many 
independent organizations have access to observations, or ephemerides developed with other 
programs. Because the TLE is a compact means to obtain modestly accurate and fast calculations, it is 
desirable to have an orbit determination package that is compatible with the aforementioned code. 
This paper presents the code, test cases, and discussion of computer code to produce TLE data from  
an externally derived ephemeris. Initial code is also developed for processing raw observations. 

I. INTRODUCTION AND HISTORY 
he Simplified General Perturbations (SGP) model series began development in the 1960s (Lane 1965), and 
became operational in the early 1970s (Lane and Cranford, 1969). A variety of publications presented the 
mathematical theory, and the paper by Vallado et al. (2006) tracks the history of these publications. 

Unfortunately, there has never been a release of any kind of differential correction code to implement the SGP4 
method in a systematic approach to create Two-line Element (TLE) data. With the increased number of observing 
sites, and the availability of low-cost high quality optical observations, it is desirable to have such codes. The 
primary uses would be to obtain a more accurate TLE from independent data, and to have the ability to examine 
covariance data to support mission operations (such as conjunction operations) . §   

A. Motivation 
Spacetrack Report Number 3 (Hoots et al 1980) noted the importance of using the specific equations and data 

input to ensure proper operation and we repeat it here. “The most important point to be noted is that not just any 
prediction model will suffice… The NORAD element sets must be used with one of the models described in this 
report in order to retain maximum prediction accuracy.” This compatibility applies for the SGP4 propagation code, 
as well as the orbit determination code. We noted several minor points in the original SGP4 paper in which the 
performance of SGP4 could be improved. To maximize the usefulness of these features one should ideally use TLE 
formed with differential correction using an identical model as well. Thus, this paper provides a way to accomplish 
this action.  

As with the original 2006 SGP4 code release, we have tried to make the code compatible with the existing TLE 
data released by NORAD. However, feedback from the community over the last few years has suggested improved 
methods of operation. The 2006 code has been updated and although most of the changes are minor, the full code, 
updated paper and test cases are available on the web at http://www.celestrak.com/publications/AIAA/2006-6753/. 
A new factor is that a switch is added to allow one to use the “standard” AFSPC mode of operation, or an improved 
mode that the user can experiment with.  

The expanded conjunction processing work (for example the innovative work of SOCRATES to generate TLE 
on TLE conjunction notifications for several years now) could benefit substantially from estimates of the accuracy 
of the TLE data. Kelso (2007) has shown the ability to generate improved TLE data using externally generated 
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ephemerides. If this could be coupled with estimates of the uncertainty, it would be a great increase in performance 
for the conjunction calculations, and the subsequent knowledge that decision makers have at their disposal. This 
paper presents a discussion of the covariance data that is generated through the orbit determination process.  

II. ORBIT DETERMINATION REVIEW 
The underlying mathematics behind Differential Correction (DC) (also called Orbit Determination, OD) are 

covered in detail in Vallado (2007:Ch 10). Figure 1 shows the basics. Although it is not obvious or often described 
as such, the DC process is basically a multi-dimensional Newton-Raphson (NR) root solving method of y = f(x) with 
a least-squares statistical treatment of the “known data” (y). 
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Figure 1. Orbit Determination. The overall process of orbit determination is summarized here. There are a few 
choices that can be made. Initial orbit Determination can be a very complex topic. We do not  dwell on this aspect 
much in this paper.   

 We use the following nomenclature. The code uses these names as well where practical.  
– X  

• State of orbital model, either XYZ Cartesian position and velocity vectors or Keplerian 
orbital elements, etc.  

– A 
• Partial derivative matrix (Jacobian) relating the calculated “observation” value to the 

initial model state value. Typically we have the following when an analytical approach is 

used to compute A.         
0 0

obs obs X
A H

X X X

∂ ∂ ∂
= = ⋅Φ = ⋅

∂ ∂ ∂
 

– W 
• Weighting matrix of observation accuracy, mathematically this is the diagonal matrix of  

1/σ2 but normally it’s stored as the vector of the diagonal terms for efficient computation 
– b 

• Residual vector (obs – calculated, sometimes as δy = Yobserved – Ycalculated) 
– (ATWA)-1 

• Covariance matrix 
If we expand the process, we can produce an algorithm of pseudo-code that details the process (Algorithm 1) 

which covers the general case of any orbital model. There are several decisions which must be made with respect to 
actually implementing the algorithm and here, the specific behavior of SGP4 may become a consideration. 
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We can identify a few aspects where the detail is important to the success and efficiency of the implementation, 
these are: 

• Generating the initial state X0 as accurately as practical is important, since the differential correction 
process converges rapidly for ‘small’ errors but can diverge spectacularly outside of this region (as for 
all NR techniques). 

• The choice of how X is represented is also important, since certain formulations lead to less problems 
with near-singular matrices to be solved. 

• The Jacobian matrix A can be generated by various techniques, we must consider the mathematical 
effort to implement a fast ‘analytic’ formulations versus the computation effort for the ‘brute force’ 
approach to estimate it by finite differencing methods. 

• Solving the least-squares problem can be done in several ways, some are easier to program, others are 
more robust if the solution is singular or nearly singular. 

• Testing for convergence and method of containing the NR’s tendency to jump too far may seem trivial, 
but can be very important to a robust and reliable system. 

• If we are doing this to form TLE from known good ephemeris sets, we must also consider the optimum 
time scale for fitting the data according to the end user’s requirements (e.g. whole day for un-modeled 
or partially modeled forces such as J2,2 or solar gravity, several days for accurate atmospheric drag with 
higher orbits, etc). 

 
The normal equation for linear systems is X = (ATWA)-1ATWb. However, because the orbit problem is highly 

non-linear, we use the non-linear form. δx = (ATWA)-1 ATWb. Note that the ATWA and ATWb matrices are 
accumulated, therefore avoiding large matrices for storage and inversion. The Single Value Decomposition (SVD) 
processing is shown as an alternative in red, along with other choices that can be made for the solution. 

 
 

Algorithm 1: SGP4 Differential Correction (obs, Xnom => Xo ) 
• FOR i = 1 to the number of observations (N) 

– Propagate the nominal state X0 to the time of the observation using SGP4 (result is Xi in TEME 
coordinate system) 

– Transform the TEME prediction Xi in to the correct coordinate system and type of available 
observation data obsi (usually topoocentric) 

– Find the b matrix as observed – nominal observations 
– Form the A matrix (select 1 of 2 approaches)   

• Finite (or central) differences  
• Analytical partials 

– H, Partials depending on observation type 
– Ф, Partials for state transition matrix.  

– Accumulate ∑ATWA and ∑ATWb 
• END FOR 
• Find P = (ATWA)-1 using Gauss-Jordan elimination (LU decomposition and back-substitution)  
• Solve δx = P ATWb 
• Check RMS for convergence 
• Update state X0 = X0 + δx 
• Repeat if not converged using updated state 

 

On completion the term P = (ATWA)-1 is the covariance matrix. 
 
If using SVD, replace the matrix inversion with the following 
• Use SVD to decompose the weighted Jacobian matrix [S · A] into U, V, and w, where (S = ATW) 
• Inspect wj, set any ‘very small’ wj terms to zero rather than any 1/wj term near-infinite 
• Solve δx = V · (diag[1/ wj]) · UT · S · b 

On completion the covariance matrix is simple to compute from V · (diag[1/ wj]) · UT 
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B.  Choice of State Elements 
We have a choice of elements to use in the state. A choice of position and velocity vectors is sometimes 

envisioned, however the parameters all change rapidly (over the course of a revolution), and this is undesirable for a 
differential correction process. Keplerian orbital elements (a, e, i, Ω, ω, M) can be used, but there can be 
singularities with some types of orbits. Notice the use of the semimajor axis instead of the mean motion. This can 
make a change with some implementations with respect to numerical precision. Equinoctial elements afford a little 
more stability in terms of singular orbits, but may still encounter problems. We have included options for Keplerian, 
Equinoctial elements, and state vectors in the code. We show alternate variable names, but prefer the ke, he, etc set as 
they have fewer ambiguities with other notations in astrodynamics.  

af = ke= e COS(Ω + ω) 
ag = he= e SIN(Ω + ω) 

a 
L = λe = M + ω + Ω 

χ = pe = TAN(i/2) SIN(Ω) 

ψ = qe = TAN(i/2) COS(Ω) 

 

(1) 

The inverse functions are needed for transformations and they are found as follows: (using TAN(i/2)) 
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(2) 

C.  Calculation of the Jacobian Matrix (A) 
There are several techniques to find the A-matrix, ranging from simple finite differencing to complex numerical 

integration. See Vallado (2007:Sec 10.7) for development of the various approaches for the options shown in Fig. 2. 
Elegant operational systems generally employ the numerical integration approach, however, with a simple analytical 
propagation theory (SGP4) it may make sense to simply use finite differencing. After all, the time (and money) 
spent developing the partial derivatives for each observational data type, state form, etc. to reduce the computational 
processing by perhaps a factor of 2, is often negated by simply allowing an extra iteration or so with a finite 
differencing approach. In addition, the partial derivatives for each force model are not needed as they are all 
included in each finite differencing calculation.  
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Figure 2. A Matrix Calculation Options. This table lists four options for employing least squares techniques. 

The complex method numerically integrates the equation for F. Note that we can also approximate the observation 
(H), partial derivative (F), and error state transition (Ф) matrices by finite differencing, as well as the A matrix.   

The general process of finite differencing relies on perturbing the nominal state, element by element, and then 
comparing to the nominal state results. In the case of SGP4, we simply perturb each element, initialize the newly 
perturbed TLE, propagate to the observation time, and then perform any coordinate system conversion and 
difference the perturbed and nominal results. Figure 3 shows the notional concept.  

Epoch
(to)

Nominal Orbit

Propagation

True Orbit Modified Orbit
(1 of 6 for each component

of the state vector)

Observation times
(ti)

rnompert

vnom

Earth     
rnom

rnom

vnom

vnompert

vnompert

rnompert

 
Figure 3. Finite Differencing. Forming the A matrix with finite differencing requires numerous propagations, but 
no analytical partial derivatives. The nominal state is moved to each time of the observations. Then, each 
component of the state is perturbed and the resulting state is propagated to the same observation time. This allows 
the nominal and perturbed values at each observation time to form a portion of the partial derivative matrix.   
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D.  Solving the matrix inversion 
There are several techniques to solve the least-squares problem of y = A.x and any good text book on numerical 

analysis will cover those in reasonable details, for example (Press et al. 1992). Here we have only covered the two 
common methods as the choice: 

• LU decomposition and back-substitution 
• SVD decomposition and solution. 
Traditionally the LU method was favored as it lends itself to efficient use in terms of computer memory and 

CPU load for the operations required. However, if the matrix (A) is singular or near-singular, the classical LU 
method (and others) can fail completely or result in very inaccurate answers. The common use of double precision in 
modern software helps push up the matrix solution accuracy in near-singular cases, but this is not dealing with the 
underlying problem. Typically what you get in near-singular cases is some solved parameters with impracticably 
huge values delicately canceling each other. Marshall (1999) investigated this and reached the same conclusions for 
the Navy operational system.  

The use of SVD has the major advantage that (theoretically at least) is cannot fail to produce a useful solution 
(one without ‘canceling infinities’). The disadvantage is the much greater CPU load and memory demands, but those 
are no longer significant because memory is now large, cheap, and the N3 CPU load is still less than the generation 
of the A matrix for most reasonable numbers of observations (say, N less than 1K – 10K points). 

The fact that SVD offers a stable solution should not be treated as an excuse for ignoring the underlying 
problem, that of certain solved-for parameters not being well defined by the available observations or by the orbital 
model itself (e.g. BSTAR drag coefficient with high altitude orbits). This type of difficulty is far more common than 
it initially appears, but can often be helped by a good choice of state representation X. 

III. COMPUTER CODE DEVELOPMENT 
The computer code developed in this paper is provided in c++. Although some structures and classes were used, 

the code was intentionally written without some of the shortcuts available in c++. Conversion to other languages 
should be aided by the structuring effort that has been performed on the code. Several items apply.  

• The overall structure is designed to follow the development and nomenclature of Vallado (2007, Sec 
10.4).  

• Available input data types are range, azimuth, and elevation observations, position and velocity vector 
ephemerides, and TLE data. The TLE data is for test and development only as if you have a TLE, you 
don’t need to create another one! This did prove to be a valuable tool in getting the orbit determination 
to work properly, and to do the initial setup on the options available in the code.   

• The program can use TLE variables (Kepler), or equinoctial elements as the nominal elements. Having 
this variety of state types made it easier to evaluate the performance of each.  

• A matrix inversion technique (LU back substitution) is implemented along with a Single Value 
Decomposition method (Press et al. 2002). Both have positive features. 

The structure of the computer code is shown in Fig. 4 below.  
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Figure 4. SGP4DC Structural Organization. The computer program structure is shown above. There are 
two major loops – one for the iterations in the least squares, and one for the observations. The FiniteDiff 
routine performs the finite differencing by individually perturbing each element of the state.  

Several miscellaneous features are implemented in the code to make the operation more robust, and to allow 
the user additional options in solving particular problems.  

1. There is an option (opsmode, ‘a’ or ‘i’) to select the AFSPC or improved mode of operation for 
SGP4. 

2. You can select the type of observations to process (typeodrun, ‘r’, ‘x’,  or ‘t’). These represent 
range, azimuth, elevation (or right ascension-declination), position and velocity vectors in an ECI, ECEF, 
or TEME coordinate system, and the TLE values themselves.  

• Input a TLE, create the initial state vector and take that as the initial guess for the TLE, develop an 
ephemeris from the TLE (unperturbed), and try to recover the original TLE. This test is useful because 
we know the answer. Note that the semimajor axis does not need to be updated (Kozai to Brouwer) 
because it is already in the Kozai frame. The initial state is simply treated as a single point Kepler 
translation and is therefore significantly farther off the actual value than a result taken by simply 
perturbing the individual orbital elements.  

• Take an ephemeris (in TEME, ECEF, or ECI), assemble an initial TLE from the first state including the 
correction for the Kozai-Brouwer semimajor axis, and then try to determine a TLE that best fits that 
ephemeris.  

• Process observations. This requires determining an initial orbit (not addressed in this paper as it’s an 
Initial orbit determination technique – see Vallado (2007, Ch 7). The initial orbit state vector is 
converted to a TLE (including the Kozai-Brouwer conversion for semimajor axis) , and the TLE is 
formed via the orbit determination process. Although the code is provided, it is not fully functional at 
this time and will be updated either with another paper if the changes are substantial, or via the web if it 
is more minor changes.  
3. The state type determines what type of orbital elements will be used for the whole process. 

(statetype, ‘e’, or ‘t’ ). Either TLE variables (essentially Kepler variables) or equinoctial variables may be 
used.  

4. The percentage change for the finite differencing appears to be an important variable in the 
solution accuracy for the routine (percentchg = 0.001). The rationale behind using a percentage was to 
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limit any uneven effect in perturbing each of the orbital elements. However, when a variable was found to 
have too small a difference (note this also used the difference amount described next), just that element was 
changed, and not the whole formation of the A-matrix for that time.  

5. The finite differencing of each state element for the A-matrix may result in too small a difference 
on particular variables, in which case you could get a divide by zero. This can be handled by including a 
loop in the perturbation of the nominal state to test for these small quantities and simply increase the 
percentage adjustment for the offending element (the last item discussed above). A limit of 5 iterations is 
used initially, but this is completely arbitrary (deltaamtchg = 0.0000001).  

6. The rms tolerance to stop the iterations was another important feature that was worked on 
(rmsepsilon = 0.002). Of course, you need to have a maximum number of iterations as you don’t want the 
process to get stuck in an infinite loop! You also can evaluate the observation matrix (b) and note that it 
represents the differences of the nominal and observed orbits. With the proper scaling (weighting matrix), 
you can form a “sigma” value for each iteration. This gives an indication of how the process is going, and 
can be tested. The test used is 

sigmanew sigmaold

sigmaold

−
 

(3) 

Note that  this worked a majority of the time. However, many situations arose where the tolerance 
(rmsepsilon) was too large, and the sigma values were large or small enough that their relative change did 
not trigger the exit from the routine. In these cases, the iterations generally reached the maximum number 
of iterations, and the difference to the initial vector was zero. Although this is a nice computational result, 
it’s not terribly efficient, and so a third check was instituted in which the sigma values were compared 
directly to the rmsspeilon value. This caused the process to exit when sufficient accuracy had been reached, 
but the other tests did not trigger any stop.  

while ((fabs((sigmanew-sigmaold)/sigmaold) >= epsilon) && (loops < 25) && (sigmanew >= epsilon)); 

7. For testing purposes, command line arguments were programmed to permit rapid execution with 
scripts to examine the sensitivity of various inputs.  

8. The correction to each parameter for each iteration was limited to prevent elements from changing 
to fast. Two approaches were explored. The first used a default limit set to 40%. Thus, if any element was 
calculated to change by more than 40%, only 90% of that change was selected for implementation. Note 
that 90% was also set through various tests. A further refinement was needed for cases in which Bstar was 
being solved for as it could change quite rapidly. For this case, if the parameter change was greater than 
1.0, only 40% of the change was used. The code is as follows where dx is the correction on each iteration. 
An alternative test was tried, but not found to be globally successful. This code is shown commented out 
below.  

             if ( fabs(dx[i][0]) > fabs(0.4 * xnom[i]) )  
               { 
                 if (fabs(dx[i][0]/xnom[i]) > 1.0) 
                   { 
                     dx[i][0] = dx[i][0] * 0.4;   // usually needed for bstar solutions, 0.01 for obs? 
//                     dx[i][0] = 0.10 * xnom[i] * sgn(dx[i][0]); 
                   } 
                   else 
                   { 
                     dx[i][0] = dx[i][0] * 0.9;   
//                     dx[i][0] = 0.9 * xnom[i] * sgn(dx[i][0]); 
                   } 
               } 

The second approach, used as our default, tried a more objective method, just looking at the magnitude of 
the calculated change. We found that most of the changes were relatively small fractions of the nominal 
values (as expected). However, in cases where the orbit was diverging, or about to diverge, the ratios 
quickly become large. The levels below are somewhat arbitrary, and not fully researched to determine the 
effect on the overall solution. However, as we note later, these two approaches solve all but a handful of the 
satellites in a full catalog, including the tough geosynchronous low inclination orbits. We suspect a 
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combination of the two, or a better binning of the ratio differences may produce an optimal single approach 
for solution. The code for this approach is as follows with dx as the correction for each iteration, and xnom 
as the nominal state vector. 

if (fabs(dx[i][0]/xnom[i]) > 10.0) 
                 if ( (loops > -1) && (fabs(dx[i][0]/xnom[i]) > 1000.0) )   // 100 
                     dx[i][0] = 0.10 * xnom[i] * sgn(dx[i][0]);   // 0.30 try leaving the same 
                   else 
                 if ( (loops > 0) && (fabs(dx[i][0]/xnom[i]) > 200.0) )   // 100 
                   { 
                     dx[i][0] = 0.30 * xnom[i] * sgn(dx[i][0]);   // 0.30 try leaving the same 
                   else 
                     if ( (loops > 0) && (fabs(dx[i][0]/xnom[i]) > 100.0) )  // 20 
                         dx[i][0] = 0.70 * xnom[i] * sgn(dx[i][0]);   // 0.70 - 0.80 about same 
                     else 
                     if ( (loops > 0) && (fabs(dx[i][0]/xnom[i]) > 10.0) )      // 5 
                         dx[i][0] = 0.90 * xnom[i] * sgn(dx[i][0]);   // 0.90 try leaving the same 
                   } 

9. The fit span is very important for all batch least squares applications. We initially used a baseline 
with 72 points at 20 minute intervals for all satellites. This worked on some satellites, but was clearly not as 
efficient as possible given GEO and LEO orbits have different fit span requirements. Thus, we changed to 
using 2 orbital periods, again with 72 points per revolution. It performed much better. However, do not 
confuse this fit span with an “operational” fit span.  Typically satellites use a 3-4 day fit span in operations. 
We can afford a reduced time span because we will have continuous observations throughout the orbit 
(using the satellite ephemeris).   

10. The ability to solve for BStar, or not, is important. Because AFSPC uses BStar even for GEO 
orbits, it’s important to have the capability to solve for this parameter, as it acts to soak up force model 
deficiencies in the propagation routine. In some cases, solving for BStar is important and will provide 
better results. However, in other cases it can cause the iterations to diverge. Thus, the option is included in 
the SGP4DC program.  

11. The full catalog cases showed that the semimajor axis, eccentricity, and mean motion could all 
cause problems (even with the iteration limitations discussed earlier), although there is probably a tie 
between the two. This, we implemented a sim0lke approach that limited each orbital element if they were 
outside certain bounds. The three checks in the computer code are as follows.  

                  if (satrec.a < 1.0)  // can't be less than the radius of the earth 
                    { 
                      satrec.a = satrecorig.a * 1.01 ;   // er   1.05, .9 
                      xnom[2] = satrec.a;  // remember to change both!!! 
                    } 
 
                  if (satrec.no < 1.0e-5) 
                    { 
                      satrec.no = satrecorig.no * 0.9 ; 
                      satrec.a = pow( 1.0 / (satrec.no * satrec.no * 13.446839 * 13.446839) , 1.0 / 3.0 );  // er 
                      xnom[2] = satrec.a;  // remember to change both!!! 
                    } 
 
                  if (satrec.ecco > 1.0) 
                    { 
                      satrec.ecco = satrecorig.ecco * 0.9; 
                      // be careful of order here... 
                      // could iterate, but since we're just changing values, it's not needed 
                      xnom[0] = ( satrec.ecco * cos(satrec.argpo + satrec.nodeo) ) * scalef[1][0];    // ke, af 
                      xnom[1] = ( satrec.ecco * sin(satrec.argpo + satrec.nodeo) ) * scalef[1][0];    // he, ag 
                    } 
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IV. SOLUTION and SENSITIVITY SETUP 
We include several stressing test cases (twoline.txt). The TLE’s in this file were taken from the original SGP4 

verification tests, from some difficult orbits found in random testing, and from the full catalog testing we describe 
later in the paper. The idea was to establish a set of test cases that would exercise each of the relevant features of the 
code. The file also served as a quick way to evaluate what the entire catalog performance would be without having 
to process over 15000 objects.  

An initial set of tests looked at perturbing the elements of the TLE. The elements were changed as follows. Note 
that the mean anomaly was not changed as the node and argument of perigee contained sufficient differences to the 
satellite position.  

mean motion * 0.999 
eccentricity * 0.999 
inclination – 0.1 deg 
right ascension of the node * 1.0002 
argument of perigee * 1.0001  

These differences resulted in the initial vectors being off from about 5 to 20 km for the initial guess. Note that 
some of the cases had substantially higher initial differences. However, this gave optimistic results, and actually 
presented too narrow a radius of curvature for solution. Thus, we adopted an approach where the initial TLE state 
was used, in a Keplerian sense, as the initial guess. This resulted in initial differences of 15 to 40 km (and more). We 
felt this was a more realistic situation.  

The test matrix in Table 1 was used to develop the initial parameters for the full catalog testing.  

Table 1. Initial Test Options. The following parameters were changed to identify shifts in the performance 
of the orbit determination technique. Each column provides some of the values explored. The finite 
difference options are indicated by “fd”. The number of iterations did not substantially change the results. 
The initial state perturbation had the largest effect on the overall solution as expected. The highlighted cases 
were the remaining parameters for which tailoring was indicated. These parameters then became inputs into 
the program for further testing.    

Elem 
type 

LS 
iter 

LS limit 
correction each 
iter 

fd % chg for 
each elem 

Amount to 
test  small 
pert in fd calc 

RMS to 
stop 

Solve for 
Bstar 

fd iter if 
loop for 
small pert 

equin 25 0.40 and *0.9 * 0.001 0.0000001 0.02 6 5 
tle 35 0.10 and *0.9 0.01 0.000001 0.002 7 10 
  0.15 and *0.9 0.0001 0.00001 0.0002   
  Levels       

The highlighted columns  were the biggest contributors to the success of the orbit determination. Of course, the 
rmsepsilon tolerance requires more iterations as it decreases, but the other highlighted parameters also had an effect 
on the number of iterations.  

Remember that all batch least squares techniques suffer from determining an accurate fit span. Thus, we tried 
arbitrarily setting the fit span to 2 orbital periods, with a total of 72 observation points per revolution. This is about 2 
minutes for LEO satellites, and about 20 minutes for GEO satellites. The importance of choosing the proper amount 
of data became apparent in the ephemeris file testing, but for the initial TLE evaluations, we simply used a constant 
2 orbital period fit span, with 72 points per period.  

V. FULL CATALOG TESTING 
To test the overall performance of the method, we tested against the full satellite catalog. The sample catalog 

contained 16235 objects. Table 4 shows the results of various options for the processing of each satellite.  Note that 
the really 'good' fit you normally get to a TLE-generated ephemeris is somewhat false, but nevertheless still an 
indication of the DC process working. From most orbits we get very good TLE-TLE fit (less than  a meter). 
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Table 2. Test Results. The complete catalog was tested against the parameters for change. The results were 
binned into several regions. These all use the “a” operation sgp4 mode which emulates the believed 
implementation of AFSPC. The highlighted columns represent “baseline” parameters chosen for generally good 
performance over the whole catalog. The remaining columns simply highlight the parameter that was changed 
from those baseline configurations.   

 .0001 
.0000001 
.0002 / 7 
state, 
72 
points 
0.4, 0.9 

.001 

.0000001 

.0002 / 7 
state, 
72 
points 
svd, new 

.01 

.0000001 

.0002 / 7 
state, 
72 
points 
0.4, 0.9 

.001 

.000001 

.0002 / 
7 state, 
72 
points 
0.4, 0.9 

.001 

.00001 

.0002 / 7 
state, 
72 
points 
0.4, 0.9 

.001 

.0001 

.0002 / 7 
state, 
72 
points 
0.4, 0.9 

.001 

.0000001 

.002 / 7 
state, 
72 
points 
0.4, 0.9 

.001 

.0000001 

.02 / 7 
state, 
72 
points 
0.4, 0.9 

< 1m 16183 16198 16067 16163 16161 16145 16040 15053 
1m < < 10 m  15 4 9 13 17 22 130 1013 

10m < < 100 m  8 2 10 7 6 9 4 94 
100 m <  1 km  6 6 9 7 7 7 5 9 
1 km < 10 km 9 20 9 5 7 6 7 16 

> 10 km  14 5 131 40 37 46 49 50 
Avg iterations 9.49 4.01 4.46 9.39 18.98 23.63 4.51 4.05 

 
 .001 

.0000001 

.0002 / 7 
state, 
72 
points 
0.4, 0.9 

.001 

.0000001 

.0002 / 7 
state, 
50 
points 
0.4, 0.9 

.001 

.0000001 

.0002 / 7 
state, 
100 
points 
0.4, 0.9 

.001 

.0000001 

.0002 / 6 
state, 
72 
points 
svd, new 

 .001 
.0000001 
.0002 / 6 
state, 
72 pts, 
tle state 
0.8, 0.1 

 .001 
.0000001 
.0002 / 6 
state, 
72 points,  
0.8 and 0.1 

< 1m  16166  16181  16166  16061 
1m < < 10 m   7  21  7  95 

10m < < 100 m   5  2  5  28 
100 m <  1 km   5  7  5  36 
1 km < 10 km  3  14  3  6 

> 10 km   49  10  49  9 
Avg iterations  4.98  4.31  4.98  4.99 

The essential problem is to determine the radius of convergence for the various cases, although this can be quite 
difficult. These test permitted several tests to be included in the code to check for conditions such as zero mean 
motion, and negative eccentricity. We also experimented with changing the statesize to 6 (if it was 7) in cases where 
the iterations diverged on 3 successive iterations. This helped a few problem cases. 

The performance of the 6-state case is shown in Fig. 5 below. Notice that the iterations and the difference 
between the original and converged TLE are shown vs the apogee and perigee values. While there were many cases 
in which the circular orbits required additional iterations, most resulted in a very small final difference. We tried to 
be computationally efficient, but it wasn’t our overall goal – we were primarily interested in the accuracy of the 
solution, and thus, a few additional iterations was not considered as detrimental.  
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Figure 5. SGP4DC Full Catalog Test. The iterations and the final difference from the original TLE is 
plotted against the apogee and perigee altitudes in km. Note that the difference plot the bottom line at 
0.0000001 is artificial as those values were set (from 0.0) to permit plotting on the log scale. Below about 10 
m, there are many cases between the extremes in iteration, while at larger differences, the discreet cases are 
easier to identify.  

A histogram reveal the nature of the solutions, as shown in Fig. 6.  You can see that the majority of the cases 
were handled with the default configuration.  



 
American Institute of Aeronautics and Astronautics 

 

      

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bins 1e-7 to 1e8 of Difference

N
um

be
r 

of
 S

ol
ut

io
ns

 
14218

 
Figure 6. SGP4DC Full Catalog Test distribution. A simple bar chart is shown for the full catalog test and 
bins of the final difference. The 14218 number represents the number of cases that were solved to under 
0.0001 mm.    

There was a group of 24 problem cases examined for the full catalog – those with differences above 10 m.  Most 
of these are Geosynchronous satellites with low inclinations, shown in Table 3.  

Table 3. Difficult Cases Test Results. These satellites exhibited additional uncertainty in solution when 
processing the full catalog test. Note that most are geosynchronous, low inclination cases, and most required 
all 25 (maximum) iterations.     

 iter   norad #   init diff (m)  final diff    a (km)         e     i (deg)   ap alt  pr alt 
(km) 

12 28707 19322 151.786626 42164.790000 0.0002420 0.0805 35798 35777 
25 26451 16289 210.260239 42164.290000 0.0002690 0.0137 35798 35776 
20 23864 15422 455.774603 42163.640000 0.0001700 0.0178 35794 35779 
25 27298 15261 750.837509 42163.610000 0.0003960 0.0243 35803 35770 
6  22028 18674 779.249604 42501.060000 0.0004730 6.4477 36144 36104 
14 23598 16468 976.903621 42164.140000 0.0003060 0.0410 35800 35774 
14 31102 22250 1134.548046 42163.880000 0.0002150 0.0105 35796 35778 
25 26608 21962 1236.703197 42163.900000 0.0004450 0.0205 35805 35768 
25 28911 18333 1515.689957 42163.980000 0.0003500 0.0172 35802 35772 
25 28911 18333 1515.689957 42163.980000 0.0003500 0.0172 35802 35772 
25 23864 16956 2871.535703 42163.600000 0.0001670 0.0168 35793 35779 
2  28915 7428 3223.733382 25507.480000 0.0008170 64.8649 19151 19109 
8  27378 15630 3570.763967 42163.420000 0.0001910 0.0368 35794 35778 
25 28937 19982 3956.492409 42163.830000 0.0003010 0.0288 35799 35774 
25 24732 22838 5131.566915 42164.460000 0.0002060 0.0019 35796 35779 
25 27811 20743 5397.006447 42163.060000 0.0003140 0.0226 35799 35773 
25 26451 17747 5944.783917 42164.200000 0.0002700 0.0142 35798 35776 
25 28154 18420 6124.595781 42163.580000 0.0002730 0.0293 35798 35775 
25 25237 18731 6167.139594 42163.570000 0.0006310 0.0192 35813 35760 
5  28893 15108 6309.126644 7071.060000 0.0016310 98.1064 705 682 
25 27298 20138 6473.030673 42163.620000 0.0003960 0.0239 35803 35770 
25 25913 16139 7348.898831 42163.240000 0.0001380 0.0397 35792 35780 
8  32479 14184 7604.600156 41149.800000 0.0190430 0.0000 35556 33989 
25 28393 15255 8091.215056 42163.540000 0.0002430 0.0180 35797 35776 
25 29398 18562 8582.413235 42164.190000 0.0004390 0.0340 35805 35768 
5  25049 17590 9444.154045 42163.170000 0.0001610 0.0058 35793 35779 
25 27378 16362 14672.238391 42163.350000 0.0001950 0.0349 35794 35778 
25 27820 22150 17041.820184 42164.070000 0.0003080 0.0074 35800 35774 
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25 26590 22855 20121.270679 42163.530000 0.0003070 0.0190 35799 35773 
25 29045 16362 31956.465732 42163.790000 0.0002060 0.0019 35795 35778 
7  25068 782815 845118631.410830 40200.160000 0.8286580 7.5609 67136 510 
 

The interesting thing to note with this approach is that using a previous approach at limiting the corrections, we 
obtained a different set of problem cases. This indicates that careful selection of the limiting features of the 
corrections, and of the semimajor axis, eccentricity, and mean motion is the key to solving most problems. Note 
between Tables 3 and 4 that there are very few duplicate satellites. In fact, the only ones that appear in both are low 
inclination geosynchronous satellites (23598, 23864, 24732, 25068, 25237, 26451, 26590, 26608, 27298, 27378, 
27811, 28393, 28911, 29398) and one LEO satellite (28893).  

Table 4. Difficult Cases Test Results. These satellites exhibited additional uncertainty in solution when 
processing the full catalog test and when using the second approach for limiting the least squares corrections. 
Note that most are geosynchronous, low inclination cases, and most required all 25 (maximum) iterations.     

   25    29398        18562      14.096002   42164.19     0.000439   0.0340   35805   35768 
   25    23598        16549      15.806848   42164.19     0.000303   0.0387   35800   35774 
   25    28094        17422      32.263324   42164.35     0.000293   0.0347   35799   35775 
   25    23864        15422      34.781485   42163.64     0.000170   0.0178   35794   35779 
   25    32018        20168     104.571616   42163.73     0.000016   0.0331   35787   35786 
   25    26608        21962     227.816075   42163.90     0.000445   0.0205   35805   35768 
   25    26451        17747     259.881170   42164.20     0.000270   0.0142   35798   35776 
   25    24732        22838     834.589047   42164.46     0.000206   0.0019   35796   35779 
   25    27811        20743    1310.247496   42163.06     0.000314   0.0226   35799   35773 
   25    23175        17677    2316.348449   42163.45     0.000176   0.0026   35794   35779 
   25    26590        22855    4581.524603   42163.53     0.000307   0.0190   35799   35773 
   25    26554        22731    4718.374626   42164.25     0.000069   0.0364   35790   35784 
   25    28393        15255    6006.229271   42163.54     0.000243   0.0180   35797   35776 
   25    27298        15261   10246.052988   42163.61     0.000396   0.0243   35803   35770 
   25    28911        18333   13850.143187   42163.98     0.000350   0.0172   35802   35772 
   25    32487        20534   19310.755321   41967.19     0.000171   0.0209   35597   35583 
   25    24880        19388   19735.845732   42163.93     0.000211   0.0208   35796   35778 
   25    25237        18731   47392.755888   42163.57     0.000631   0.0192   35813   35760 
   25    23949        21601   50307.705194   42163.36     0.000043   0.0606   35788   35784 
    5    25068       782815 1523081.031231   40200.16     0.828658   7.5609   67136     510 
    3    23866       101380 25408756.47274   22827.78     0.707519   4.5589   32602     299 
    3    28893        15108 3935246.472610    7071.06     0.001631  98.1064     705     682 
    3    30582      2336029 54747675.90313   66714.35     0.869927   4.7533  118375    2300 
 

It is interesting that the value of the deltaamtchg would make an effect as it should be essentially controlled by 
the machine accuracy. However, it does have an effect on the solution. Values of 0.000 01 and 0.000 001 seemed to 
work for some of the problem cases.   

VI. VERIFICATION TEST CASES 
The full catalog testing provided a starting point for assembling a set of tests cases that would be challenging. 

We also used the original SGP4 test cases as a point of continuity. These cases allowed the main features of 
SGP4DC to be tested. The file (twoline.txt) is on the Internet at the web site listed at the end of the paper, and in the 
Appendix.  

The particularly tough cases helped us decide which parameters to expose in the program for user selection. 
Some experimentation was also done with the Geosynchronous/low inclination cases and modest success resulted 
from zeroing the lunar-solar terms in the initialization. This is a potential feature which could be incorporated under 
the “improved” SGP4 mode of operation. It also appears that the initial uncertainty (essentially the weighting 
matrix)  had a substantial input to the convergence.  

From these results, we chose an initial configuration for the full catalog testing. The items for selection are: 
(baseline values are in bold) 

Orbital element type – equinoctial or TLE (Keplerian) 
Finite difference % chg for each element, (0.001) 
Amount to test small percentage in finite differencing calculations, (0.000 000 1) 
RMS to stop, (0.0002) 
Solve for BStar, (6 or 7) 

VII. EPHEMERIS FILE TESTING 
We used several ephemerides for testing here as we envisioned this will perhaps be the most popular use for the 

program. The ephemerides were generally accurate to a few cm and thus could be considered truth for our purposes. 
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the Geosynchronous ephemerides were accurate to about a hundred meters or so. The resulting TLE’s often 
performed significantly better than the existing TLE data – something also documented by Kelso (2007). Here we 
examine three ephemerides for different orbital regimes; an ICESat ephemeris, a GPS ephemeris, and several GEO 
ephemerides. Each configuration used the standard setup (0.001, 0.000 000 1, 0.0002, and 6 (or 7) statesize). We 
tried some shorter fit spans, but the prediction results were better if we extended the fit span slightly. These fits are 
not optimal, but seemed to give modest results. Options are included in the code to thin the data if it’s very dense, 
and to fit a certain number of points, while reading many more points. Finally, take note of the vertical (difference) 
axis as we sometimes use log sales to better depict the results.   

For ICESat, the original ephemeris was in Earth Fixed coordinates, and thus, all comparisons were done in ITRF.  
Notice that the original fit (the initial vector is epoched to the beginning of the interval) was about 500-600 m yet 
after about 2 days, the error had only grown to about 4-5 km. This is fairly good for a LEO satellite.  
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Figure 7. ICESat Solution Performance. The differences of the converged TLE to the original ephemeris 
are shown. The difference is the RSS of the three positional components. The fit span was about 2500 
minutes (every other observation), and a 7-state solution.   

Next, we examined a GPS satellite and we extended the prediction interval to show the performance. The 
original ephemeris was in Earth Fixed coordinates. With about a three-day fit of data every 15 minutes, the initial fit 
was good to about 150 m. For the prediction, there is reasonable performance up to about 30 days past the original 
fit span.  



 
American Institute of Aeronautics and Astronautics 

 

10

100

1000

10000

100000

0 7200 14400 21600 28800 36000 43200

Minutes from Epoch

D
iff

er
en

ce
 (m

)

Predicted 

Fit 

 
Figure 8. GPS Solution Performance. The differences of the converged TLE to the original ephemeris are 
shown. The difference is the RSS of the three positional components. The fit span was about 4500 minutes. 
Notice that the final error is only about 10 km after nearly 30 days.   

We had several ephemerides for Geosynchronous satellites from the Intelsat constellation. These satellites have 
maneuvers which are shown in each of the figures. The time step for each ephemeris is about 15 minutes. Each 
ephemeris was in Earth Centered Inertial (IAU-76/FK5 J2000) coordinates. There were numerous known maneuvers 
in the data, and cases were taken to process before, during, and after these maneuvers. In Fig. 9, we look at a 
solution with maneuvers during the fit span. The overall accuracy doesn’t appear to be impacted, nor was the 
prediction. The magnitude of the maneuver is clearly a factor here though. 
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Figure 9. Intelsat 704 Solution Performance. The differences of the converged TLE to the original 
ephemeris are shown. The difference is the RSS of the three positional components. The fit span was about 
4500 minutes.  

Figure 10 shows a case where we processed before any maneuvers, and as expected, the initial fit was much 
better. The appearance of maneuvers didn’t affect the prediction accuracy tremendously, again depending on the 
magnitude of the maneuvers.   
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Figure 10. Intelsat 805 Solution Performance. The differences of the converged TLE to the original 
ephemeris are shown. The difference is the RSS of the three positional components. The fit span was about 
4500 minutes.  

We tried a case in Fig. 11 where the fit ended just as a maneuver occurred. The step function disconnect is obvious. 
and this mode of operation is not recommended.  
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Figure 11. Intelsat 906 Solution Performance. The differences of the converged TLE to the original 
ephemeris are shown. The difference is the RSS of the three positional components. The fit span was about 
4500 minutes.  

Figure 12 shows a case where the satellite had a few small maneuvers during the fit, and then a period of no 
maneuvers, followed by a series of several small maneuvers. Notice that the overall accuracy is reasonably good 
throughout the period, because of the small magnitude of the maneuvers.  
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Figure 12. Intelsat 1002 Solution Performance. The differences of the converged TLE to the original 
ephemeris are shown. The difference is the RSS of the three positional components. The fit span was about 
4500 minutes.  

Finally, we examined 2 geosynchronous satellites that proved challenging to operate with various fit spans.  
These satellite ephemerides were simply generated with a numerical propagator. Figure 13 shows various fit spans 
for the first satellite. These ephemerides were in ECI (IAU-76/FK5 J2000) coordinates.  
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Figure 13. Sat1 Solution Performance. The differences of the converged TLE to the original ephemeris are 
shown. The difference is the RSS of the three positional components. Notice how the complete fit span 
yielded (not surprisingly) the best results.    

Note that at short fit spans (2500 and 3000 min), the performance varied significantly in both the short and long 
term. Likewise for the longer fit spans, the results were not consistent. The second satellite produced similar, but 
slightly different results. In Fig 14, the fit span is about 3000 minutes. 
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Figure 14. Sat2 Solution Performance. The differences of the converged TLE to the original ephemeris are 
shown. The difference is the RSS of the three positional components.    
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While these series of tests are not exhaustive, we feel they represent a good cross-section of potentially useful 
orbits for individuals to process and create TLE data from.  

VIII. OBSERVATIONAL DATA TESTING 
We had originally planned to examine the of observational data from Vallado and Carter (1997), and Phillips 

Laboratory (1996), but time ran short and the results were not adequate for proper analysis. The code contains most 
of the necessary routines, but the convergence from the initial state vectors was not sufficient for adequate 
convergence. Thus, the most likely errors are in the initial orbit determination routine, and not the orbit 
determination section. If the fix is found quickly, we will simply put an updated version on the web, and if there 
were deeper problems, we will present the results in a follow-on paper. The ability to form a TLE from an ephemeris 
was deemed as an important goal for this version of the paper.  

IX. COVARIANCE CONSIDERATIONS 
At the outset of this project, a goal was to examine the covariance matrix that resulted from solution in the 

SGP4DC process. Operationally, AFSPC does not produce and transmit a covariance with the TLE data. However, 
this could be of great benefit to operational programs like the SOCRATES and SOCRATES-GEO efforts (Kelso and 
Alfano 2005), currently in operation at the Center for Space Standards and Innovation.  

There are several details to consider when looking at the covariance. First, if the orbital elements are equinoctial, 
the resulting covariance matrix will also be in equinoctial elements. From Vallado (2003), you could convert to 
Cartesian elements and then look at the three components of position uncertainty. See Vallado (20030 for the 
equations.  

A simpler method is to convert the equinoctial orbital elements to classical orbital elements using the following 
matrix, multiplied by the covariance matrix in equinoctial elements. 

(ATWA)-1 

 

 

(4) 

Once in Classical elements, the 3 semimajor axis could be examined to determine the uncertainty.  
 
a = part e * atwai(1,2) = part w * atwai(1,5) + part M * atwai(1,6) 
 
However, best approach is simply to examine the semimajor axis directly from the equinoctial elements. We can 

examine just the semimajor axis component. In our code, this variable was the middle component, so in meters,  
 

sqrt( atwai[2][2] ) * 6378135.0  
 
Results: 
 iter   norad      inti diff (m)  final diff    a           e          i     ap alt   pr alt   cov (m) 
    3        5         7521       0.000130    8632.35     0.185967  34.2682    3860     649     494.08 
    4     4632        36424       0.000001   37357.64     0.145051  11.4628   36399   25561    2385.90 
    7     6251        12793       0.000001    6776.12     0.003004  58.0579     418     378     313.73 
    4     8195        96231       0.001236   26566.17     0.687715  64.1586   38459    1918    2689.37 
    5     9880        21346       0.001015   26537.74     0.706905  64.5968   38920    1400    2960.19 
    3     9998         2674       0.000001   38219.79     0.027097   9.4958   32878   30807    2863.52 
    4    14128        10838       0.000001   42561.42     0.001156  11.4384   36233   36135    3287.91 
    3    16925        25485       0.000379   14671.55     0.559633  62.0906   16505      83     790.18 
    7    20413      4486546       0.000978  107327.52     0.786445  12.3514  185361   16543   32837.68 
    4    21897        27002       0.000105   26497.61     0.742169  62.1749   39786     454    2642.32 
    3    22312        13377       0.000001    6664.24     0.030872  62.1486     492      80     311.29 
    5    22674        75173       0.000540   26908.30     0.754171  63.5035   40825     237    2793.16 
    8    23177       160476       0.000468   24534.29     0.725849   7.0496   35965     348    3622.16 
   24    23333     29287790 47599701.12617  241621.01     0.972830  28.7490  470309     187    2642.59 
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    4    23599        19706       0.000886   15547.92     0.578202   6.9327   18160     180    1208.44 
    3    24208        21039       0.000001   42022.52     0.002664   3.8536   35757   35533    3228.38 
   25    25954        16671      88.511236   42163.99     0.000177   0.0004   35794   35779    3239.51 
   20    26900        17207       0.113500   42163.27     0.000332   0.0164   35800   35772    3237.75 
    4    26975        38749       0.000001   26119.39     0.560288  68.4714   34376    5107    1600.94 
   19    28057        15097       0.091523    7151.47     0.000088  98.4283     774     773     326.46 
    3    28129         7776       0.000001   26559.87     0.004851  54.7298   20311   20053    1631.68 
    6    28350        13698       0.000001    6522.99     0.002487  64.9977     161     129     307.05 
    3    28623        22510       0.000001   17362.10     0.624905  28.5200   21834     134     446.29 
   25    28626         8916  349880.974300   42164.30     0.000034   0.0019   35788   35786    3239.64 
    3    28872        15442       0.000001    6527.85     0.030395  96.4736     348     -49     301.67 
    5    29141        15108       0.000001    6670.93     0.001585  82.4288     304     282     311.53 
    3    29238        11738       0.000001    6725.98     0.020258  51.5595     484     212     312.89 
    3    29238        11738       0.000001  251909.30     0.020258   0.8999  250640  240433     312.89 
    3       58         7357       0.000001    7464.91     0.016499  28.3286    1210     964     330.05 
   15     1317        19632       0.081589   42137.89     0.000110  14.3842   35765   35756    3236.25 
    4      836       581041       0.000001  109606.10     0.014510  37.9564  104821  101640   13525.23 
    4     6893      4572471       0.000001  223726.87     0.162482  50.5548  253706  181001   33348.86 
    5     9931       124135       0.000749   26954.03     0.660965  26.4846   38393    2760    2948.22 
    5    11416        15084       0.000001    7195.42     0.001136  98.7380     826     809     327.59 
    6    11801        30244       0.003589   24345.61     0.731804  46.7916   35785     151    3326.17 
    3    11871         8911       0.000001   26521.90     0.634478  67.5731   36972    3316     769.67 
    3    12032        53843       0.000001   26531.94     0.708622  65.2329   38956    1353     722.71 
    4    13446        32464       0.000208   26060.29     0.749888  62.1717   39225     140    1758.96 
   18    19483         3812       0.089475   42163.59     0.000223   7.9373   35796   35777    3239.52 
   20    19484        22905       0.079662   42162.97     0.000118   0.0718   35791   35781    3238.49 
   23    19508        11620       0.080769   42163.60     0.000242   0.0090   35797   35776    3238.46 
    5    19541        75735       0.000644   26532.61     0.730406  64.5823   39535     775    2544.05 
   12    19548        19300       0.065515   42165.58     0.000183   3.1655   35796   35781    3238.97 
   22    19596        17288       0.099627   42166.94     0.000065   5.5272   35792   35787    3239.25 
    3    19621        19577       0.000001   42467.44     0.000494   0.7802   36111   36069    3275.15 
    3    19683        10810       0.000001   42178.18     0.000559   5.4585   35825   35777    3238.80 
    3    19765        13292       0.000001   42504.85     0.001802   5.2955   36204   36051    3275.80 
    4    20338        33224       0.000001   26557.01     0.705085  64.7304   38905    1454    2578.53 
    3    20547        15329       0.000001    6939.45     0.012149  94.1277     646     477     314.78 
    3    22490         6631       0.000001    7134.31     0.004515  24.9657     789     724     324.36 
    3    23246        24427       0.000164   15628.61     0.566127   7.1648   18099     403     830.07 
    3    23581        25637       0.000001   42164.28     0.000574   1.1236   35811   35763    3237.27 
    2    23632     11278535 13792190.92840  103161.02     0.933270  63.8240  193064     506    5768.91 
   10    23866        98312       0.000973   22827.92     0.707615   4.5577   32604     297    3570.28 
   25    23949        21601       0.283275   42163.36     0.000043   0.0606   35788   35784    3238.92 
    4    24640         7929       0.000001   26550.63     0.733828  63.0016   39657     689    3718.24 
   18    24729        15092       0.085834    7789.69     0.000180  82.6021    1413    1410     348.40 
    3    24792        15241       0.000001    7149.69     0.000913  86.3890     778     765     326.39 
    5    24808       190253       0.001454   25312.34     0.697452  19.5851   36589    1280    4532.14 
    5    25068       782815 42092341.65759   40200.16     0.828658   7.5609   67136     510  351293.40 
   25    25237        18731    4175.166056   42163.57     0.000631   0.0192   35813   35760    3236.80 
    5    25989       349890       0.001211   66934.43     0.599671  54.6654  100697   20418   12753.65 
    3    26536        15066       0.000001    7230.28     0.001126  98.9441     860     844     329.20 
   11    27453        15074       0.051861    7192.00     0.001257  98.7410     823     805     328.25 
   24    28358        10855       0.093541   42163.27     0.000111   0.0130   35791   35781    3239.06 
    6    28893        15108       0.000001    7071.06     0.001627  98.1063     705     682     324.62 
   15    30582      2336029       0.034674   66714.35     0.869927   4.7533  118375    2300   16820.99 
    4    88888        13423       0.000001    6636.32     0.008673  72.8435     316     201     308.97 
    4    88888        13423       0.000001  248440.28     0.008673   1.2714  244222  239913     308.97 
    8    88888       724561       0.000001  248440.28     0.008673   1.2714  244222  239913   46622.60 

 
There are several things to consider. Most importantly, we do not know the accuracy of the original TLE. Some 

TLE data propagates quite well into the future, while the next TLE for the same satellite can depart dramatically 
after only a day or less. Because there is no measure of accuracy with each TLE, it’s impossible to determine if the 
fit is contributing to the error, or if the original TLE was faulty. This could be the case where some satellites 
converged, but had a high covariance.  

In the cases where the solution diverged, examining the covariance is of no use and can be ignored. The 
remaining cases look “reasonable” although significant additional testing is needed to determine if these numbers 
are indeed representative of the actual accuracies, and could actually be useful for other applications.  

For the cases in which we used ephemerides, we know the precision of the in put observations, so the covariance 
numbers could become more meaningful. The results were: 

 
IceSat     0.615 m 
GPS     3.35 m 
Intelsat 704   6.85 m  
Intelsat 805   6.85 m 
Intelsat 906   6.85 m 
Intelsat 1002   6.85 m 
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Unfortunately, these seem to be more a measure of the frequency of the data than the accuracy. This area 
probably needs additional analysis and consideration, including results from processing observational data.  

X. AVAILABILITY 
The current code is available in C++ as this appears to be the most common language for operations today. There 

are several debugging statements and paths that were left to facilitate experimentation with various solutions. All the 
necessary files are located on the Internet for convenience. They are available from the Center for Space website:**  

http://www.centerforspace.com/downloads/ 
 

XI. CONCLUSIONS 
This paper has presented an orbit determination approach using the Revisiting Spacetrack Report Number 3 

formulation of analytical propagation (Vallado et al. 2006). The current code supports two types of observations – 
ephemeris observations, and a test mode using TLE data, and also with most of the code inserted to process range, 
azimuth and elevation angles. We hope this form of documentation will motivate analyses to solve some of the 
challenging test cases identified in this document so a more complete and robust technique may be provided at a 
future time. Any questions, comments, additions, etc. may be addressed to David Vallado at 
dvallado@centerforspace.com.  
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** Users of Analytical Graphics Inc. Satellite Toolkit (STK) will find the SGP4 source code integrated within the latest release of 
the program. The orbit determination code is not yet implemented in  STK as there is another version of the conversion operation 
currently in use. 
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Appendix A – Observational Data Format 
 
Data formats for observations tend to be quite complicated. Most were developed many years ago when 

computer transmission was difficult – both in terms of speed and volume. Today, those limitations are gone, but the 
formats remain. I have designed a simple system to transmit observations of different types. There are two key 
elements to realize. First, the format is space delimited to permit easy parsing in any computer language. Too often, 
the data is packed into a no-space format that must be painstakingly extracted before use. Second, the data type 
controls how many variables follow. Thus, radar, optical, and other observations may all coexist in a single file. 
Because of the spacing feature, the number of decimal places and the options for various observations formats are 
essentially unlimited.  

 
 
# Tracking obs format  
# Ver 1.0 dav 30 Jul 08 
#  
# this is intended to be a simple obs format 
# the data is all space delimited so variable sizing is possible 
# comment lines are preceded by the # symbol in the first col 
# units are km and km/s and deg 
# obs are assumed to be earth fixed topocentric 
# coordinate system is ITRF, ECI (Specify GCRF or J2000), or TEME 
#  
# data types control how much information follows: 
# 0 range only 
# 1 azimuth and elevation 
# 2 range, azimuth and elevation 
# 3 topocentric right ascension and declination 
# 4 ephemeris values (xyz, xyz dot) 
# 5 
# 6 
# 7 
# 8 
# 9 
# 10 
#  
#Typ   Sat #  Sen # Yr   M D  hr min sec          value       value      value 
 2    7734     932 1995  1 29 02 38 37.000      2047.50200   60.4991    16.1932 
 2    7734     932 1995  1 29 02 38 49.000      1984.67700   62.1435    17.2761 
 2    7734     932 1995  1 29 02 39 02.000      1918.48900   64.0566    18.5515 
 2    7734     932 1995  1 29 02 39 14.000      1859.32000   65.8882    19.7261 
 2    7734     932 1995  1 29 02 39 26.000      1802.18600   67.9320    20.9351 
 2    7734     932 1995  1 29 02 39 38.000      1747.29000   70.1187    22.1319 
 2    7734     932 1995  1 29 02 39 50.000      1694.89100   72.5159    23.3891 
 2    7734     932 1995  1 29 02 40 03.000      1641.20100   75.3066    24.7484 
 2    7734     932 1995  1 29 02 40 15.000      1594.77000   78.1000    25.9799 
 2    7734     932 1995  1 29 02 40 27.000      1551.64000   81.1197    27.1896 
 2    7734     932 1995  1 29 02 40 39.000      1512.08500   84.3708    28.3560 
 2    7734     932 1995  1 29 02 40 51.000      1476.41500   87.8618    29.4884 
 2    7734     932 1995  1 29 02 41 03.000      1444.91500   91.5955    30.5167 
 2    7734     932 1995  1 29 02 41 15.000      1417.88000   95.5524    31.4474 
 2    7734     932 1995  1 29 02 41 27.000      1395.56300   99.7329    32.2425 
 2    7734     932 1995  1 29 02 41 39.000      1378.20200  104.0882    32.8791 
 2    7734     932 1995  1 29 02 41 51.000      1366.01000  108.6635    33.3788 
 2    7734     932 1995  1 29 02 42 03.000      1359.10000  113.2254    33.5998 
 2    7734     932 1995  1 29 02 42 15.000      1357.57000  117.8856    33.6487 
 2    7734     932 1995  1 29 02 42 27.000      1361.44200  122.5305    33.4924 
 2    7734     932 1995  1 29 02 42 39.000      1370.66200  127.0982    33.1160 
 2    7734     932 1995  1 29 02 42 51.000      1385.13000  131.5544    32.5864 
 2    7734     932 1995  1 29 02 43 03.000      1404.68400  135.8363    31.8581 
 2    7734     932 1995  1 29 02 43 15.000      1429.10700  139.9144    30.9931 
 2    7734     932 1995  1 29 02 43 27.000      1458.16000  143.7770    30.0041 
 2    7734     932 1995  1 29 02 43 39.000      1491.56100  147.3908    28.9206 
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Appendix B – Program interface Issues 
 
In the 2006 paper, we discussed several program interface issues. Most of these are discussed in the paper, but a 

few require additional discussion for the orbit determination process.  

A. Coordinate System 
The True Equator Mean Equinox (TEME) coordinate system is assumed for all SGP4 operations††. If 

observations are used, they are implicitly in an Earth-Fixed (International Terrestrial Reference Frame, ITRF) frame, 
and thus require standard reduction techniques to move to TEME for used in the formation of the TLE data. 
Likewise, external ephemerides are generally in ITRF or IAU-76/FK5 and require similar reduction. I transform all 
vectors to the ITRF, and then to TEME through polar motion and Greenwich Mean Sidereal Time. TEME is found 
by observing that vGAST82 may be separated into its components. Thus, 
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We recommend converting TEME to a truly standard coordinate frame before interfacing with other external 
programs. The preferred approach is to rotate to PEF using Greenwich Mean Sidereal Time (GMST), and then rotate 
to other standard coordinate frames. Conversions are well documented from this point. To implement, you simply 
apply a sidereal rotation about the Z-axis by GMST (using UT1 as we discuss later). Because polar motion has been 
historically neglected for General Perturbation (GP) applications, we assume that the pseudo Earth-fixed frame is 
the closest conventional frame.‡‡ The coordinate system is important when processing observations, and external 
ephemerides as the data must first be converted to the TEME coordinate system.  
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Figure 1. TEME Coordinate System. This coordinate system is between TOD and PEF and differs from PEF by 
the mean Greenwich Sidereal Time.   

B. Mean Motion and Mean Motion Rate 
We do not include estimates for mean motion rate and acceleration as they are not needed by the SGP4 routine. 

These values were included in the original SGP4 program to support users still using the SGP program. The terms 
essentially modeled the drag effect on the satellite. The BStar term accomplishes this in SGP4, so the additional 
                                                           
†† We note that AFSPC has never published a formal definition of TEME, although we assume the definition here is consistent 
with their approach. Further, the AFSPC has likely changed its definition over the years, but again, this is uncertain due to a lack 
of official publication.  
‡‡ We assume that CMOC orbit determination approximates the reference frames of radar and optical differently, and that 
numerical and analytical orbit determination methods use different techniques due to the differences in TEME, ECI, and the 
uncertain use of polar motion in coordinate systems.  
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burden of calculating parameters that would not be used is omitted. The TLE format is shown below. The program 
outputs this format directly for ease of use with existing applications. Some of the fields are not calculated, and are 
therefore left blank. the classification field is set to “I” to indicate the improved formulation.  

C
ar

d 
#

C
la

ss

Ep
h 

C
hk

 S
um

S S . S . S E

1 1 6 6 0 9 U 8 6 0 1 7 A 9 3 3 5 2 . 5 3 5 0 2 9 3 4 . 0 0 0 0 7 8 8 9 0 0 0 0 0 - 0 1 0 5 2 9 - 3 0  3 4 2

C
hk

 

2 1 6 6 0 9 5 1 . 6 1 9 0  1 3 . 3 3 4 0 0 0 0 5 7 7 0 1 0 2 . 5 6 8 0 2 5 7 . 5 9 5 0 1 5 . 5 9 1 1 4 0 7 0 4 4 7 8 6 9

Epoch 
Rev

Year Lch# Piece

Inclination (deg)
Right Ascension of 

the Node (deg) Eccentricity
Arg of Perigee 

(deg)
Mean Anomaly 

(deg) Mean Motion (rev/day)

Mean motion derivative 
(rev/day  /2)

Mean motion 
second derivative 

(rev/day2  /6) Bstar (/ER)
Elem 
num

Satellite 
Number

International 
Designator Yr

Epoch
Day of Year (plus fraction)

  .
 

Figure 2. Two-line Element Set Format. An example TLE is shown, with descriptions and units of each field. 
Note that the eccentricity, mean motion second derivative, and Bstar have implied decimal points before the first 
numerical value. The mean motion derivative is already divided by 2, and the second derivative is already divided 
by 6. Shaded cells do not contain data. The signs may be blank, “+” or “–”.  The classification field is sometimes 
included after the satellite number, and for the case of generated orbits via this program, it is set to “I” to signify 
the improved nature of the elements.   

The TLE use ‘mean motion’ in terms of Kozai’s theory (1959), but internally the SGP4 model is based on 
Brouwer’s work (1959). Normally the TLE data are converted at the initialization of SGP4 to match, but it leads to a 
total of 3 possible interpretations of mean motion and semimajor axis that can be confusing.  

• Simple single body orbit and the Earth’s GM constant. 

• Brower mean elements in SGP4. 

• Kozai mean formulation for TLE. 
For the simplest case we have the conversion from semi-major axis a to mean motion n from: 

3n
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=                 3
2a
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=  
 

(6) 

where  m GM is the Earth’s gravitational constant. But note that SGP4 was developed using a WGS72 value 
(398600.8 km3s-2), while it is more common today to use an EGM-96 value of 398600.4415 km3s-2. Whatever 
constant is used, you must always be consistent with all definitions so that conversion forward and backwards leads 
to the same value for maximum accuracy! 

If you are converting from a state vector and/or from an ephemeris generated form another model, you first 
need to convert the semimajor axis to a suitable mean motion for SGP4. The iterated single point conversion of 
osculating to mean elements will do this, but it also helps if you can convert using the inverse of the TLE to Brower 
mean equations. 

The TLE conversion for SGP4 is given in (Hoots and Roehrich, 1980:10) with the following steps: 

2
3

1
0

XKE
a

n
=
⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

 

2
2 2

1
2 Ek J a=     

( )

( )

2
0

2 3
2 2
0

3cos 13
2 1

i
K k

e

−
=

−

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜⎝ ⎠

 

1 2
1

K
a

δ =  

 

 

 

 

 

 

(7) 



 
American Institute of Aeronautics and Astronautics 

 

⎟
⎠
⎞⎜

⎝
⎛ −−−= 3

1
2

1110 81
134

3
11 δδδaa  

2
0

0 a
K=δ  

0

0
0 1 δ−

=′′ a
a                    

0

0
0 1 δ+

=′′ n
n  

where XKE is the gravity constant of 7.43669161331734132e-2 Earth radii3 min-2 used by SGP4 and the semi-major 
axis is in Earth radii, based on the conversion factor from WGS72 of XKMPER = 6378.135 km. Again, what 
matters for accuracy is to use the same assumptions as the SGP4 code uses. The two corrections are made and can 
be iterated, but usually are not. The constant K is based on the initial (TLE) values of inclination i0, eccentricity e0, 
and  the J2 gravity and Earth radius term k2 and need not be updated each time in an iterated solution. Basically we 
have a function defined in Eq-3 representing: 

( )00 nfa =′′  (8) 

However, sometimes we want to invert this to allow us to compute a TLE value of the mean motion from a 
given Brower mean semi-major axis 0a ′′ . This is best implemented by Newton-Raphson root solving, first by 
defining the function to zero as: 

( ) ( ) 0000 =−′′= nfang  (9) 

We can start with a good initial guess for the mean motion from our value of semi-major axis (converted to units of 
Earth radii using XKMPER): 
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(10
) 

Normally it only requires 2-4 iterations of the NR process to converge to double precision accuracy. If the last 
correction to n0 is less than around 10-12 relative value, the loop can be terminated as the remaining error is typically 
at the machine precision. 
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Appendix C – Test Case Listing 
 
We combined several sources of test data for this file (twoline.txt) which is intended to model many of the 

routine and difficult cases for orbit determination.   
 
#   ------------------ Verification test cases ---------------------- 
#                       # TEME example 
1 00005U 58002B   00179.78495062  .00000023  00000-0  28098-4 0  4753 
2 00005  34.2682 348.7242 1859667 331.7664  19.3264 10.82419157413667 
#                       ## fig show lyddane fix error with gsfc ver 
1 04632U 70093B   04031.91070959 -.00000084  00000-0  10000-3 0  9955 
2 04632  11.4628 273.1101 1450506 207.6000 143.9350  1.20231981 44145 
#   DELTA 1 DEB         # near earth normal drag equation 
#                       # perigee = 377.26km, so moderate drag case 
1 06251U 62025E   06176.82412014  .00008885  00000-0  12808-3 0  3985 
2 06251  58.0579  54.0425 0030035 139.1568 221.1854 15.56387291  6774 
#   MOLNIYA 2-14        # 12h resonant ecc in 0.65 to 0.7 range 
1 08195U 75081A   06176.33215444  .00000099  00000-0  11873-3 0   813 
2 08195  64.1586 279.0717 6877146 264.7651  20.2257  2.00491383225656 
#   MOLNIYA 1-36        ## fig 12h resonant ecc in 0.7 to 0.715 range 
1 09880U 77021A   06176.56157475  .00000421  00000-0  10000-3 0  9814 
2 09880  64.5968 349.3786 7069051 270.0229  16.3320  2.00813614112380 
#   SMS 1 AKM           # show the integrator problem with gsfc ver 
1 09998U 74033F   05148.79417928 -.00000112  00000-0  00000+0 0  4480 
2 09998   9.4958 313.1750 0270971 327.5225  30.8097  1.16186785 45878 
#   EUTELSAT 1-F1 (ECS1)## fig lyddane choice in GSFC at 2080 min 
1 14128U 83058A   06176.02844893 -.00000158  00000-0  10000-3 0  9627 
2 14128  11.4384  35.2134 0011562  26.4582 333.5652  0.98870114 46093 
#   SL-6 R/B(2)         # Deep space, perigee = 82.48 (<98) for 
#                       # s4 > 20 mod 
1 16925U 86065D   06151.67415771  .02550794 -30915-6  18784-3 0  4486 
2 16925  62.0906 295.0239 5596327 245.1593  47.9690  4.88511875148616 
#   SL-12 R/B           # Shows Lyddane choice at 1860 and 4700 min 
1 20413U 83020D   05363.79166667  .00000000  00000-0  00000+0 0  7041 
2 20413  12.3514 187.4253 7864447 196.3027 356.5478  0.24690082  7978 
#   MOLNIYA 1-83        # 12h resonant, ecc > 0.715 (negative BSTAR) 
1 21897U 92011A   06176.02341244 -.00001273  00000-0 -13525-3 0  3044 
2 21897  62.1749 198.0096 7421690 253.0462  20.1561  2.01269994104880 
#   SL-6 R/B(2)         # last tle given, decayed 2006-04-04, day 94 
1 22312U 93002D   06094.46235912  .99999999  81888-5  49949-3 0  3953 
2 22312  62.1486  77.4698 0308723 267.9229  88.7392 15.95744531 98783   
#   SL-6 R/B(2)         # 12h resonant ecc in the > 0.715 range 
1 22674U 93035D   06176.55909107  .00002121  00000-0  29868-3 0  6569 
2 22674  63.5035 354.4452 7541712 253.3264  18.7754  1.96679808 93877  
#   ARIANE 44L+ R/B     # Lyddane bug at <= 70 min for atan2(), 
#                       # no quadrant fix 
1 23177U 94040C   06175.45752052  .00000386  00000-0  76590-3 0    95 
2 23177   7.0496 179.8238 7258491 296.0482   8.3061  2.25906668 97438  
#   WIND                # STR#3 Kepler failes past about 200 min 
1 23333U 94071A   94305.49999999 -.00172956  26967-3  10000-3 0    15 
2 23333  28.7490   2.3720 9728298  30.4360   1.3500  0.07309491    70   
#   ARIANE 42P+3 R/B    ## fig Lyddane bug at > 280.5 min for AcTan() 
1 23599U 95029B   06171.76535463  .00085586  12891-6  12956-2 0  2905 
2 23599   6.9327   0.2849 5782022 274.4436  25.2425  4.47796565123555  
#   ITALSAT 2           # 24h resonant GEO, inclination > 3 deg 
1 24208U 96044A   06177.04061740 -.00000094  00000-0  10000-3 0  1600 
2 24208   3.8536  80.0121 0026640 311.0977  48.3000  1.00778054 36119  
#   AMC-4               ## fig low incl, show incl shift with 
#                       ## gsfc version from 240 to 1440 min 
1 25954U 99060A   04039.68057285 -.00000108  00000-0  00000-0 0  6847 
2 25954   0.0004 243.8136 0001765  15.5294  22.7134  1.00271289 15615  
#   INTELSAT 902        # negative incl at 9313 min then 
#                       # 270 deg Lyddane bug at 37606 min 
1 26900U 01039A   06106.74503247  .00000045  00000-0  10000-3 0  8290 
2 26900   0.0164 266.5378 0003319  86.1794 182.2590  1.00273847 16981  
#   COSMOS 1024 DEB     # 12h resonant ecc in 0.5 to 0.65 range 
1 26975U 78066F   06174.85818871  .00000620  00000-0  10000-3 0  6809 
2 26975  68.4714 236.1303 5602877 123.7484 302.5767  2.05657553 67521  
#   CBERS 2                     # Near Earth, ecc = 8.84E-5 (< 1.0e-4) 
#                       # drop certain normal drag terms 
1 28057U 03049A   06177.78615833  .00000060  00000-0  35940-4 0  1836 
2 28057  98.4283 247.6961 0000884  88.1964 271.9322 14.35478080140550 
#   NAVSTAR 53 (USA 175)# 12h non-resonant GPS (ecc < 0.5 ecc) 
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1 28129U 03058A   06175.57071136 -.00000104  00000-0  10000-3 0   459 
2 28129  54.7298 324.8098 0048506 266.2640  93.1663  2.00562768 18443  
#   COSMOS 2405         # Near Earth, perigee = 127.20 (< 156) s4 mod 
1 28350U 04020A   06167.21788666  .16154492  76267-5  18678-3 0  8894 
2 28350  64.9977 345.6130 0024870 260.7578  99.9590 16.47856722116490  
#   H-2 R/B             # Deep space, perigee = 135.75 (<156) s4 mod 
1 28623U 05006B   06177.81079184  .00637644  69054-6  96390-3 0  6000 
2 28623  28.5200 114.9834 6249053 170.2550 212.8965  3.79477162 12753 
#   XM-3                # 24h resonant geo, incl < 3 deg goes 
#                       # negative around 1130 min 
1 28626U 05008A   06176.46683397 -.00000205  00000-0  10000-3 0  2190 
2 28626   0.0019 286.9433 0000335  13.7918  55.6504  1.00270176  4891 
#   MINOTAUR R/B        # Sub-orbital case - Decayed 2005-11-29 
#                       #(perigee = -51km), lost in 50 minutes 
1 28872U 05037B   05333.02012661  .25992681  00000-0  24476-3 0  1534 
2 28872  96.4736 157.9986 0303955 244.0492 110.6523 16.46015938 10708 
#   SL-14 DEB           # Last stage of decay - lost in under 420 min 
1 29141U 85108AA  06170.26783845  .99999999  00000-0  13519-0 0   718 
2 29141  82.4288 273.4882 0015848 277.2124  83.9133 15.93343074  6828  
#   SL-12 DEB           # Near Earth, perigee = 212.24 < 220 
#                       # simplified drag eq 
1 29238U 06022G   06177.28732010  .00766286  10823-4  13334-2 0   101 
2 29238  51.5595 213.7903 0202579  95.2503 267.9010 15.73823839  1061  
#COURIER 1B 
1 00058U 60013A   97142.85906518  .00000093  00000-0 +10762-4 0  274 
2 00058 028.3286 356.4726 0164991 158.6392 202.1128 13.4602145880282 
#INTELSAT 1-F1 
1 01317U 65028A   96319.00000000 -.00000073  00000-0 +10000-3 0 0497 
2 01317  14.3842 342.1674 0001104 344.6118 333.1881  1.0036445301882 
#OPS 3662 (VELA 3) 
1 00836U 64040  A 68333.71805548  .00000000  00000-0 +00000-0 0 00218 
2 00836  37.9564 182.1088 0145101 215.8663 266.6045  0.23924182003816 
#EXPLORER 50 (IMP-8) 
1 06893U 73078A   04097.00000000 -.00000307  00000-0 +00000-0 0 0009 
2 06893  50.5548  69.6045 1624818 111.1032 181.3477  0.0820374100863 
#ESA-GEOS 1 
1 09931U 77029A   01309.17453186 -.00000329  00000-0 +10000-3 0 05967 
2 09931  26.4846 264.1300 6609654  82.2734 342.9061  1.96179522175451 
#NOAA-06 (originally had convergence problem on single state vector) 
1 11416U          79318.07850216  .00002502           11328-2 0   681 
2 11416  98.7380 345.8233 0011358 235.3731 124.6417 14.22344451 19915 
#Original report SGP4 test 
1 11801U          80230.29629788  .01431103  00000-0  14311-1      13 
2 11801  46.7916 230.4354 7318036  47.4722  10.4117  2.28537848    13 
#Cosmos 1191 
1 11871U 80057A   01309.36911127 -.00000499  00000-0 +10000-3 0 08380 
2 11871  67.5731   1.8936 6344778 181.9632 173.2224  2.00993562062886 
#Cosmos 1217 
1 12032U 80085A   01309.42683181  .00000182  00000-0  10000-3 0  3499 
2 12032  65.2329  86.7607 7086222 172.0967 212.4632  2.00879501101699 
#Molniya 3-19Rk 
1 13446U 82083E   01283.10818257  .00098407  45745-7  54864-3 0  6240 
2 13446  62.1717  83.8458 7498877 273.9677 320.2568  2.06357523137203 
#GSTAR 3 
1 19483U 88081A   97137.45030508 -.00000097  00000-0 +10000-3 0 0521 
2 19483   7.9373  57.7037 0002226 205.5811  28.9554  1.0027272402809 
#SBS 5 
1 19484U 88081B   97142.34600701  .00000026  00000-0 +10000-3 0 0582 
2 19484   0.0718  90.9764 0001184 309.3037 201.3786  1.0027491902338 
#CS 3B 
1 19508U 88086A   97136.58827615 -.00000172  00000-0 +10000-3 0 0150 
2 19508   0.0090 342.0093 0002420 132.0143 125.8497  1.0027267703182 
#MOLNIYA 3-33 
1 19541U 88090A   97140.93749050  .00001389  00000-0 +10000-3 0 0348 
2 19541  64.5823  50.3507 7304063 252.7222  21.5082  2.0087196206334 
#TDRS 3 
1 19548U 88091B   97141.69944100 -.00000180  00000-0 +10000-3 0 0288 
2 19548   3.1655  70.0997 0001830  39.5613 106.2873  1.0026561301892 
#RADUGA 22 
1 19596U 88095A   97141.90851079  .00000073  00000-0 +00000-0 0 0006 
2 19596   5.5272  57.1219 0000648 263.9197 257.3937  1.0026075801522 
#TDF 1 
1 19621U 88098A   97140.87069484 -.00000215  00000-0 +10000-3 0 0047 
2 19621   0.7802  81.7901 0004939 302.6242 335.6246  0.9919847602843 
#EKRAN 19  
1 19683U 88108A   97125.35657144 -.00000028  00000-0 +00000-0 0 0848 
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2 19683   5.4585  59.1499 0005594 156.1624 203.7351  1.0022068203075 
#GORIZONT 17 
1 19765U 89004A   97131.62338924 -.00000257  00000-0 +00000-0 0 0013 
2 19765   5.2955  57.7160 0018016 248.1114 111.5186  0.9906756003028 
#MOLNIYA 3-36  
1 20338U 89094A   97142.09744901  .00000391  00000-0 +00000-0 0 0025 
2 20338  64.7304 159.0283 7050852 257.7144 021.7192  2.0059514805480 
#USA 55  
1 20547U 90028B   97143.01993828 -.00000107  00000-0 -57012-5 0 0595 
2 20547  94.1277 126.6788 0121488 214.5866 144.7378 15.0176434139040 
#SCD 1  
1 22490U 93009B   97142.96910273  .00000385  00000-0 +62296-4 0 0573 
2 22490  24.9657 339.7066 0045151 174.3619 185.7429 14.4065988222567 
#Ariane Debris 
1 23246U 91015G   01311.70347086  .00004957  00000-0  43218-2 0  8190 
2 23246   7.1648 263.6949 5661268 241.8299  50.5793  4.44333001129208 
#GOES 9 
1 23581U 95025A   01311.43599209 -.00000094  00000-0  00000+0 0  8214 
2 23581   1.1236  93.7945 0005741 214.4722 151.5103  1.00270260 23672 
#PROGNOZ M2 
1 23632U 95039A   95215.05103721  .00000252  00000-0  10000-4 0    11 
2 23632  63.8240 259.6684 9332704 314.5662   1.9243  0.26200872    02 
#ARIANE 44L+3 R/B  
1 23866U 96030C   08064.47394878 +.00001642  00000-0 +10591-2 0 0481 
2 23866   4.5577 359.7906 7076151 309.1284   7.0534  2.5170366410325 
#TURKSAT 1C 
1 23949U 96040B   08064.69560088  .00000144  00000-0  10000-3 0  785 
2 23949   0.0606 303.8447 0000431 150.1243   1.7326  1.00273524 4269 
#MOLNIYA 3-48 
1 24640U 96060A   97142.99892724  .00000137  00000-0 -34143-2 0 0172 
2 24640  63.0016 126.1251 7338280 288.3170   9.5717  2.0066749200422 
#GONETS D1 5 
1 24729U 97006E   97143.07478940  .00000011  00000-0 +00000-0 0 0046 
2 24729  82.6021 165.6659 0001797 176.5724 183.5388 12.6272439301232 
#IRIDIUM 8 
1 24792U 97020A   97143.07862317 -.02618709  00000-0 -98679-0 0 0034 
2 24792  86.3890 141.4411 0009126  89.7444 270.6053 14.3601161200256 
#THOR 2A 
1 24808U 97025A   97142.38550799 -.00000113  00000-0 +00000-0 0 0007 
2 24808  19.5851  31.8603 6974523 359.4112   0.2569  2.1557125200003 
#EQUATOR S  
1 25068U 97075B   08063.44758622  .00000013  00000-0  17097-2 0  831 
2 25068   7.5609 312.0304 8286575 329.2092   2.0830  1.07707867 4044 
#TL BIRD 4 (HOT BIRD 4 
1 25237U 98013A   08065.07893157 -.00000060  00000-0  10000-3 0  778 
2 25237   0.0192 266.3179 0006306  97.2228 180.8628  1.00272785 3700 
#XMM 
1 25989U 99066A   07119.20833333  .00000327  00000-0 +00000-0 0 03385 
2 25989  54.6654 111.3750 5996711 125.4529 353.4507  0.50131974002323 
#NOAA-16 
1 26536U 00055A   04021.31559085  .00000045  00000-0  48966-4 0  7146 
2 26536  98.9441 332.9210 0011258  75.8813 284.3609 14.12070705171679 
#NOAA-17 
1 27453U 02032A   03159.44074193  .00000223  00000-0  11792-3 0  4397 
2 27453  98.7410 229.9790 0012568  43.3290 316.8875 14.23359968 49598 
#INTELSAT 1002 
1 28358U 04022A   08151.13080160  .00000004  00000-0  10000-3 0  5824 
2 28358   0.0130 357.0652 0001105   8.7095 288.3925  1.00273874 14527 
#SINAH 1 
1 28893U 05043D   08064.84183463  .00000001  00000-0  97820-5 0  640 
2 28893  98.1063 321.4268 0016274  19.4105 340.7706 14.6003153312542 
#THEMIS C 
1 30582U 07004C   08065.75000000 -.00000721  00000-0  00000+0 0  212 
2 30582   4.7533 308.4897 8699271   6.9855 355.4695  0.50380244  256 
#Original report SGP4 test 
1 88888U          80275.98708465  .00073094  13844-3  66816-4 0    87 
2 88888  72.8435 115.9689 0086731  52.6988 110.5714 16.05824518  1058 
 

 
 


