

A Flexible Architecture for Creating Scheduling Algorithms

as used in STK Scheduler

W. A. Fisher and Ella Herz

Optwise Corporation and Orbit Logic Incorporated
fisher@optwise.com and ella.herz@orbitlogic.com

Abstract

A method of developing custom algorithms using the Optwise

scheduling system is presented. An overview of the overall

scheduling methodology is presented followed by a description

of how schedule algorithms may be customized. Performance

results for the commercial STK Scheduler regression tests used

to verify algorithm coding enhancements and a case study are

also provided.

 Introduction

Scheduling a number of tasks to a pool of resources is a

very common but difficult problem. For example in [1]

Barbulescu et al, demonstrated that a generalized version

of the range scheduling problem is NP complete. While

this means that it may not be possible to construct an

algorithm that can be proven to find “the” optimal solution

in finite time for the general problem, real world problems

can have specific conditions that make finding good

solutions possible. Most successful scheduling algorithms

used in the real world exploit special conditions that allow

the users to find good solutions.

Orbit Logic and Optwise have found that a single

algorithm for scheduling is not the best choice for all

problems. By modifying various algorithm building blocks

to meet both the desired solution goals and scheduling

constraints, customized scheduling algorithms can be

created that meet the needs of particular missions.

The purpose of this presentation is to describe how the

Optwise scheduling architecture that is used in STK

Scheduler can be adapted to specific scheduling problems.

An introduction to the Optwise algorithms was presented at

the 2004 STK Users Conference [2]. An overview of the

custom algorithm interface was introduced at the 2008

Copyright © 2013, All rights reserved.

STK Scheduler is Copyright © Orbit Logic Inc.
STK is Copyright © Analytical Graphics Inc.

STK Users Conference [3]. Some of that material is

updated here for completeness.

Optwise and STK Scheduler

STK Scheduler provides the interface and top level

business logic that translates a real world satellite task and

resource problem into the specific language necessary for

the Optwise algorithms to agnostically find a schedule

solution.

Figure 1: STK Scheduler Task Definition GUI

STK Scheduler provides the interface for defining the

scheduling problem, configuring the algorithms, as well as

displaying the results. The user defines resources and

associated attributes and then defines tasks and their

accompanying constraints and resource requirements and

options. With a seamless interface to Systems Tool Kit

(STK) the user can apply physical constraints to the

scheduling problem by selecting one or more STK

computations as resource availability or task scheduling

constraints. The software then uses the Optwise algorithms

to find de-conflicted, validated schedule solutions which

can be viewed in table, Gantt, or 3D map views. STK

mailto:fisher@optwise.com
mailto:ella.herz@orbitlogic.com

Scheduler provides both a graphical and application

programming interface (API) for defining and solving

scheduling problems and exporting the results.

Figure 2: STK Scheduler Gantt View

Figure 3: STK 3D Schedule Animation

Within this paradigm, the user can create and modify

plans manually or can employ one or many algorithms to

solve the scheduling challenge. The user can also utilize

the custom algorithm builder to define an algorithm

specific to their scheduling problem. Regardless of the

algorithm applied, a user may edit the resulting solution if

desired.

Over 200 licenses of STK Scheduler have been deployed

internationaly supporting commercial, civil, and military

programs. The user list includes Boeing, Harris, Raytheon,

Northrop Grumman, Booz Allen, Lockheed Martin,

Honeywell, General Dynamics, Orbital Sciences, TASC,

Scitor, EADS, NASA. Pprograms supported by STK

Scheduler include the Air Force Satellite Control Network

(AFSCN), SBIRS, SBSS, STSS, OSIRIS-REX, GLAST,

WIRE, NASA Ground Network, and NFIRE. In addition,

Orbital Sciences uses STK Scheduler for all launch and

early orbit planning for all of their space launch vehicles

(Taurus, Antares, Pegasus, Minotaur).

The STK Scheduler Model.
In order to understand its custom algorithms, it is important

first to understand the STK Scheduler model and how

Optwise Algorithms fit into that model.

In the Optwise scheduler model tasks are assigned to

time slots. As shown in figure 4a) each time slot has an

earliest start and a latest stop. The desired task duration is

assigned during this time slot. The time slot also has

associated with it a profile. The profile is a container that

allows one or a combination of resources to be defined. It

is often the case that a task may be satisfied by more than

one profile as shown in figure 4 b).

Figure 4: Tasks and profiles

For example profile 1 might be the combination of satellite

A and ground station A and profile 2 is the combination of

satellite A and ground station B.

In STK Scheduler the solution profiles are derived from

real world resource constraints, such as line-of-site access

from a satellite to a ground station, or limited satellite

onboard memory, or the times when an operator is

available in the control center.

STK Scheduler uses STK to model physical constraints,

and provides a means for non-computed constraints to be

defined as well. All task and resource constraints and

computations are used to generate windows of opportunity

that could be used to accomplish the task for a given

resource profile. In STK Scheduler these windows are

called “timeslots”. The process of creating the feasible

timeslots can be simple (a point-to-point STK access

calculation) or complex (multiple calls to STK access

calculations with internal STK constraints combined with

external user-defined generated constraints). Any number

of resources may be specified in a task profile definition

using Boolean logic to allow a variety of resource

combination options for any task. In STK Scheduler each

valid resource combination is called a “profile”. STK

Scheduler then passes to Optwise a number of profile

possibilities including associated computed timeslots.

Each profile and timeslot also has a desirability value

associated with it. In STK Scheduler this is used to include

user resource and time preferences (for instance, it may be

more desirable to schedule the task in an early timeslot

with a specific resource profile).

Tasks may also have several other proprieties including

priority, desired start time, and duration types. Tasks can

have fixed or variable durations. Variable duration tasks

will only be assigned if a minimum duration can be

assigned, but will be expanded up to a maximum duration

if possible. Tasks can also be defined to only be allowed to

use one slot or to use multiple slots. When multiple slots

are allowed the user also has the option to allow the task to

switch resources between assignments if needed to achieve

the desired total assignment duration.

Figure 5: Resource Usage

As shown in figure 5, the resources in a profile may be

used during, allotted at the start, or replenished at the end

of tasks. It is also possible define a resource to be use or

replenish at a rate. For example a particular task may

deplete a battery resource at particular rate, and another

task may charge the battery at different rate. A setup

resource may be defined for use prior to the timeslot

access. Note that this resource is used outside the time slot

time. It is also possible to define a breakdown time. All

resource levels and time values are computed with double

numeric precision. All of these properties are defined for

each profile.

It is also possible to define task to task constraints such

as task A must be some amount of time after task B. One

can also define a minimum and maximum between tasks

that have been define to be in a group.

Model Figure of Merit
The problem input language also allows the user to adjust

parameters in the figure of merit that is used to measure the

“goodness” of a solution.

K

assign
is used to adjust the relative weight for pure

assignment. This term is complementary to the next term.

K

dur
is used to adjust the relative weight of assignment

times the duration. Thus tasks with longer durations will
affect the FOM more than shorter ones.

K

desire
is used to adjust the relative weight of desirability of

the slot assigned to the task.

K

early
is used to adjust the relative weight of the early

bonus. The early bonus is 1.0 if the task was scheduled as
early as possible and zero if as late as possible for that task.

K

MaxBonus
is used to adjust the relative weight of the Max

duration bonus. It is 1.0 if maximum duration is scheduled
and 0 if minimum duration is scheduled.

K

userstart
is used to adjust the relative weight of the userstart

bonus. The userstart bonus is 1.0 if the task was scheduled
as close to the desired user start and zero if far away as
possible for that task.

UserFunc is a link to external user function. (dll)

The user is able to change the values of K values in the

problem definition file in order to adjust how much each

term contributes to the FOM.

Algorithm Heuristic Classes

Before going into the details of the algorithm heuristics it

is useful to take a wider view. The algorithms used fall

into two major classes, ordered algorithms that assign tasks

by trying time slots in some order and the neural algorithm

which uses a competition model.

In the ordered type of algorithm, time slots (and thus the

corresponding tasks) are tried in some order. As time slots

are used for a task assignment they may block future

assignments. In the left top panel of figure 6 just such a

case has occurred (It is assumed that the task requires all

capacity of a resource). The slot “consideration” order is

shown by the numbers near the end of the slot. By going

in a different order, two other solutions result in fully

assigned schedules.

In Figure 6, three examples using different orders with

one pass are shown. In the top example only one task is

assigned because the assignment of task1 to slot 1 blocks

the only available slot for task 2. The next two examples

show slot checking orders that result in full assignment.

It is also possible to use information during the process

to modify this slot checking order. Multiple passes can be

used to add additional tasks that may not be schedule in a

single pass. For example, assume the last task to be

considered (and assigned) is one which replenishes a

resource. A second pass might allow a task unassigned

during the initial pass to be assigned to the replenished

resource. Repair heuristics are implemented by removing

     

   

unassigned:0 assigned,Ua

UserFunc

StartrtDesiredStaK

MaxBonusKEarlyBonusK

SlotDesireKAssignDurKUaK

FOM

i

itask

iiuserstart

iiearly

idesireiduriassign

i

:1

)(

Pri





























 


max

a task from a “finished schedule” and then testing if other

tasks (of higher value) may be done. A Greedy algorithm

can be implemented by selecting the next slot based on its

possible improvement to a Figure of Merit. Which detailed

strategy is best depends on the specific problem.

Figure 6: Time slots consideration order

We will return to the details of how the various ordered

search algorithms can be constructed after a discussion of

the other class of algorithms.

Figure 7 shows an example of a second class of

algorithm used in the solver engine. This method evolved

from an analog neural network approach for the task

assignment problem suggested by Kennedy and Chua,

1998 [5] and investigated in [6]. We again begin with a

model based on time slots.

Figure 7: Neural Competition

Each time slot represents a possible way to “assign” the

task and has an assignment probability. All time slots start

with an assignment probability near zero. Each time slot

probability is allowed to grow subject to constraints. An

example of one fundamental constraint is: the sum of the

probabilities of two overlapping assignments must be less

or equal to one. The algorithm is designed to shift the start

times of the two tasks in conflict and to reduce the

probabilities to resolve the conflict. The “assign the task

only once” constraint is creating by requiring the sum of

probabilities for all time slots for a particular task to be less

than or equal to one. If the sum is greater than one then all

time slots in the sum are penalized. If there is a resource

capacity violation at a particular time then the time slots

probabilities are penalized and the start times of the tasks

are adjusted to help clear the constraint. This is done for all

time slots simultaneously.

Figure 7 shows this process for a two task problem. Note

that in the middle panel (at a hypothetical iteration 100) the

first timeslot probability for task one is penalized twice

while the other two time slots probabilities are penalized

once. These two time slots will “outgrow” the doubly

penalized timeslot eventually forcing the first time slot of

task 1to a zero value. This allows task 2 the freedom to

move earlier in the schedule. The order of the time slots is

no longer a factor. The solution is driven by the problem

constraints. The solution represents a maximization of an

underlying objective function which is to maximize the

number of assignments. In the model implemented for the

scheduling algorithm engine the objective function

maximizes total assigned duration.

Although the example above goes to the optimal

solution, it is not the case if slot 1 is given an initial value

significantly larger than slots 2 and 3. This illustrates

another interesting feature of using such an algorithm. By

varying the values of the initial nodes randomly, it is

possible to generate a family of solutions. Notice that

unlike an ordered search algorithm there is no task or

resource order rules; the constraints are feedback loops that

constrain the solution space.

Regression Tests Results
Optwise and Orbit Logic maintain a library of over two

hundred past problems that test the feature space of the

scheduler. The regression tests demonstrate the complexity

and speed with which STK Scheduler and various

algorithms solve these problems. By running a variety of

algorithms on a variety of problems, it is clear that one

algorithm is not best for all problems.

 Most of the regression tests contain less than 100 tasks

and solve in less than a second with most of the algorithms.

They are important, but yield little information for

evaluating performance. Here we discuss four of the most

complex tests from a computation point of view and two

smaller test problems. All solution times in this section

were benchmarked on a 64 bit Intel Core 2 2.13 GHz

processor.

The names have been replaced in the four customer

derived cases. Table 1 gives an overview of the dimension

of the problems with regard to the number of tasks,

resources and timeslots that are covered.

name #tasks #resources #slots

15T2R 15 2 20

OL-Ex10 120 80 363

Cust1 6510 11 6720

Cust2 619 163 26850

Cust3 553 160 24580

Cust4 526 58 4006

Table 1: Regression Test Dimensions

The 15T2R test was designed to have many tradeoffs

involving tasks resource conflicts. With this setup, the

Neural algorithm performs very well. However, despite

what was designed to be a stressing problem, the Random

algorithm with one trial found a full assignment solution. A

more detailed analysis in [7] showed that the probability of

getting a full solution with one run of Neural was 72 % and

with one run of random it was 48 %. All cases took less

than a second to run. The FOM was programmed to reward

total task duration and earliest start. For fully assigned

solutions higher FOM measures how early the tasks were

scheduled.

Algorithm # assigned FOM

OPS 13 221.8

Sequential 13 221.8

MPS 14 230.3

Neural(1) 15 243.3

Neural(100) 15 243.8

Random(1) 15 238.5

Random(100) 15 244.2
Table 2: 15T2R Regression Test Results

The OL-Ex10 test contains 120 tasks and 30 resources

using four task types with varying fixed duration times.

STK accesses were obtained for 10 hours assuming

simultaneous access to a ground station and some elevation

constraints. By using a 10 hour time period, the total

resource availability was reduced to a point where the

scheduling algorithms needed to do some real work. This

problem is an example of one that is solved well by the

Algorithm # assigned FOM

OPS 116 195.9

Sequential 120 239.1

MPS 116 218.2

Neural(1) 120 202.1

Neural(100) 120 204.0

Random(1) 120 196.0

Random(100) 120 199.8

Table 3: OL-ex10 Regression Test Results

Sequential algorithm. Only the Neural algorithm was

capable of getting a full solution prior to the invention of

the Sequential algorithm. Notice that the Sequential

algorithm has the highest FOM score. That is because it

has the tightest packing of the tasks.

The next four examples are all large problems derived

from customer problems. All examples include variable

duration tasks which can be expanded, but have limited or

no handover tasks. They are 1 or 2 day schedule periods

with minimum durations as small as 2 minutes and

maximum duration ranging from 5 minutes to unlimited. In

the regression test each of the standard algorithms is run.

The Neural and Random algorithms are run with number

of tries of 1 and 5. Table 4 shows the number of

assignments for each customer derived case with each type

of algorithm.

Case OPS Seq MPS Neural

(1)

Neural

(5)

Ran

(1)

Ran

(5)

1 37 37 37 44 44 48 53

2 577 598 615 573 578 607 609

3 544 540 550 526 527 543 549

4 255 251 267 259 263 254 253

Table 4: Customer Regression Test Results (Assignments)

Notice that no one algorithm stands out as best for these

problems. The Random algorithm with 5 tries appears to be

the best. The MPS method is next in terms of performance.

Note here that performance is analyzed based on the

number of assigned tasks. This is not unusual when

interacting with the STK Scheduler customer base. More

tasks seem always to trump even the best constructed FOM

score. Based on customer feedback it is clear that

customers place a premium on predictability. Unless one of

the algorithms has found a solution with a much higher

assignment percentage they will use one pass or sequential.

Both these algorithms were designed to follow typical

human strategy.

Case OPS Seq MPS Neural

(1)

Neural

(5)

Ran

(1)

Ran

(5)

1 13 13 31 15 26 14 15

2 9 8 13 171 823 8 11

3 8 7 12 170 818 7 9

4 2 2 2 7 28 2 2

Table 5: Customer Regression Test Results (Solution Time)

The most interesting thing to note in the time to solve

metric is that the Neural algorithm takes significantly

longer than the rest for large problems. The Neural

algorithm must set up a feedback network based on the

number of timeslots. In the case 2 and case 3 that is 26850

and 24580 timeslots, respectively. In this problem most

those nodes have no interaction with most of the other

nodes. Because these problems have weak interactions

between the resources most of the neural computation is

summing zeros. In this case, the Neural algorithm is a bad

choice.

While not yet in the regression test but under current

development, we have done one problem which had a

request for 29,745 tasks to be assigned over a 24 hour

period using 33 resources. There were an astounding

1,710,462 possible accesses (time slots). Using a modified

version of the input routine and a custom algorithm very

similar to the Sequential algorithm (no expand) we were

able to find a solution with 20,706 assignments in 161

seconds. That is over 120 assignments per second. This is

an example a simple but extremely large problem. It

illustrates efficiency of the underlying code and the ability

of the algorithm to handle large problems.

The results of these regression tests show that across a

wide variety of scheduling problems with different

performance criteria, there is no single “best” in the

“standard” set of algorithm.

Solver Architecture and Custom Algorithms
Next, we turn our attention to the custom algorithm

feature. The methodology that is used to find a “schedule

solution” is embedded in a solver engine that has been

designed from the ground up to be adaptable. It uses a run

time interpreted script language to define the algorithm.

Figure 8: High Level Manager

The job of the high level manager shown in figure 8 is to

parse the input problem description and input solution

script, track solutions generated by the solution script and

provide output back to the client program (In this case STK

Scheduler).

The high level manager is also the place in the code where

“strategy” is added. Examples of such strategy will

emerge later in the discussion.

Each box indicates the logical flow of a typical problem.

The scripting language parallels this flow. These blocks

also roughly indicate the independence of the underlying

computation. The code in some of these routines has been

optimized over the past 10 years to allow near real time

turnaround for many typical problems. Each component

has also been designed to be modified.

The basic structure of a solution script is shown in figure

9. A solution string is a xml format file that contains one or

more trial specification. A trial specification contains steps

and modifiers. Steps are order specific, modifiers are not.

At a minimum, a trial must have a search step. All other

parameters are optional. Typically a script that uses an

ordered search will also have a sort step.

Figure 9: Solution Script Structure

The architecture allows up to three sort levels, each with

a parameter that defines the preference for sorting. Sort

parameters can be set to list, priority, early start,

desirability, slack, or random. For list, priority, and

desirability, the sort parameter can be set to ascending or

descending. For random sorts, the randomization can be

by task, profile, or time slot. A randomizer allows a

random choice from remaining slots if all the prior sort

criteria are equal. The randomizer name determines

whether the randomization will occur over all slots, slots

associated with tasks or slots associated with profiles. Use

of a randomizer instructs the manger to loop over the trial

by the named variable number of times, randomizing the

final variable. This allows a Monte-Carlo like search

strategy to be implemented. The solution with the best

figure of merit is chosen.

Multiple modifiers can be selected and are not order

dependent. The first modifier is the use of Priority Groups.

If the Priority Groups modifier is selected, slots are first

placed into as many groups as there are unique priorities.

This allows multiple passes to be made over the slots in the

group to obtain maximum group assignment before

moving on to another priority group. Whether or not

priority groups have been chosen as an option, a single or

multiple dimensional sort of the slots is available.

The next two modifiers deal with the Figure of Merit.

With a Greedy Figure of Merit modifier enabled, each time

an assignment attempt is completed, the Figure-of-Merit

(FOM) is checked for all possible assignments assuming

success. The slot with the largest possible increase in FOM

is checked next. This mimics a classic greedy heuristic but

with a user definable FOM. The External Figure-of-Merit

modifier directs the engine to call an external method

within a user modifiable dll to calculate the Figure of

Method (FOM).

 There are a number of expand modifiers because expand

is a computationally expensive operation and expanding a

task early in the assignment process will tend to block later

assignments. Having the ability to first assign the

minimum duration required to meet the task requirement

and later expand duration if it is possible has resulted in

ability to have maximum task assignment and extremely

high resource usage. Expand modifiers are: Expand after

Each Try, Expand After Each Task, Expand Handover

Task Up Front, and pre-Assign and Expand Soft Tasks.

The pre-Assign and Expand Soft Resources modifier

instructs the manager to find tasks that use soft resources

and assign them first. Soft resources are typically rate

resource that are consumed by some data tasks and

replenished by other. The resource also has a soft limit to

how much they can be replenished. A typical example is a

battery recharge operation from a solar collector. When the

battery is full the charging operation is turned off

automatically at its limit. The easiest way to model it is to

have a task that is always on whenever there is sun access.

The onboard system knows when the battery is full and

soft resources fulfill the same function. Finding these tasks

and making sure they are on and fully expanded always

improves the changes of getting tasks that will require the

resource on.

There are three possible search options, ordered, neural

and DS1MPS. No sort step is required for the neural or

DS1MPS. DS1MPS implements code that mimics the

performance of the original algorithms. It requires the

manager to set up some special tracking since internally it

is equivalent to doing multiple trials with different

presorts.

The final step option is an output step. While it seems

this is essential, for STK Scheduler it is not needed

because STK Scheduler is able to read the solution string

from the Optwise scheduling object directly without file

I/O. You might want an output step if you wish to have an

additional file written at the end of a series of trials. The

file format can be a traditional flat file or xml and you can

select from the last completed try from a trial (current) or

the best solution found thus far.

Building Custom Algorithms
While it is possible to create the custom scripts by hand

editing, a GUI Algorithm Builder is available from within

STK Scheduler. The user can simply select the sort

parameters from a list, and chose behavior modifiers from

check boxes. A screenshot is shown in figure 10.

Figure 10: STK Scheduler Custom Algorithm Builder GUI

The process is simple. Select a 1 2 or 3 dimensional sort,

use pull down list to select a sort parameter (an A or D at

the end of the parameter names means ascending or

descending sort), select any modifiers that are needed, if a

randomizer or neural is used select the number of tries to

use, select a maximum time to allow for a search, and

select a output type if needed. When the add Trial to

Solution button is press an xml string is added to the

existing solution. You can have multiple trials in a

solution.

Example Solution Strings

The solution string is a simple xml format string. Each

solution string can have one or more trials. If there is more

than one trial than the manager keeps track of the best

solution based on the FOM. Note: the order of modifiers is

not important but step order is. A search is the only

required step. Slots will remain in the order they were

listed in the input description file if the sort step is omitted.

It is possible to output a name value formatted or xml

formatted outfile at the end of each trial. The interface of

the software module also allows the calling client to

retrieve the solution data without file I/O. For example the

solution string that corresponds to the One Pass Algorithm

in STK Scheduler is:

<?xml version=’1.0’encoding=utf-8’?>

<SolnProc> <Trial>

 <modifier> usePriGrps </modifier>

<modifier> expandAllTasksAtEnd </modifier>

<step> Sort1(desireA) </step>

<step> Search(ordered) </step>

</Trial> </SolnProc>

In the One Pass algorithm task are passed into priority

groups and sorted by slot desirability. If a slot has an

identical priority and slot desirability then the list order in

the input description is used. Thus, if there are a number of

tasks with equal priority and all slots have equal

desirability, then the first task and slot in the input file list

order will be tried. Since the slots associated with a task

tend to be written in a group typically the one pass

algorithm will search all slots for a particular task before

moving on to the next task. It is not a requirement that all

slots for a task be written at one time, it is a tendency of

most users. In STK Scheduler the desire parameter is used

to adjust slot desirability based on priority of the resources

in the profile and scheduling preferences. If default values

are chosen then it is the same for all time slots. It is

however another way to adjust the algorithm performance.

Making one change to the string; replacing

“Sort1(desireA)” to”Sort1(earlyStartA)” changes the

algorithm to match the Sequential Algorithm in the

standard algorithms listed in STK Scheduler. In the

sequential algorithm slots are again placed into priority

groups. But now since there is a sort(EarlyStartA) slots are

sorted by their slot start time in ascending order. Thus, the

task with the earliest possible slot start will be tried first. If

the task assignment is blocked, then whichever task that

has the next earliest slot time will be tried. What happens if

there are multiple slots with the same time? The list order

of the slots is used. This algorithm is a direct mapping of a

customer request. Many problems can be solved with this

first available approach and it tends to match a strategy that

human schedulers are comfortable with.

The string for the MultiPass Algorithm is very simple:

<Trial> <step> Search(DS1MPS) </step> <modifier>

expandAllTasksAtEnd </modifier> </Trial> . The multi-

pass algorithm was a first generation algorithm that used

multiple tries with different presorts to find the best

solution. Depending on the number of resources in the

problem it tries up to 32 different presorts including a

phase in which slots are randomize by profile. In order to

be able to exactly match the original algorithm

performance, any step based sort parameters are ignored.

MultiPass inspired the custom algorithm approach. Rather

than having the presort selection rules fixed in logic, it is

now possible for the end user to create their own.

Something similar to MPS could be created in a custom

algorithm by using multiple trials.

The string neural algorithm is very similar to the MPS

string: <Trial numTries= 5> <step> Search(DS1MPS)

</step> <modifier> expandAllTasksAtEnd </modifier>

</Trial>. As described above the neural algorithm does

not search in any order so a sort step is ignored. Notice that

a new variable is now defined in the trial header,

numTries=5. This instructs the engine to do 5 runs of the

neural scheduler using random starting conditions each

time. Again the best solution based on the FOM is saved.

Neural works best on problems in which many tasks using

the same resources at nearly the same times.

The final algorithm in the standard set of algorithms is

STK Scheduler is Random. It was originally written to be a

base case for judging performance. It turned out to be a

great algorithm for problems where there were multiple

similar resources and uniform usage was desired. Such

resources tended to have similar but not quite identical

access times. The solution string for random is <Trial

numTries=30> <modifier> expandAllTasksAtEnd

</modifier> <step> Sort1(ranDS1) </step> <step>

Search(ordered) </step> </Trial>. The key difference is

that there is one sort parameter, ranDS1, which is a special

version of the random sort. ranDS1 exactly matches the

way that slots were randomized in the first generation

“random” algorithm. It is most similar to ranSlot. The

difference is in how slots are randomized. There are now

many more options for controlling how much a when

randomization is applied.

 Randomization of the final variable is one example of a

scheduling strategy that is added at the manager level of

the software. The manager simply makes multiple loops

over a trial randomizing the variable and checking the

FOM. Repair as described in [8] [9] can also be

implemented by modifying this level of coding. For repair

the high level manager uses some method to select a

portion or portions of a schedule solution to freeze and

then schedules around the partial solution. The routines

that expand the task duration at the end of the schedule are

an example of repair behavior. Those routines are clever

enough to be able to move a task later in time that is

constraining the duration expansion of a primary task.

NASA Case Study Example
Next consider an example of a problem we investigated as

part of a proposal to demonstrate the application of STK

Scheduler to the NASA Ground Station Problem. For the

problem we modeled a two week period during which 41

spacecraft with multiple view requests were assigned to

one of 20 ground station antennas. Since each spacecraft

mission was assigned a unique priority, there were 41

priorities levels. Based on desired the number of desired

events per mission and the availability of the resources the

feasibility modeling of STK Scheduler generated 4452

possible tasks and 158,069 time slots.

The customer also defined two goals. The primary goal

was to assign the largest number of events to the highest

priority missions first if possible. The secondary goal was

to maximize assignment and match target resource usage

as define in an external spreadsheet. The purpose of the

spreadsheet calculation was to penalize solutions in which

an individual resource did not match contractually

obligated resource usage levels for some resources. Over

usage incurred additional charges while under usage

implied wasted contract time. The spread sheet calculation

computed a composite which tried to capture these two

goals but did not strictly enforce the first goal.

The proposed figure of merit was

FOM = 1 + (100* A -1000*B - C)/D, where

A = ∑(number of events over desired),

B = ∑(number of events under desired),

C = ∑(individual resource usage penalty) , and

D = ∑((501-pri)*number desired events).

The sums are over the missions except for C which is

over the resources. For the STK Scheduler modeling of this

problem, the number of tasks is equal to the number of

desired events. It is not possible to assign more than the

desired number of events and A will always be zero. The

resulting FOM in form is 1- ∑ δ/K - C/K. (δ= 1 if a task is

assigned and 0 if not). K is a new constant that correctly

scales between the reduced form and the correct

spreadsheet formula. The key point is that ∑ δ is an

available term in the existing FOM. The C/K (penalty)

term must be computed externally. Figure 11 shows data

being exported from STK Scheduler to and Excel macro

for calculation of the NASA FOM.

Figure 11:NASA Case Study Architecture

The first test was to try the existing standard algorithms

and ignore the penalty term and use data exported from

STK to calculate the FOM. The best standard algorithm

was the Sequential Algorithm.

The second test was to use Algorithm Builder to create a

custom algorithm again ignoring the penalty term. The best

custom algorithm found was to add randomize profiles to

the sequential algorithm with 50 tries.

For the third test an external FOM was coded that was used

to select the best solution from the multiple tries.

Finally, the greedy option with the external FOM was

tried which checks the delta FOM of all possible slots to

choose the next slot to try. The external NASA FOM had

to be modified slightly to allow a better delta FOM to be

calculated.

Table 6 shows how each algorithm fared with regard to

number of assignments, FOM score, and the penalty score.

It also shows the number of priority assignments missed

relative to the best solution at a specific priority level.

Algorithm Assigned FOM Penalty # missed

relative best

at pri=

Sequential

3608

0.5592

0.050

-32

at pri=16
Sequential

with random

profile

internal FOM

50 tries

3636

0.5558

0.067

-7

at pri=16

Sequential

with random

profile

external FOM

200 tries

3644

0.5645

0.062

Best case

primary

criteria

Greedy

External FOM

30 tries

3584

0.5775

0.002

-2

at pri=6

Table 6:NASA Case Study Results

It turns out the best solution from a FOM point of view

does not meet the primary goal: “assign higher priority

tasks before lower priority if possible”. The best FOM case

of 0.5775 found with Greedy, results in 2 fewer tasks

assigned at priority level = 6 than a case with a FOM=

0.5645. To get the better FOM, assignments were made to

meet the target usage levels at the cost of total tasks

because that’s what the FOM said was the trade-off. A

human operator would probably not bump a higher priority

task in order or take a lower total number of assignments to

obtain better resource usage.

Another point of comparison is time to solve. All

algorithms took around 10 seconds per try to solve the

problem except for the Greedy FOM which was

significantly slower at over 300 seconds per try. Trying to

add code that could search for very small improvements in

the external FOM was very expensive computationally. On

the other hand method 3 which loosely coupled the

external FOM but allowed for random searching of the

solution space found the best solution from the primary

goal point of view using less computation time.

Conclusion
In this paper we have shown how creating customized

algorithms using STK Scheduler can be used to increase

the value of schedule solutions. Optwise provides the

underlying architecture with a flexible algorithm scripting

language and solver engine. On top of the Optwise

architecture, STK Scheduler provides GUIs and APIs that

allow the user to define tasks and resources that can be tied

to physical constraints, build specialized algorithms, adjust

the figure-of-merit, run the algorithms, and visualize the

schedule results in a variety of formats. The value of the

custom algorithm was shown in a NASA case study where

a variety of custom algorithms were developed and

compared with regard to how well each solution met a

variety of specific criteria. It is the design synergy between

adaptable algorithms, schedule data management, flight

dynamics computations and user interfaces which is

required to meet the aerospace scheduling challenges of

today and tomorrow.

References

 [1] Barbulescu L., Watson J. Whitley L. and Howe A.

Scheduling Space-Ground Communications for the Air

Force satellite Control Network Journal of Scheduling,

Vol. 7, 2004

 [2] Fisher W. Scheduling Algorithm Technology

STK/Scheduler 2004 AGI Users Conference, July 2, 2004

[3] Fisher W. STK/Scheduler Next Generation Scheduling

Algorithms Under the Hood Presentation 2008 AGI Users

Conference, Oct 9, 2008.

[4] Ziegler,I. and George D. STK Scheduler Online
Product Documentation.
http//orbitlogic.com/support/Scheduler/frame.htm

[5] Kennedy M. and Chua L., Neural Networks for

Nonlinear Programming, IEEE Transactions on Circuits

and Systems, Vol. 35, No.5, May 1988

[6] Fisher W., Fujimoto R., and Smithson R, A

Programmable Analog Neural Network Processor, IEEE

Transactions on Neural Networks, Vol. 2, No. 2, March

1991

[7] Fisher W. The Optwise Corporation Scheduling

Algorithms (As used in STK/Scheduler) In STK Scheduler

product documentation.

[8] Zweben M. Davis E. Daun B. and Deale M. Scheduling
and Rescheduling with Iterative Repair IEEE Transactions
on Systems, Man Cybernectics, Vol 23 No 6 1993.

[9] Chien S. , Knight R., Stechert A. , Sherwood R., and

Rabdeau G. Using Iterative Repair to Improve the

Responsiveness of Planning and Scheduling Proceedings

of the Fifth International Conference on Artificial

Intelligence Planning and Scheduling 2000.

