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Abstract

The use of discontinuous aP values, for the simultaneous sequential estimation of six spacecraft LEO parameters,
atmospheric density, ballistic coe¢ cient, and other observable paramters, results in the failure of McReynolds�Filter-
Smoother Consistency Test. But this test is satis�ed when input values of aP are splined (smoothed) before use. The
three-hourly discontinuities in aP are always wrong in the sense that three-hourly discontinuities are never produced
by the magnetometers from which aP is derived. Our purpose herein is two-fold: (i) Present graphical results for
McReynolds�Filter-Smoother Consistency Tests (ii) Record and present the development of the osculating polynomial
splines we have used to smooth the discontinuous aP function.

1 Introduction

For the sequential orbit determination of a spacecraft in LEO from real range tracking data, we have demonstrated the
satisfaction[12] of McReynolds�Filter-Smoother Consistency Test, in spacecraft position, when input values of aP are splined
(smoothed) before use. Also, with the same real data, we have demonstrated failure of the Filter-Smoother Consistency
Test when the 3-hourly step functions in aP are used. These contrasting results are presented graphically.
The development of osculating polynomial splines used to smooth the discontinuous step functions in aP is presented.

This invokes the development of polynomial basis functions, and the application of a least squares (LS) algorithm to
solve the underdetermined LS problem. The latter is compared to the widely used overdetermined LS algorithm via the
de�nition for generalized-inverse (pseudo-inverse). The actual underdetermined LS solution is calculated with an orthogonal
decompostion of a LS rectangular matrix relating solution to given aP data.

2 McReynolds�Filter-Smoother Consistency Test

2.1 Filter-Smoother Description

Real range tracking data measurements were processed by a sequential �lter1 to estimate a 22 parameter state. The
state estimate, for the computer runs and graphics referred to herein, contained 6 parameters for spacecraft LEO position
and velocity, 1 parameter for relative atmospheric density, 1 parameter for relative spacecraft ballistic coe¢ cient, and 14
parameters for range biases; i.e., 1 parameter for each of 14 AFSCN ground station radar sensors.
The �lter does input and process measurement data sequentially forward with time, and responds with a complete

state estimate and error covariance within milli-seconds2 of receipt of each measurement. This is enabled by accumulation
of information from the in�nite past, and by satisfaction of the requirements for optimal orbit determination3 [13]. The
real-time �ltered state estimate and covariance are used as initial conditions for their forward propagation.
The smoother does input and process stored �lter data sequentially backward with time, using the last �lter state

estimate and error covariance matrix, and associated epoch tL as initial conditions. With decreasing time, the smoother
input is de�ned by stored �lter output together with recursively generated smoother output. Measurements are not
reprocessed by the smoother. The smoothed state estimate is superior to the �ltered state estimate for each time tk < tL.

� c
 Analytical Graphics, Inc., 2004. Paper AAS 04-176 published by AAS/AIAA with permission.
1The sequential �lter and smoother are algorithms embedded in software for STK/OD, a product of Analytical Graphics, Inc.
2This has been demonstrated on a PC.
3This paper can be viewed on line at: http://www.stk.com/resources. Under Documentation click White Papers.
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2.2 Filter-Smoother Consistency Test

For each parameter of the state, a unitless ratio is formed. The ratio numerator consists of the di¤erence between �ltered
and smoothed state estimate at a common time. The ratio denominator consists of a root-variance (sigma) on the numerator
di¤erence, derived from the �ltered and smoothed state estimate error covariance function. Each state parameter ratio can
be graphed as a function of time. McReynolds�Filter-Smoother Consistency Test consists in comparing this unitless ratio
to �3. If 99% of the ratios graphed fall between �3 and 3, then the test is de�ned a success4 . If not, the test is de�ned a
failure.
Initialization of the sequential �lter requires the processing of measurement data across the �lter initialization time

interval. Since initialization is required to develop realistic covariance elements, the Filter-Smoother Consistency Test is
ignored during �lter initialization.
Figs. 4 and 5 present failure and success, of McReynolds�Filter-Smoother Consistency Test, in three components of

spacecraft position. The failure responds to the use of discontinuous aP step functions for atmospheric density model
inputs. The success responds to the use of smooth aP cubic splines for atmospheric density model inputs.

3 The Discontinuous aP Function

We are given m values of the geomagnetic index aP (� i; � i+1), i 2 f0; 1; 2; : : : ;m� 1g, where:

� � i 2
�
0hd ; 3

h
d ; 6

h
d ; : : : ; 21

h
d

	
UTC for each day d of the year

� aP (� i; � i+1) is a time constant across each interval [� i; � i+1]

� � i+1 � � i = 3 hours

� aP (� i; � i+1) may be (is usually) discontinuous at each 3 hour partition knot-point � i, i 2 f0; 1; 2; : : : ;m� 1g

Capture the given data in an m� 1 matrix b:

b =

26664
aP (�0; �1)
aP (�1; �2)

...
aP (�m�1; �m)

37775 (1)

Then matrix b presents a discontinuous function gaP (�) ; �0 � � � �m. But the elements of b are derived from magnetometer
measurements that are continuous with time. We wish to construct a function g (�) that:

� Approximates aP (� i; � i+1), for all i 2 f0; 1; 2; : : : ;m� 1g

� Is continuous and smooth (di¤erentiable) at each partition time point � i and at all other times � 2 [�0; �m]

� Satis�es the integral constraint:

Z � i+1

� i

g (�) d� = [� i+1 � � i] aP (� i; � i+1) , i 2 f0; 1; 2; : : : ;m� 1g (2)

Function g (�) will be composed of a sequence of polynomial splines, connected at interior knot-point times � i, i 2
f1; 2; : : : ;m� 1g.

4The bases for this test consist of the use of the Normal density function for state estimation error modeling, extensive experience with
comparisons of error modeling with the Normal density function, and the Central Limit Theorem.
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4 Osculating Polynomial Splines

It will prove convenient to de�ne a constant T and time transformation t (�) with:

T = � i+1 � � i (3)

t (�) = � � � i (4)

so that:

t (� i) = 0 (5)

t (� i+1) = T (6)

0 � t � T (7)

The inverse transformation � (t) derives from Eq. 4:

� (t) = t+ � i (8)

� (0) = � i (9)

� (T ) = � i+1 (10)

Adopt the shorthand notation aP = aP (0; T ) when referring to time t, and a
i;i+1
P = aP (� i; � i+1) when referring to UTC

time � . Denote g (� (t)), a function of t, with the name f (t):

f (t) = g (� (t)) (11)

Function f (t) is de�ned by Eq. 17. With the aid of Eq. 3, Eq. 2 can be written:

F =

Z T

0

f (t) dt = TaP (12)

where F denotes a de�nite integral of f (t).

4.1 Third-Order Polynomial Structures

We are interested in the use of third-order polynomials p (t) and r (t):

p (t) = a0 + a1t+ a2t
2 + a3t

3 (13)

r (t) = b0 + b1t+ b2t
2 + b3t

3 (14)

Di¤erentiate them with time:

_p (t) = a1 + 2a2t+ 3a3t
2 (15)

_r (t) = b1 + 2b2t
1 + 3b3t

2 (16)

These four polynomials provide the structure to develop a basis[1] for f (t). By basis we refer to a set of polynomials that
are independent, and are de�ned such that any realization of f (t) can be expressed as a linear combination of them.
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4.2 Two-Point Osculating Splines

De�ne f (t) with:

f (t) = f0p0 (t) + _f0r0 (t) + fT pT (t) + _fT rT (t) (17)

Eq. 17 is the key to two-point osculating splines. Di¤erentiate Eq. 17 to get:

_f (t) = f0 _p0 (t) + _f0 _r0 (t) + fT _pT (t) + _fT _rT (t) (18)

For each time interval [0; T ]t = [� i; � i+1]� , require that:

f0 = f (0) = g (� i) (19)

fT = f (T ) = g (� i+1) (20)

_f0 = _f (0) = _g (� i) (21)

_fT = _f (T ) = _g (� i+1) (22)

4.3 Derive Osculating Basis Polynomials

Evaluate Eqs. 17 and 18 at t = 0 and t = T to get:

p0 (0) = pT (T ) = _r0 (0) = _rT (T ) = 1 (23)

r0 (0) = rT (0) = rT (T ) = r0 (T ) = p0 (T ) = pT (0) = 0 (24)

_p0 (0) = _p0 (T ) = _pT (0) = _pT (T ) = _r0 (T ) = _rT (0) = 0 (25)

Now p0 (0) = 1 implies a0 = 1, and _p0 (0) = 0 implies a1 = 0: Insert these evaluations into Eqs. 13 and 15 to get two
equations in the two unknowns a2 and a3. Then:

a2 = �3=T 2 (26)

a3 = 2=T
3 (27)

Insert these evaluations into Eq. 13 to derive the osculating basis polynomial:

p0 (t) =

�
1 + 2

�
t

T

��"
(t� T )2

T 2

#
(28)

In a similar manner, derive:

pT (t) =

�
3� 2

�
t

T

���
t2

T 2

�
(29)

r0 (t) =
t (t� T )2

T 2
(30)

rT (t) =
(t� T ) t2
T 2

(31)

_p0 (t) =
6t (t� T )
T 3

(32)
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_pT (t) = �
6t (t� T )
T 3

(33)

_r0 (t) =
(t� T ) (3t� T )

T 2
(34)

_rT (t) =
t (3t� 2T )

T 2
(35)

From Eqs. 17 and 23, function f (t) is seen to be coincident with basis function p0 (t) at t = 0, and coincident with basis
function pT (t) at t = T . From Eqs. 18 and 23, the derivative function _f (t) is seen to be coincident with basis function
_r0 (t) at t = 0, and coincident with basis function _rT (t) at t = T . These are the two points of osculation5 (tangency) for
f (t). And so function f (t) is coincident with, and tangent to, polynomial basis functions at two time points t = 0 and
t = T .

5 Integral Constraints

Insert Eq. 17 into Eq. 12:

F =

Z T

0

h
f0p0 (t) + _f0r0 (t) + fT pT (t) + _fT rT (t)

i
dt

= f0P0 + _f0R0 + fTPT + _fTRT (36)

where:

P0 =

Z T

0

p0 (t) dt =
T

2
(37)

R0 =

Z T

0

r0 (t) dt =
T 2

12
(38)

PT =

Z T

0

pT (t) dt =
T

2
(39)

RT =

Z T

0

rT (t) dt = �
T 2

12
(40)

PT = P0, and RT = �R0 (41)

Then:

F = (f0 + fT )P0 +
�
_f0 � _fT

�
R0 = TaP (42)

or with indexing i 2 f0; 1; 2; : : : ;m� 1g:

F i;i+1 =
�
f i;i+10 + f i;i+1T

�
P0 +

�
_f i;i+10 � _f i;i+1T

�
R0 = Ta

i;i+1
P (43)

where the superscripts identify a particular 3-hour time interval, and the subscripts distinguish interval ends; i.e., t = 0
begins the interval, and t = T ends the interval. Thus f i;i+10 is the value of f (t) at the beginning t = 0 of the time interval
spanned by ai;i+1P . The requirement for continuity and smoothness at each interior knot-point means that the following
2 (m� 1) conditions must be satis�ed:

f i+1T = f i0 (44)

5The nonlinear theory of variation of parameters, from celestial mechanics, derives from the requirement that the position and velocity of the
two-body conic be coincident with the position and velocity of the perturbed trajectory. The constant orbit elements of the two-body conic are
thereby transformed to time-varying orbit elements. The time-varying conic is then referred to as an osculating (kissing) orbit.
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_f i+1T = _f i0 (45)

Then Eq. 43 becomes:

F i;i+1 =
�
f i;i+10 + f i+1;i+20

�
P0 +

�
_f i;i+10 � _f i+1;i+20

�
R0 = Ta

i;i+1
P (46)

for i 2 f0; 1; 2; : : : ;m� 1g. Eq. 46 can now be written, without ambiguity as:

F i;i+1 =
�
f i + f i+1

�
P0 +

�
_f i � _f i+1

�
R0 = Ta

i;i+1
P (47)

for i 2 f0; 1; 2; : : : ;m� 1g. We have m equations in 2m + 2 unknowns. Add on zero slope end intervals to nail down end
points:

a�1;0P = a0;1P and am;m+1P = am�1;mP (48)

6 Restructure Eq. 47

Refer to the given aP values a
i;i+1
P , i 2 f0; 1; 2; : : : ;m� 1g, as measurements. To move measurement information onto the

time grid ti, i 2 f0; 1; 2; : : : ;mg, associated with f i and _f i, construct psuedo measurements aiP :

aiP =
�
ai�1;iP + ai;i+1P

�
=2 (49)

De�ne f̂ i:

f̂ i =
�
f i � aiP

�
=T (50)

and de�ne:

P̂0 � P0T = T 2=2 (51)

Then for i 2 f0; 1; 2; : : : ;m� 1g, Eq. 47 becomes:�
f̂ i + f̂ i+1

�
P̂0 +

�
_f i � _f i+1

�
R0 = y

i (52)

where:

yi = Tai;i+1P � P̂0
�
ai�1;iP + 2ai;i+1P + ai+1;i+2P

�
= (2T ) (53)

If zero slope is desired at the knot-points, then set _f i = _f i+1 = 0. Refer to this as the Reduced Least Squares condition.

7 Least Squares

Our purpose here is to estimate values for f i and _f i, i 2 f0; 1; 2; : : : ;mg, from values of ai;i+1P , i 2 f0; 1; 2; : : : ;m� 1g, using
a least squares algorithm.

7.1 Matrix De�nitions

De�ne an n� 1 matrix x, where n = 2 (m+ 1):

x =
�
f̂0; _f0; f̂1; _f1; : : : ; f̂m; _fm

�T
(54)

De�ne an m� 1 matrix y:

y =
�
y0; y1; : : : ; ym�1

�T
(55)

De�ne an m� n matrix A:
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A =

2664
P̂0 R0 P̂0 �R0 0 0 0 � � � 0 0

P̂0 R0 P̂0 �R0 0 � � � 0 0
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
0 0 0 0 � � � 0 P̂0 R0 P̂0 �R0

3775 (56)

Use Eq. 52 to write a matrix least squares equation[2]:

Ax = y (57)

where m < n.

7.2 Generalized Matrix Inverse

For many least squares problems we have the over-determined relation m > n associated with the least squares normal
equation, and this invokes a generalized matrix inverse, call it A+. It is therefore useful to review all three relations for m
and n. So here we seek all solutions x to Eq. 57 that minimize length kx�A+yk, where A is an m� n matrix with rank
m or n, x is an n� 1 matrix, y is an m� 1 matrix, and where m = n, or m < n, or m > n.

7.2.1 m = n

When matrix A is square and has rank m = n, then calculate the matrix inverse A�1 and solve Eq. 57 for x = A�1y.

7.2.2 m 6= n

But when matrix A is non-square with m 6= n, invoke a generalized matrix inverse A+ such that:

x = A+y (58)

where length kx�A+yk is minimized. Penrose[2][3] showed that for every real �nite matrix A there exists a unique
generalized matrix inverse A+, that satis�es the Penrose conditions:

AA+A = A (59)

A+AA+ = A+ (60)

�
AA+

�T
= AA+ (61)

�
A+A

�T
= A+A (62)

Now
�
ATA

�
is an n � n matrix and

�
AAT

�
is an m �m matrix. If Rank(A) = n, then Rank

�
ATA

�
= n and

�
ATA

�
can

be inverted. If Rank(A) = m, then Rank
�
AAT

�
= m and

�
AAT

�
can be inverted. Adopt the following generalized inverse

de�nitions6 : If Rank(A) = n, de�ne:

A+ = A+n =
�
ATA

��1
AT (63)

If Rank(A) = m, de�ne:

A+ = A+m = A
T
�
AAT

��1
(64)

Both A+n and A
+
m are generalized inverse matrices because they satisfy the four Penrose conditions. Insert Eq. 63 into Eq.

58 to get the classical normal equation solution for overdetermined least squares problems. Insert Eq. 64 into Eq. 58 to
get the classical solution for underdetermined least squares problems.

6Lawson and Hanson[2], Excersize 7.24.
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7.2.3 Formal Solution

For our osculating polynomials, m < n, and Rank(A) = m. Then insert Eq. 64 into Eq. 58 to get:

x = A+my = A
T
�
AAT

��1
y (65)

Eq. 65 could be used to evaluate our polynomial coe¢ cients, but there is a more e¢ cient and numerically accurate solution.

7.3 E¢ cient and Accurate Solution

Perform the orthogonal decomposition[2]:

A = HRKT (66)

where H is an m�m orthogonal matrix, K is an n� n orthogonal matrix, and R is an m� n matrix:

R =
�
R11 0

�
(67)

where R11 is a non-singular triangular m�m matrix of rank m. The non-zero singular values of A, R and R11 appear on
the diagonal of triangular matrix R11. Since H and K are orthogonal:

R = HTAK (68)

A generalized inverse matrix R+ to R is de�ned by:

R+ =
�
R�111 0

�
(69)

Then the unique, and most simple7 , e¢ cient, and numerically accurate, least squares solution x to Eq. 57, where length
kx�A+yk is minimized, is given by:

x = KR+HT y (70)

The coe¢ cients for our osculating polynomials can be calculated, by back substitutions, from the n elements of x.

8 Graphics

8.1 Arbitrary Examples of Osculating Cubic Splines

Arbitrary examples of integral preserving cubic spline sequences are displayed in Figs. 1, 2, and 3. Each spline is overlaid
on the square-wave graph to which it is �t. The square-wave graph consists of a discontinuous sequence of constant bars
with each bar of unit length, parallel to the x axis. Recall that [0; T ] is the time interval, and T is the time length, of
each osculating polynomial spline. Fig. 1 presents 1T=bar, Fig. 2 presents 2T=bar, and Fig. 3 presents an overlay with
1T=bar, 2T=bar, and 10T=bar. As n grows, for nT=bar, the spline sequence approximates the original square-wave graph
more closely. Thus the integral preserving 1T=bar sequence is fartherest from the square-wave graph. The 1T=bar sequence
was used to smooth the aP values referred to here in the simultaneous estimation of a LEO, together with atmospheric
density[12] ballistic coe¢ cient, and other observable state parameters.
The Reduced LS curve, overlaid on Figs. 1 and 2, refers to the Reduced Least Squares condition de�ned above.

8.2 McReynolds�Filter-Smoother Consistency Tests

8.2.1 Filter-Smoother Test Description

Figs. 4 and 5 present failure and success, of McReynolds� Filter-Smoother Consistency Test, in three components of
spacecraft position. The failure responds to the use of discontinuous aP step functions for atmospheric density model
inputs. The success responds to the use of smooth aP cubic splines for atmospheric density model inputs.

7One can also obtain an equivalent least squares solution with singular value decomposition (SVD). But SVD is not quite so simple.
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Figure 1: Integral Preserving Cubic Spline, 1T=bar

Figure 2: Integral Preserving Cubic Spline, 2T=bar
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Figure 3: Integral Preserving Cubic Spline, 1T=bar, 2T=bar, 10T=bar

Figure 4: Failure of Filter-Smoother Test using Discontinuous aP 3-Hourly Step Function
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Figure 5: Success of Filter-Smoother Test with aP Osculating Spline Function
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