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Abstract 

A method of developing custom algorithms using  the Optwise 

scheduling system is presented.  An overview of the overall 

scheduling methodology is presented followed by a description 

of how schedule algorithms may be customized. Performance 

results for the commercial STK Scheduler regression tests used 

to verify algorithm coding enhancements and a case study are 

also provided.  

 Introduction   

Scheduling a number of tasks to a pool of resources is a 

very common but difficult problem. For example in [1] 

Barbulescu et al, demonstrated that a generalized version 

of the range scheduling problem is NP complete. While 

this means that it may not be possible to construct an 

algorithm that can be proven to find “the” optimal solution 

in finite time for the general problem, real world problems 

can have specific conditions that make finding good 

solutions possible. Most successful scheduling algorithms 

used in the real world exploit special conditions that allow 

the users to find good solutions.  

Orbit Logic and Optwise have found that a single 

algorithm for scheduling is not the best choice for all 

problems.  By modifying various algorithm building blocks 

to meet both the desired solution goals and scheduling 

constraints, customized scheduling algorithms can be 

created that meet the needs of particular missions. 

The purpose of this presentation is to describe how the 

Optwise scheduling architecture that is used in STK 

Scheduler can be adapted to specific scheduling problems. 

An introduction to the Optwise algorithms was presented at 

the 2004 STK Users Conference [2]. An overview of the 

custom algorithm interface was introduced at the 2008 
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STK Users Conference [3]. Some of that material is 

updated here for completeness.  

 

Optwise and STK Scheduler 
 

STK Scheduler provides the interface and top level 

business logic that translates a real world satellite task and 

resource problem into the specific language necessary for 

the Optwise algorithms to agnostically find a schedule 

solution.    

 

 
Figure 1: STK Scheduler Task Definition GUI 

 

STK Scheduler provides the interface for defining the 

scheduling problem, configuring the algorithms, as well as 

displaying the results.  The user defines resources and 

associated attributes and then defines tasks and their 

accompanying constraints and resource requirements and 

options.   With a seamless interface to Systems Tool Kit 

(STK) the user can apply physical constraints to the 

scheduling problem by selecting one or more STK 

computations as resource availability or task scheduling 

constraints. The software then uses the Optwise algorithms 

to find de-conflicted, validated schedule solutions which 

can be viewed in table, Gantt, or 3D map views.  STK 
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Scheduler provides both a graphical and application 

programming interface (API) for defining and solving 

scheduling problems and exporting the results.   

 

 
Figure 2: STK Scheduler Gantt View 

 

 
Figure 3: STK 3D Schedule Animation 

 

Within this paradigm, the user can create and modify 

plans manually or can employ one or many algorithms to 

solve the scheduling challenge.  The user can also utilize 

the custom algorithm builder to define an algorithm 

specific to their scheduling problem.  Regardless of the 

algorithm applied, a user may edit the resulting solution if 

desired. 

Over 200 licenses of STK Scheduler have been deployed 

internationaly supporting commercial, civil, and military 

programs.  The user list includes Boeing, Harris, Raytheon, 

Northrop Grumman, Booz Allen, Lockheed Martin, 

Honeywell, General Dynamics, Orbital Sciences, TASC, 

Scitor, EADS, NASA. Pprograms supported by STK 

Scheduler include the Air Force Satellite Control Network 

(AFSCN), SBIRS, SBSS, STSS, OSIRIS-REX, GLAST, 

WIRE, NASA Ground Network, and NFIRE.  In addition, 

Orbital Sciences uses STK Scheduler for all launch and 

early orbit planning for all of their space launch vehicles 

(Taurus, Antares, Pegasus, Minotaur). 

 

The STK Scheduler Model. 
In order to understand its custom algorithms, it is important 

first to understand the STK Scheduler model and how 

Optwise Algorithms fit into that model.   

In the Optwise scheduler model tasks are assigned to 

time slots. As shown in figure 4a) each time slot has an 

earliest start and a latest stop. The desired task duration is 

assigned during this time slot. The time slot also has 

associated with it a profile. The profile is a container that 

allows one or a combination of resources to be defined. It 

is often the case that a task may be satisfied by more than 

one profile as shown in figure 4 b). 

 
Figure 4: Tasks and profiles 

 

For example profile 1 might be the combination of satellite 

A and ground station A and profile 2 is the combination of 

satellite A and ground station B. 

In STK Scheduler the solution profiles are derived from 

real world resource constraints, such as line-of-site access 

from a satellite to a ground station, or limited satellite 

onboard memory, or the times when an operator is 

available in the control center. 

STK Scheduler uses STK to model physical constraints, 

and provides a means for non-computed constraints to be 

defined as well.  All task and resource constraints and 

computations are used to generate windows of opportunity 

that could be used to accomplish the task for a given 

resource profile.  In STK Scheduler these windows are 

called “timeslots”. The process of creating the feasible 

timeslots can be simple (a point-to-point STK access 

calculation) or complex (multiple calls to STK access 

calculations with internal STK constraints combined with 

external user-defined generated constraints).  Any number 

of resources may be specified in a task profile definition 

using Boolean logic to allow a variety of resource 

combination options for any task.  In STK Scheduler each 

valid resource combination is called a “profile”. STK 

Scheduler then passes to Optwise a number of profile 

possibilities including associated computed timeslots.  

Each profile and timeslot also has a desirability value 

associated with it. In STK Scheduler this is used to include 

user resource and time preferences (for instance, it may be 

more desirable to schedule the task in an early timeslot 

with a specific resource profile).  

Tasks may also have several other proprieties including 

priority, desired start time, and duration types. Tasks can 

have fixed or variable durations. Variable duration tasks 

will only be assigned if a minimum duration can be 

assigned, but will be expanded up to a maximum duration 



if possible. Tasks can also be defined to only be allowed to 

use one slot or to use multiple slots. When multiple slots 

are allowed the user also has the option to allow the task to 

switch resources between assignments if needed to achieve 

the desired total assignment duration. 

   
Figure 5: Resource Usage 

 

As shown in figure 5, the resources in a profile may be 

used during, allotted at the start, or replenished at the end 

of tasks. It is also possible define a resource to be use or 

replenish at a rate. For example a particular task may 

deplete a battery resource at particular rate, and another 

task may charge the battery at different rate.  A setup 

resource may be defined for use prior to the timeslot 

access. Note that this resource is used outside the time slot 

time. It is also possible to define a breakdown time. All 

resource levels and time values are computed with double 

numeric precision. All of these properties are defined for 

each profile.  

It is also possible to define task to task constraints such 

as task A must be some amount of time after task B. One 

can also define a minimum and maximum  between tasks 

that have been define to be in a group.  

 

Model Figure of Merit 
The problem input language also allows the user to adjust 

parameters in the figure of merit that is used to measure the 

“goodness” of a solution.  
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assign 
is used to adjust the relative weight for pure 

assignment. This term is complementary to the next term.  

 
K

dur 
is used to adjust the relative weight of assignment 

times the duration. Thus tasks with longer durations will 
affect the FOM more than shorter ones.   
 
K

desire 
is used to adjust the relative weight of desirability of 

the  slot assigned to the task. 
 
K

early 
is used to adjust the relative weight of the early 

bonus. The early bonus is 1.0 if the task was scheduled as 
early as possible and zero if as late as possible for that task.  
 
K

MaxBonus 
is used to adjust the relative weight of the Max 

duration bonus. It is 1.0 if maximum duration is scheduled 
and 0 if minimum duration is scheduled.  
 
K

userstart 
is used to adjust the relative weight of the userstart 

bonus. The userstart bonus is 1.0 if the task was scheduled 
as close to the desired user start and zero if far away as 
possible for that task.   
 
UserFunc is a link to external user function. (dll) 
 

The user is able to change the values of K values in the 

problem definition file in order to adjust how much each 

term contributes to the FOM.  

 

Algorithm Heuristic Classes 

Before going into the details of the algorithm heuristics it 

is useful to take a wider view.  The algorithms used fall 

into two major classes, ordered algorithms that assign tasks 

by trying time slots in some order and the neural algorithm 

which uses a competition model.  

In the ordered type of algorithm, time slots (and thus the 

corresponding tasks) are tried in some order. As time slots 

are used for a task assignment they may block future 

assignments. In the left top panel of figure 6 just such a 

case has occurred (It is assumed that the task requires all 

capacity of a resource).  The slot “consideration” order is 

shown by the numbers near the end of the slot.  By going 

in a different order, two other solutions result in fully 

assigned schedules. 

In Figure 6, three examples using different orders with 

one pass are shown. In the top example only one task is 

assigned because the assignment of task1 to slot 1 blocks 

the only available slot for task 2. The next two examples 

show slot checking orders that result in full assignment.  

It is also possible to use information during the process 

to modify this slot checking order. Multiple passes can be 

used to add additional tasks that may not be schedule in a 

single pass. For example, assume the last task to be 

considered (and assigned) is one which replenishes a 

resource.   A second pass might allow a task unassigned 

during the initial pass to be assigned to the replenished 

resource.  Repair heuristics are implemented by removing 
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a task from a “finished schedule” and then testing if other 

tasks (of higher value) may be done.  A Greedy algorithm 

can be implemented by selecting the next slot based on its 

possible improvement to a Figure of Merit. Which detailed 

strategy is best depends on the specific problem. 

 
Figure 6: Time slots consideration order 

 

We will return to the details of how the various ordered 

search algorithms can be constructed after a discussion of 

the other class of algorithms. 

Figure 7 shows an example of a second class of 

algorithm used in the solver engine. This method evolved 

from an analog neural network approach for the task 

assignment problem suggested by Kennedy and Chua, 

1998 [5] and investigated in [6]. We again begin with a 

model based on time slots. 

 
Figure 7: Neural Competition 

Each time slot represents a possible way to “assign” the 

task and has an assignment probability.  All time slots start 

with an assignment probability near zero. Each time slot 

probability is allowed to grow subject to constraints. An 

example of one fundamental constraint is:  the sum of the 

probabilities of two overlapping assignments must be less 

or equal to one. The algorithm is designed to shift the start 

times of the two tasks in conflict and to reduce the 

probabilities to resolve the conflict.  The “assign the task 

only once” constraint is creating by requiring the sum of 

probabilities for all time slots for a particular task to be less 

than or equal to one. If the sum is greater than one then all 

time slots in the sum are penalized. If there is a resource 

capacity violation at a particular time then the time slots 

probabilities are penalized and the start times of the tasks 

are adjusted to help clear the constraint. This is done for all 

time slots simultaneously.   

Figure 7 shows this process for a two task problem. Note 

that in the middle panel (at a hypothetical iteration 100) the 

first timeslot probability for task one is penalized twice 

while the other two time slots probabilities are penalized 

once. These two time slots will “outgrow” the doubly 

penalized timeslot eventually forcing the first time slot of 

task 1to a zero value. This allows task 2 the freedom to 

move earlier in the schedule. The order of the time slots is 

no longer a factor. The solution is driven by the problem 

constraints.  The solution represents a maximization of an 

underlying objective function which is to maximize the 

number of assignments. In the model implemented for the 

scheduling algorithm engine the objective function 

maximizes total assigned duration.  

Although the example above goes to the optimal 

solution, it is not the case if slot 1 is given an initial value 

significantly larger than slots 2 and 3. This illustrates 

another interesting feature of using such an algorithm. By 

varying the values of the initial nodes randomly, it is 

possible to generate a family of solutions. Notice that 

unlike an ordered search algorithm there is no task or 

resource order rules; the constraints are feedback loops that 

constrain the solution space. 

 

Regression Tests Results 
Optwise and Orbit Logic maintain a library of over two 

hundred past problems that test the feature space of the 

scheduler. The regression tests demonstrate the complexity 

and speed with which STK Scheduler and various 

algorithms solve these problems.  By running a variety of 

algorithms on a variety of problems, it is clear that one 

algorithm is not best for all problems.   

 Most of the regression tests contain less than 100 tasks 

and solve in less than a second with most of the algorithms. 

They are important, but yield little information for 

evaluating performance.  Here we discuss four of the most 

complex tests from a computation point of view and two 

smaller test problems.  All solution times in this section 

were benchmarked on a 64 bit Intel Core 2 2.13 GHz 

processor.   

The names have been replaced in the four customer 

derived cases. Table 1 gives an overview of the dimension 



of the problems with regard to the number of tasks, 

resources and timeslots that are covered. 

 

name #tasks #resources #slots 

15T2R 15 2 20 

OL-Ex10 120 80 363 

Cust1 6510 11 6720 

Cust2 619 163 26850 

Cust3 553 160 24580 

Cust4 526 58 4006 

Table 1: Regression Test Dimensions 

 

The 15T2R test was designed to have many tradeoffs 

involving tasks resource conflicts.  With this setup, the 

Neural algorithm performs very well. However, despite 

what was designed to be a stressing problem, the Random 

algorithm with one trial found a full assignment solution. A 

more detailed analysis in [7] showed that the probability of 

getting a full solution with one run of Neural was 72 % and 

with one run of random it was 48 %. All cases took less 

than a second to run. The FOM was programmed to reward 

total task duration and earliest start. For fully assigned 

solutions higher FOM measures how early the tasks were 

scheduled. 

 

Algorithm # assigned FOM 

OPS 13 221.8 

Sequential 13 221.8 

MPS 14 230.3 

Neural(1) 15 243.3 

Neural(100) 15 243.8 

Random(1) 15 238.5 

Random(100) 15 244.2 
Table 2: 15T2R Regression Test Results 

 

The OL-Ex10 test contains 120 tasks and 30 resources 

using four task types with varying fixed duration times. 

STK accesses were obtained for 10 hours assuming 

simultaneous access to a ground station and some elevation 

constraints. By using a 10 hour time period, the total 

resource availability was reduced to a point where the 

scheduling algorithms needed to do some real work. This 

problem is an example of one that is solved well by the  

  

Algorithm # assigned FOM 

OPS 116 195.9 

Sequential 120 239.1 

MPS 116 218.2 

Neural(1) 120 202.1 

Neural(100) 120 204.0 

Random(1) 120 196.0 

Random(100) 120 199.8 

Table 3: OL-ex10 Regression Test Results 

Sequential algorithm. Only the Neural algorithm was 

capable of getting a full solution prior to the invention of 

the Sequential algorithm. Notice that the Sequential 

algorithm has the highest FOM score. That is because it 

has the tightest packing of the tasks. 

The next four examples are all large problems derived 

from customer problems. All examples include variable 

duration tasks which can be expanded, but have limited or 

no handover tasks. They are 1 or 2 day schedule periods 

with minimum durations as small as 2 minutes and 

maximum duration ranging from 5 minutes to unlimited. In 

the regression test each of the standard algorithms is run. 

The Neural and Random algorithms are run with number 

of tries of 1 and 5.  Table 4 shows the number of 

assignments for each customer derived case with each type 

of algorithm. 

 
Case OPS Seq MPS Neural 

(1) 

Neural 

(5) 

Ran 

(1) 

Ran 

(5) 

1 37 37 37 44 44 48 53 

2 577 598 615 573 578 607 609 

3 544 540 550 526 527 543 549 

4 255 251 267 259 263 254 253 

Table 4: Customer Regression Test Results (Assignments) 

 

Notice that no one algorithm stands out as best for these 

problems. The Random algorithm with 5 tries appears to be 

the best. The MPS method is next in terms of performance. 

Note here that performance is analyzed based on the 

number of assigned tasks. This is not unusual when 

interacting with the STK Scheduler customer base. More 

tasks seem always to trump even the best constructed FOM 

score. Based on customer feedback it is clear that 

customers place a premium on predictability. Unless one of 

the algorithms has found a solution with a much higher 

assignment percentage they will use one pass or sequential. 

Both these algorithms were designed to follow typical 

human strategy. 

 

Case OPS Seq MPS Neural 

(1) 

Neural 

(5) 

Ran 

(1) 

Ran 

(5) 

1 13 13 31 15 26 14 15 

2 9 8 13 171 823 8 11 

3 8 7 12 170 818 7 9 

4 2 2 2 7 28 2 2 

Table 5: Customer Regression Test Results (Solution Time) 

 

The most interesting thing to note in the time to solve 

metric is that the Neural algorithm takes significantly 

longer than the rest for large problems. The Neural 

algorithm must set up a feedback network based on the 

number of timeslots. In the case 2 and case 3 that is 26850 

and 24580 timeslots, respectively. In this problem most 

those nodes have no interaction with most of the other 



nodes.  Because these problems have weak interactions 

between the resources most of the neural computation is 

summing zeros. In this case, the Neural algorithm is a bad 

choice.  

While not yet in the regression test but under current 

development, we have done one problem which had a 

request for 29,745 tasks to be assigned over a 24 hour 

period using 33 resources. There were an astounding 

1,710,462 possible accesses (time slots). Using a modified 

version of the input routine and a custom algorithm very 

similar to the Sequential algorithm (no expand) we were 

able to find a solution with 20,706 assignments in 161 

seconds. That is over 120 assignments per second.  This is 

an example a simple but extremely large problem. It 

illustrates efficiency of the underlying code and the ability 

of the algorithm to handle large problems.  

The results of these regression tests show that across a 

wide variety of scheduling problems with different 

performance criteria, there is no single “best” in the 

“standard” set of algorithm. 

 

 

Solver Architecture and Custom Algorithms 
Next, we turn our attention to the custom algorithm 

feature. The methodology that is used to find a “schedule 

solution” is embedded in a solver engine that has been 

designed from the ground up to be adaptable.  It uses a run 

time interpreted script language to define the algorithm. 

Figure 8: High Level Manager  

 

The job of the high level manager shown in figure 8 is to 

parse the input problem description and  input solution 

script, track solutions generated by the solution script and 

provide output back to the client program (In this case STK 

Scheduler).  

 

The high level manager is also the place in the code where 

“strategy” is added.  Examples of such strategy will 

emerge later in the discussion. 

  

Each box indicates the logical flow of a typical problem. 

The scripting language parallels this flow. These blocks 

also roughly indicate the independence of the underlying 

computation. The code in some of these routines has been 

optimized over the past 10 years to allow near real time 

turnaround for many typical problems. Each component 

has also been designed to be modified.   

 

The basic structure of a solution script is shown in figure 

9. A solution string is a xml format file that contains one or 

more trial specification. A trial specification contains steps 

and modifiers. Steps are order specific, modifiers are not.  

At a minimum, a trial must have a search step. All other 

parameters are optional.  Typically a script that uses an 

ordered search will also have a sort step.  

 
Figure 9: Solution Script Structure 

 

The architecture allows up to three sort levels, each with 

a parameter that defines the preference for sorting.  Sort 

parameters can be set to list, priority, early start, 

desirability, slack, or random.  For list, priority, and 

desirability, the sort parameter can be set to ascending or 

descending.  For random sorts, the randomization can be 

by task, profile, or time slot.  A randomizer allows a 

random choice from remaining slots if all the prior sort 

criteria are equal.  The randomizer name determines 

whether the randomization will occur over all slots, slots 

associated with tasks or slots associated with profiles. Use 

of a randomizer instructs the manger to loop over the trial 

by the named variable number of times, randomizing the 

final variable. This allows a Monte-Carlo like search 



strategy to be implemented. The solution with the best 

figure of merit is chosen.  

Multiple modifiers can be selected and are not order 

dependent.  The first modifier is the use of Priority Groups.  

If the Priority Groups modifier is selected, slots are first 

placed into as many groups as there are unique priorities. 

This allows multiple passes to be made over the slots in the 

group to obtain maximum group assignment before 

moving on to another priority group. Whether or not 

priority groups have been chosen as an option, a single or 

multiple dimensional sort of the slots is available.   

The next two modifiers deal with the Figure of Merit.  

With a Greedy Figure of Merit modifier enabled, each time 

an assignment attempt is completed, the Figure-of-Merit 

(FOM) is checked for all possible assignments assuming 

success. The slot with the largest possible increase in FOM 

is checked next. This mimics a classic greedy heuristic but 

with a user definable FOM. The External Figure-of-Merit 

modifier directs the engine to call an external method 

within a user modifiable dll to calculate the Figure of 

Method (FOM). 

 There are a number of expand modifiers because expand 

is a computationally expensive operation and expanding a 

task early in the assignment process will tend to block later 

assignments. Having the ability to first assign the 

minimum duration required to meet the task requirement 

and later expand duration if it is possible has resulted in 

ability to have maximum task assignment and extremely 

high resource usage.   Expand modifiers are:  Expand after 

Each Try, Expand After Each Task, Expand Handover 

Task Up Front, and pre-Assign and Expand Soft Tasks. 

The pre-Assign and Expand Soft Resources modifier 

instructs the manager to find tasks that use soft resources 

and assign them first. Soft resources are typically rate 

resource that are consumed by some data tasks and 

replenished by other. The resource also has a soft limit to 

how much they can be replenished.  A typical example is a 

battery recharge operation from a solar collector. When the 

battery is full the charging operation is turned off 

automatically at its limit. The easiest way to model it is to 

have a task that is always on whenever there is sun access. 

The onboard system knows when the battery is full and 

soft resources fulfill the same function.  Finding these tasks 

and making sure they are on and fully expanded always 

improves the changes of getting tasks that will require the 

resource on.    

There are three possible search options, ordered, neural 

and DS1MPS. No sort step is required for the neural or 

DS1MPS. DS1MPS implements code that mimics the 

performance of the original algorithms. It requires the 

manager to set up some special tracking since internally it 

is equivalent to doing multiple trials with different 

presorts.  

 

The final step option is an output step. While it seems 

this is essential, for STK Scheduler it is not needed 

because STK Scheduler is able to read the solution string 

from the Optwise scheduling object directly without file 

I/O. You might want an output step if you wish to have an 

additional file written at the end of a series of trials. The 

file format can be a traditional flat file or xml and you can 

select from the last completed try from a trial (current) or 

the best solution found thus far. 

 

Building Custom Algorithms  
While it is possible to create the custom scripts by hand 

editing, a GUI Algorithm Builder is available from within 

STK Scheduler. The user can simply select the sort 

parameters from a list, and chose behavior modifiers from 

check boxes. A screenshot is shown in figure 10.  

 

 
Figure 10: STK Scheduler Custom Algorithm Builder GUI 

 

The process is simple. Select a 1 2 or 3 dimensional sort, 

use pull down list to select a sort parameter (an A or D at 

the end of the parameter names means ascending or 

descending sort), select any modifiers that are needed, if a 

randomizer or neural is used select the number of tries to 

use, select a maximum time to allow for a search, and 

select a output type if needed. When the add Trial to 

Solution button is press an xml string is added to the 

existing solution. You can have multiple trials in a 

solution.  

Example Solution Strings 

The solution string is a simple xml format string. Each 

solution string can have one or more trials. If there is more 

than one trial than the manager keeps track of the best 

solution based on the FOM. Note: the order of modifiers is 

not important but step order is. A search is the only 

required step. Slots will remain in the order they were 

listed in the input description file if the sort step is omitted. 

It is possible to output a name value formatted or xml 

formatted outfile at the end of each trial. The interface of 

the software module also allows the calling client to 

retrieve the solution data without file I/O.  For example the 



solution string that corresponds to the One Pass Algorithm 

in STK Scheduler is: 

<?xml version=’1.0’encoding=utf-8’?> 

<SolnProc> <Trial> 

 <modifier> usePriGrps </modifier> 

<modifier> expandAllTasksAtEnd </modifier> 

<step> Sort1(desireA) </step> 

<step> Search(ordered) </step> 

</Trial> </SolnProc> 

In the One Pass algorithm task are passed into priority 

groups and sorted by slot desirability. If a slot has an 

identical priority and slot desirability then the list order in 

the input description is used. Thus, if there are a number of 

tasks with equal priority and all slots have equal 

desirability, then the first task and slot in the input file list 

order will be tried. Since the slots associated  with a task 

tend to be written in a group typically the one pass 

algorithm will search all slots for a particular task before 

moving on to the next task. It is not a requirement that all 

slots for a task be written at one time, it is a tendency of 

most users. In STK Scheduler the desire parameter is used 

to adjust slot desirability based on priority of the resources 

in the profile and scheduling preferences.  If default values 

are chosen then it is the same for all time slots. It is 

however another way to adjust the algorithm performance.  

Making one change to the string; replacing 

“Sort1(desireA)” to”Sort1(earlyStartA)” changes the 

algorithm to match the Sequential Algorithm in the 

standard algorithms listed in STK Scheduler. In the 

sequential algorithm slots are again placed into priority 

groups. But now since there is a sort(EarlyStartA) slots are 

sorted by their slot start time in ascending order. Thus, the 

task with the earliest possible slot start will be tried first. If 

the task assignment is blocked, then whichever task that 

has the next earliest slot time will be tried. What happens if 

there are multiple slots with the same time? The list order 

of the slots is used. This algorithm is a direct mapping of a 

customer request. Many problems can be solved with this 

first available approach and it tends to match a strategy that 

human schedulers are comfortable with.  

The string for the MultiPass Algorithm is very simple:  

<Trial> <step> Search(DS1MPS) </step> <modifier> 

expandAllTasksAtEnd </modifier> </Trial> . The multi-

pass algorithm was a first generation algorithm that used 

multiple tries with different presorts to find the best 

solution. Depending on the number of resources in the 

problem it tries up to 32 different presorts including a 

phase in which slots are randomize by profile. In order to 

be able to exactly match the original algorithm 

performance, any step based sort parameters are ignored. 

MultiPass inspired the custom algorithm approach. Rather 

than having the presort selection rules fixed in logic, it is 

now possible for the end user to create their own.  

Something similar to MPS could be created in a custom 

algorithm by using multiple trials.  

The string neural algorithm is very similar to the MPS 

string:  <Trial numTries= 5> <step> Search(DS1MPS) 

</step> <modifier> expandAllTasksAtEnd </modifier> 

</Trial>.  As described above the neural algorithm does 

not search in any order so a sort step is ignored. Notice that 

a new variable is now defined in the trial header, 

numTries=5.  This instructs the engine to do 5 runs of the 

neural scheduler using random starting conditions each 

time. Again the best solution based on the FOM is saved. 

Neural works best on problems in which many tasks using 

the same resources at nearly the same times.  

The final algorithm in the standard set of algorithms is 

STK Scheduler is Random. It was originally written to be a 

base case for judging performance. It turned out to be a 

great algorithm for problems where there were multiple 

similar resources and uniform usage was desired. Such 

resources tended to have similar but not quite identical 

access times. The solution string for random is <Trial 

numTries=30> <modifier> expandAllTasksAtEnd 

</modifier> <step> Sort1(ranDS1) </step> <step> 

Search(ordered) </step> </Trial>. The key difference is 

that there is one sort parameter, ranDS1, which is a special 

version of the random sort. ranDS1 exactly matches the 

way that slots were randomized in the first generation 

“random” algorithm. It is most similar to ranSlot. The 

difference is in how slots are randomized. There are now 

many more options for controlling how much a when 

randomization is applied.  

 Randomization of the final variable is one example of a 

scheduling strategy that is added at the manager level of 

the software. The manager simply makes multiple loops 

over a trial randomizing the variable and checking the 

FOM.  Repair as described in [8] [9] can also be 

implemented by modifying this level of coding.  For repair 

the high level manager uses some method to select a 

portion or portions of a schedule solution to freeze and 

then schedules around the partial solution.  The routines 

that expand the task duration at the end of the schedule are 

an example of repair behavior.  Those routines are clever 

enough to be able to move a task later in time that is 

constraining the duration expansion of a primary task.  

 

NASA Case Study Example 
Next consider an example of a problem we investigated as 

part of a proposal to demonstrate the application of STK 

Scheduler to the NASA Ground Station Problem.  For the 

problem we modeled a two week period during which 41 

spacecraft with multiple view requests were assigned to 

one of 20 ground station antennas.  Since each spacecraft 

mission was assigned a unique priority, there were 41 

priorities levels. Based on desired the number of desired 



events per mission and the availability of the resources the 

feasibility modeling of STK Scheduler generated 4452 

possible tasks and 158,069 time slots. 

The customer also defined two goals. The primary goal 

was to assign the largest number of events to the highest 

priority missions first if possible. The secondary goal was 

to maximize assignment and match target resource usage 

as define in an external spreadsheet.  The purpose of the 

spreadsheet calculation was to penalize solutions in which 

an individual resource did not match contractually 

obligated resource usage levels for some resources. Over 

usage incurred additional charges while under usage 

implied wasted contract time. The spread sheet calculation 

computed a composite which tried to capture these two 

goals but did not strictly enforce the first goal.  

The proposed figure of merit was  

 

FOM = 1 + (100* A -1000*B - C)/D, where  

 

A = ∑(number of events over desired),   

B = ∑(number of events under desired),  

C = ∑(individual resource usage penalty) , and  

D = ∑((501-pri)*number desired events).  

 

The sums are over the missions except for C which is 

over the resources. For the STK Scheduler modeling of this 

problem, the number of tasks is equal to the number of 

desired events. It is not possible to assign more than the 

desired number of events and A will always be zero. The 

resulting FOM in form is 1- ∑ δ/K - C/K.   (δ= 1 if a task is 

assigned and 0 if not).  K is a new constant that correctly 

scales between the reduced form and the correct 

spreadsheet formula. The key point is that ∑ δ is an 

available term in the existing FOM. The C/K (penalty) 

term must be computed externally. Figure 11 shows data 

being exported from STK Scheduler to and Excel macro 

for calculation of the NASA FOM.  

 
Figure 11:NASA Case Study Architecture 

The first test was to try the existing standard algorithms 

and ignore the penalty term and use data exported from 

STK to calculate the FOM. The best standard algorithm 

was the Sequential Algorithm.   

The second test was to use Algorithm Builder to create a 

custom algorithm again ignoring the penalty term. The best 

custom algorithm found was to add randomize profiles to 

the sequential algorithm with 50 tries.  

For the third test an external FOM was coded that was used 

to select the best solution from the multiple tries.  

Finally, the greedy option with the external FOM was 

tried which checks the delta FOM of all possible slots to 

choose the next slot to try. The external NASA FOM had 

to be modified slightly to allow a better delta FOM to be 

calculated.   

Table 6 shows how each algorithm fared with regard to 

number of assignments, FOM score, and the penalty score.  

It also shows the number of priority assignments missed 

relative to the best solution at a specific priority level. 

 

Algorithm Assigned FOM Penalty # missed 

relative best 

at pri= 

 

Sequential 

 

 

3608 

 

0.5592 

 

0.050 

 

-32 

at pri=16 
Sequential 

with random 

profile  

internal FOM   

50 tries 

 

3636 

 

0.5558 

 

0.067 

 

-7 

at pri=16 

Sequential 

with random 

profile  

external FOM 

200 tries 

 

3644 

 

0.5645 

 

0.062 

 

Best case 

primary 

criteria  

Greedy 

External FOM  

30 tries 

 

3584 

 

0.5775 

 

0.002 

 

-2  

at pri=6 

Table 6:NASA Case Study Results 

 

It turns out the best solution from a FOM point of view 

does not meet the primary goal: “assign higher priority 

tasks before lower priority if possible”. The best FOM case 

of 0.5775 found with Greedy, results in 2 fewer tasks 

assigned at priority level = 6 than a case with a  FOM= 

0.5645.  To get the better FOM, assignments were made to 

meet the target usage levels at the cost of total tasks 

because that’s what the FOM said was the trade-off. A 

human operator would probably not bump a higher priority 

task in order or take a lower total number of assignments to 

obtain better resource usage.    

Another point of comparison is time to solve.  All 

algorithms took around 10 seconds per try to solve the 

problem except for the Greedy FOM which was 

significantly slower at over 300 seconds per try. Trying to 



add code that could search for very small improvements in 

the external FOM was very expensive computationally. On 

the other hand method 3 which loosely coupled the 

external FOM but allowed for random searching of the 

solution space found the best solution from the primary 

goal point of view using less computation time.  

 

Conclusion 
In this paper we have shown how creating customized 

algorithms using STK Scheduler can be used to increase 

the value of schedule solutions.  Optwise provides the 

underlying architecture with a flexible algorithm scripting 

language and solver engine.  On top of the Optwise 

architecture, STK Scheduler provides GUIs and APIs that 

allow the user to define tasks and resources that can be tied 

to physical constraints, build specialized algorithms, adjust 

the figure-of-merit, run the algorithms, and visualize the 

schedule results in a variety of formats.  The value of the 

custom algorithm was shown in a NASA case study where 

a variety of custom algorithms were developed and 

compared with regard to how well each solution met a 

variety of specific criteria. It is the design synergy between 

adaptable algorithms, schedule data management, flight 

dynamics computations and user interfaces which is 

required to meet the aerospace scheduling challenges of 

today and tomorrow.     
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