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ABSTRACT 
 
Ballistic lunar capture transfers from the Earth were 
first developed in 19871, using the weak stability 
boundary (WSB) theory.  This type of lunar transfer is 
known commonly as the WSB transfer.  In 1991 a WSB 
transfer was used by the Japanese spacecraft Hiten 
which successfully reached the Moon in October of that 
year2,5,16.  Since that time WSB transfers have been 
extensively studied, and several missions are planning 
to utilize its fuel saving properties5,10.  This recent 
interest in WSB transfers has motivated finding a more 
accessible way to generate them. This paper 
demonstrates the algorithms and methodologies to 
design WSB transfers and analyze launch windows.  
This work is being done with the software package 
STK/Astrogator.  Astrogator is the successor to the 
well known software package Swingby, which was 
developed at the NASA/Goddard Space Flight Center 
and has been the subject of several previous papers7,8,17.   
 

1. INTRODUCTION 
 
Ballistic lunar capture transfers from the earth to the 
moon have the unique property that upon arrival at the 
moon, a spacecraft is automatically captured in an 
elliptical orbit without the use of rockets.  Transfers 
using this process were first precisely numerically 
demonstrated in 19871.  These were initially designed 
for spacecraft requiring electric propulsion.  A more 
useful transfer of this type for rockets using chemical 
propulsion was designed in 1990, and used by the 
Japanese spacecraft Hiten in 1991 which arrived at the 
Moon in October of that year2,5,16.  The efficient 
calculation of this transfer is the subject of this paper. 
These transfers are of interest for applications because 
of their fuel saving property. 
 
The transfer used in 1991 has evolved considerably 
since that time, and is commonly referred to as the 

WSB lunar transfer.  This boundary is a region about 
the Moon where sensitive chaotic dynamics can occur, 
and was first numerically discovered and mapped out in 
19871.  A new analytic approximation has recently been 
developed and is described in Section 2.2.  The WSB 
can be viewed as a generalization of the Lagrange 
points and is a complicated region surrounding the 
Moon.  The WSB has been described in more detail5,6, 
and a plot of one is shown in Figure 1 represented in an 
Earth-Centered Inertial (ECI) coordinate system.  An 
object can be ballistically captured at the Moon if it 
arrives at the WSB.   
 

 
Figure 1: WSB Transfer to Lunar Orbit in ECI 
 
Until 1996 it was difficult to calculate WSB transfers in 
an efficient way.  This is because the dynamics in this 
region being sensitive make it difficult to target to from 
the Earth using standard search methods that one might 
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use for Hohmann transfer design.  Thus, backwards 
methods were employed where one would start the 
targeting process at the lunar WSB, and then integrate 
backwards and see where the tiny variations in the lunar 
capture state could cause the trajectory to come back to 
the Earth at the desired state1,2,16.  This approach is 
unwieldy and time consuming.  It was discovered in 
19933 that the backward method works because the 
trajectories were following invariant manifolds 
associated to the WSB.  It was conjectured in a special 
case that the WSB was a complicated region consisting 
of many intersections of invariant manifolds, and this 
was verified in 199912.  
 
In 1996 a standard type forward search algorithm was 
discovered to compute these transfers4. It was 
developed in support of the US Air Force Academy 
Blue Moon mission study.  It uses only two control 
variables at the Earth and two target parameters at the 
Moon. This is referred to as a forward method and is 
used in this paper together with the software package 
Astrogator to show how to calculate these transfers in a 
straight forward and efficient manner. We demonstrate 
how to determine a launch period, and other important 
mission design quantities. The forward algorithm is 
introduced in Section 2.1.  It is applied in a modified 
form in Sections 3, 4, and 5. 
 
The WSB lunar transfer when compared to a Hohmann 
transfer has many advantages4. If one considers leaving 
the Earth in a Low Earth Orbit (LEO) at 200 kilometers 
altitude and transferring to Low Lunar Orbit (LLO) at 
100 kilometers altitude, the WSB transfer saves about 
25% in the ∆V required for lunar capture, while the ∆V 
required to leave LEO is about the same. This 25% 
improvement can in certain circumstances double the 
payload that can be placed into LLO.  Also, the capture 
process is more gradual not requiring large Newton 
thrusters, and the sensitivity of the transfer means that 
less ∆V is required for orbit maintenance.  The WSB 
transfer has the increased flight time of 90 days and an 
Earth apoapsis of approximately 1.5 million kilometers 
which should be considered in mission design. This 
transfer is being considered in a number of mission 
studies, and plans to be used for Japan's Lunar A 
mission10.  Because of the possible doubling payload 
aspect of these transfers, they may be very 
advantageous for any future lunar base development. It 
is noted that these transfers can also be constructed for 
ballistic capture at Europa's WSB14, and could be 
designed for other planets and satellites as well. 
 
The following section describes an overview of the 
forward targeting algorithm and the definition of the 
WSB.  Section 3 then describes a practical application 
of this algorithm to calculate a specific WSB transfer 

from Earth to a lunar orbit.  This trajectory was taken as 
the nominal (or “baseline”) trajectory for the 
subsequent launch window analyses described in 
sections 4 and 5.  Section 6 gives details of 
STK/Astrogator‘s software models used in these 
analyses. 
 

2. EFFICIENT FORWARD TARGETING 
 
In this section, the forward targeting algorithm is 
briefly described, and the WSB is plotted in 3D for a 
special choice of parameters.  
 
2.1 Forward Targeting Algorithm 
 
The previously published forward algorithm4 is briefly 
described here.  The trajectories calculated in this 
algorithm should be numerically integrated modeling 
the forces acting upon the spacecraft as accurately as 
possible.  An application of this targeting algorithm will 
be demonstrated in Sections 3, 4, and 5, along with a 
description of the numerical methods used. 
 
We consider a point x with respect to the Earth at a 
radial distance rE.  The six orbital elements that are 
chosen at x are represented in special spherical 
coordinates by rE, longitude (αE), latitude (δE), velocity 
magnitude (VE), flight path angle (γE), flight path 
azimuth (σE–the angle in the local plane from the 
projection of the positive z-axis to the velocity vector.) 
We let rM, iM be the desired radial distance and 
inclination with respect to the Moon. The 2X2 targeting 
algorithm is to vary VE, γE and target to rM, iM. 
Symbolically, this is denoted by  
 

VE, γE → rM, iM . 
 
The initial value of VE is chosen so that the trajectory is 
on a Keplerian ellipse with an Earth apoapsis of 1.5 
million kilometers.  The initial value of γE is chosen 
near zero. The initial epoch is chosen so that the Sun is 
at a desired angular distance away.  The method of 
determining the desired angular distance of the Sun has 
been previously described16, and an example will be 
demonstrated in Section 3. Using a second order 
Newton's differential correction targeting algorithm it is 
found that convergence to rM, iM usually occurs in about 
six iterations, and that the resulting lunar eccentricity 
eM is less than one, so the state is elliptic and the 
spacecraft is in the lunar WSB. It is remarked that at the 
Earth apoapsis of the transfer at approximately 1.5 
million kilometers, which occurs about 45 days after 
Earth injection, the spacecraft is in the WSB of the 
Earth, where the Sun is the main perturbation.  This is 
different from the WSB of the Moon where the Earth is 



AIAA 2000-4142 

3 
American Institute of Aeronautics and Astronautics 

the main perturbation.  A precise meaning of being in 
the Earth-Sun WSB has been previously described6.  
      
2.2 Visualization of Weak Stability Boundaries  
 
The analytic formulation and visualization of WSB’s 
has been given in detail5,6 and we only summarize a few 
results relevant for this paper regarding the lunar WSB.  
 
For simplicity for this section alone, we only model the 
Earth and Moon, and assume that they move about their 
common center of mass in uniform circular motion.  In 
addition, we assume that the motion of the spacecraft 
lies in the same plane as the Earth and Moon, and the 
spacecraft is assumed to have zero mass.  We go to a 
rotating coordinate system whose x-axis passes through 
the Earth and Moon, and which rotates with the same 
uniform velocity as the Earth and Moon.  We put the 
center of the coordinate system at the Moon, where the 
Earth is now located on the x-axis to the right of the 
Moon.  The unit of distance is dimensionless, and 
scaled so that the average Earth-Moon distance of about 
380,000 kilometers is normalized to 1.0.  In our two 
plots below, the actual distance for rM is obtained by 
multiplying the scaled distance by 380,000 kilometers. 
Likewise, the uniform velocity of the Moon about the 
Earth is normalized to 1 and the mass ratio— the 
Moon’s mass divided by the Earth’s mass— is taken to 
be µ = 0.0123.  This is the modeling for the planar 
restricted three-body problem. 
 
In polar coordinates with respect to the Moon in the 
rotating system, rM, θ, the Earth is at the angle θ = 0, 
and the anti-Earth direction, towards the exterior 
Lagrange point, is θ = π. A quantity that is of interest is 
the total energy the spacecraft has moving in the scaled 
rotating system, and it is called the Jacobi energy5,15.  
Here, we use the variable E, which is negative of the 
Jacobi energy.  The variable E has special value of 
approximately E1 = -3.184 when evaluated at the 
exterior Lagrange point.  We are interested when 
capture can occur at the Moon and this can only happen 
when E > E1.  
 
The WSB can be parameterized by eM, θ, E. More 
exactly, it gives a distance rM where a spacecraft 
orbiting about the Moon is between capture and escape, 
and where the spacecraft is captured so that eM < 1. 
Thus, it is an unstable capture.  The distance then from 
the Moon where the WSB is located is 
 

rM = rM(eM, θ, E).                         (1) 
 
Equation 1 has previously been given implicitly5,6.  
From (1), we can alternatively write 
 

 E = E(eM, θ,  rM).                         (2) 
 
It is assumed this distance is the periapsis radius, so that 
the velocity vM is known from eM, rM as 
  

vM = ((1+eM)µ)1/2rM
-1/2 - rM .               (3) 

 
This is the inertial velocity at periapsis in rotating 
coordinates. 
 
The WSB is plotted in Figure 2.  We plotted the surface 
E = E(eM, rM), where we chose θ = π.  We chose θ = π 
because for the WSB transfer, capture at the Moon 
typically occurs near the lunar far side. In this plot, the 
vertical z-axis is the E-axis, and this axis starts at 
E = E1, which is needed since we require E > E1. It is 
seen that as eM approaches 1, rE approaches 0.  The x-
axis is the eM-axis, and the y-axis is the rM-axis.  This 
was plotted with Mathematica.  The portion of the plot 
that is flat means that the surface is below E1. 
 

 
 
Figure 2: Lunar WSB Surface –  
                  (eM, rM, E), θ = π 
 
If a contour plot is made from this plot for rM near zero 
for the values corresponding for capture altitudes of a 
few hundred kilometers, e.g., rM = 0.0059 corresponds 
to about 500 kilometer altitude, then Figure 3 is 
obtained. 
 
The vertical axis is eM, and the horizontal axis 
is rM.  Thus, there are many values of E giving rise to 
points on the WSB where ballistic capture can occur 
with the given values.  In this plot, E ∈ [-3.13, -2.98].   
These values agree to high precision when compared to 
actual ballistic capture transfer values at the WSB.  
Thus, the analytic formulation previously given5,6 is an 
accurate modeling.  
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Figure 3: Moon –  E-contours, (rM, eM)-plane 
 

 
3.  THE NOMINAL TRAJECTORY 

 
We generated the nominal trajectory described in the 
following analysis using a modified form of the forward 
targeting algorithm previously described.  We made 
these modifications to allow straightforward launch 
window analysis.  The nominal trajectory was 
calculated for a launch in April, 2007, although these 
transfers are possible every month.  The desired lunar 
parameters were chosen to be rM = 3000 kilometers, and 
iM = 90 degrees. 
 
We modeled the nominal trajectory using 
STK/Astrogator’s “Mission Control Sequence” (MCS).  
The MCS allows specification of the “segments” that 
collectively define the entire trajectory; the user defines 
any combination of propagation and maneuver 
segments (along with other segments) and sets the 
parameters for each segment.  For this analysis, we 
used a sequence that started from launch, inserted into a 
300 kilometer circular LEO, and coasted in LEO until 
the Trans-Lunar Injection (TLI) maneuver.  We 
modeled the TLI as an impulsive ∆V along the velocity 
vector, and propagated the orbit using numerical 
integration through the transfer, the capture at the Moon 
and then in lunar orbit. 
 
3.1 Determining the Launch Date 
 
Once the desired month of launch had been chosen, the 
first step was to determine the day of the month for 
launch that would have the required Sun-Earth-Moon 
geometry.  The Sun-Earth-Moon angle, λ, is convenient 

to describe the geometry.  Figure 4 shows λ in the Sun-
Earth Rotating coordinate system.  The Earth is in the 
center, and the Sun-Earth line defines the x-axis.  The 
trajectory is the same as in Figure 1.  In this analysis we 
chose a Quadrant II transfer, which has its apogee 
toward the Sun.  (Quadrant IV transfers are also 
possible, which effectively rotates the geometry by 180 
degrees.) 
 

 
Figure 4: Quadrant II WSB transfer in Sun-Earth 
Rotating Coordinates. 
 
Using a first guess of λ = 130° for a quadrant II transfer 
based on previous work4 is sufficient to allow 
subsequent targeting steps to converge.  Although this 
can be done manually looking at an almanac, it was 
convenient to use Astrogator’s differential corrector 
targeter to find the date in April, 2007, where λ = 130°.  
The first date found was 27 April. (7 April yields the 
same λ.) 
 
3.2 Calculating the Trans-Lunar Injection (TLI) ∆V 
 
The next step is to determine the necessary TLI ∆V to 
impart the proper energy to leave LEO and enter the 
transfer trajectory.  As mentioned before, the apogee of 
these transfers is about 1.5 million kilometers.  As a 
first guess using an Earth-centered Keplerian 2-body 
motion, the semimajor axis, a, of an ellipse with such 
an apogee radius and a radius of perigee of 6678 
kilometers (300 kilometer altitude) is about 753,340 
kilometers.  From the vis viva equation,  

,
22

2

ar
v µµ

−=−                          (4) 
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(with µ representing, in this case, the gravitational 
constant of the Earth) the velocity at perigee of this 
ellipse, vf is about 10.902 kilometers/second.  Since it is 
easily calculated using (4) that the velocity, vi, in the 
300 kilometer circular LEO is about 7.726 
kilometers/second, a first guess at the impulsive TLI 
∆V is 
 

∆VTLI = vf -vi = 3.176 km/second. 
 
Of course, the actual LEO orbit will not be perfectly 
circular, and sometimes during pre-mission analysis the 
LEO altitude is not defined very well, so it is often 
convenient to work in terms of the orbital energy rather 
than absolute velocities.  The definition of the C3 
energy is 
 

C3 = -µ/a, 
  
which yields –0.529 km2 / second2.  A differential 
corrector can quickly calculate the necessary ∆VTLI 
from any point in the orbit at any LEO altitude. 
 
3.3 Calculating the Launch and Coast Times 
 
Figure 4 shows the angle, α, between the Sun-Earth line 
and the trajectory at launch.   A first guess at this angle 
is important for creating a trajectory that will encounter 
the Moon with the proper arrival conditions.  If the 
trajectory were hyperbolic with respect to the Earth, 
this angle would be calculated as the angle between the 
outgoing asymptote and the Sun-Earth line.  Because 
the trajectory is less than hyperbolic, we use the line-of 
-apsides as the defining parameter.  It is convenient to 
represent the Right Ascension, α, and the Declination, 
δ, of the line-of-apsides in the Sun-Earth rotating 
coordinate system.  Using this representation, δ 
becomes a measure of the trajectory’s relationship to 
the ecliptic plane.  Moreover, because the Moon’s orbit 
is within 5 degrees of the ecliptic plane, this is a useful 
parameter to monitor and control. 
 
The time of launch and the coast duration in LEO 
before TTI fully control the orientation of the post-TLI 
transfer ellipse.  The time of launch establishes the 
Right Ascension of the Ascending Node (RAAN), and 
the coast duration establishes the argument of perigee, 
ω.  Astrogator’s targeter quickly modifies these control 
parameters to converge on a specified α and δ.  For 
Quadrant II transfers, a first guess of α between 25 and 
40 degrees is sufficient.  We chose δ = 0 degrees as a 
first guess for simplicity.  However, these trajectories 
are not confined to stay in the ecliptic plane, and other 
mission requirements may drive the selection of δ. 
 

In section 2.1, the forward targeting algorithm used the 
control parameters VE and γE to target on the constraint 
parameters at the Moon.  The ∆VTLI directly corresponds 
to VE by simply being the difference between V and the 
velocity in LEO. 
 
The control parameter γ is directly related to the coast 
duration.  Figure 5 shows γ as the angle between the 
velocity vector, V, and the local horizontal (which is 
perpendicular to the position vector). We can also 
choose an equivalent state R′ and V′, with a 
corresponding γ′ set to zero. R′ must be rotated in a 
retrograde fashion from R by the angle γ in order to 
align V′ along the direction of V.  This position of R is 
directly controlled by the coast duration, which is the 
time when the spacecraft is in LEO from insertion until 
TLI.  The duration from launch to LEO insertion is 
assumed to be constant and depends on the launch 
vehicle. 
 

 
Figure 5: The relationship of flight-path angle to 
coast duration. 
 
 
3.4 Targeting the Lunar Capture 
 
Once the launch date, energy, and orientation of the 
transfer trajectory were determined as previously 
described, the trajectory arrives at the moon with a 
radius of lunar periapsis (periselene) from 30,000 
kilometers to 250,000 kilometers. 
 
It should be noted that these trajectories experience 
multiple periselene passages, and care must be taken to 
monitor the periselene at which the constraint 
parameters are evaluated.  The first periselene 
encountered by the spacecraft after apogee occurs about 
a week after apogee, and the spacecraft is about 1.4 
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million kilometers from the Moon.  This periselene is 
not useful for targeting.  The second periselene occurs 
much closer to the Moon, and can be targeted directly.  
Unfortunately, because of the sensitive nature of these 
trajectories, sometimes the second perigee is 200,000 
kilometers or more from the Moon, and the third 
perigee is much closer to the Moon.  In this case it was 
helpful to set up Astrogator to stop propagation both  
on the third periselene, and on the second periselene if 
the distance from the Moon was less then 50,000 
kilometers.  Astrogator then stops at the first satisfied 
condition. 
 
At this point, it was sometimes helpful to refine ∆VTLI 
by first targeting on a constraint of rM = 10,000 
kilometers.  This eliminated the problem of stopping on 
different periselene events during targeting.  After this 
converged, targeting on rM = 3000 kilometers and iM = 
90 degrees converged more rapidly. 
 
After the targeting on rM and iM converged, we had 
some success in controlling how well the spacecraft 
was captured in Lunar orbit by increasing the targeting 
problem from 2x2 to 3x3, and targeting the C3 at 
periselene with respect to the Moon.  The additional 
control parameter was the launch time.  After targeting 
the 2x2 problem, the lunar C3 measured at periselene 
was about –0.04 kilometers2/second2.  We targeted for a 
C3 of –0.1, which resulted in the trajectory displayed in 
Figures 1 and 4.  This trajectory orbits the Moon for 
several months after the initial periselene capture.  
Investigation of this capability was beyond the scope of 
this paper, but was promising enough to be used for 
launch window analysis, described in the next section. 
 

4. LAUNCH WINDOW DURING A SINGLE DAY 
 
For this analysis, the “Launch Window” is defined as 
the time during a given day that the spacecraft can be 
launched and return to it’s nominal orbit, in this case, 
around the Moon.  Although it is not always necessary 
to return to the exact same orbit to meet mission 
requirements, for this analysis it demonstrated useful 
trends.  Returning to the exact same orbit often 
increases the ∆V unnecessarily if only a few orbit 
parameters are required.  
 
Using the trajectory targeted in the previous section, we 
looked at launching before and after the nominal launch 
time.  Since it is unlikely that the LEO coast duration 
and the ∆VTLI can be changed when the launch slips on 
the order of a few minutes, these parameters were not 
used to retarget the trajectory.  Instead, a Mid-Course 
Correction Maneuver, (MCCM), was placed at apogee.  
Three orthogonal components of MCCM were 
described using Astrogator’s Velocity-Normal-

Conormal (VNC) local coordinate axes.  The x-axis of 
this system is defined to be aligned with the inertial 
velocity vector, V.  The y-axis is aligned with the orbit 
angular moment, N = RxV.  The z-axis is called the 
“conormal”, and is defined as C = VxN.  C is therefore 
directed outward, away from the central body of the 
orbit.  For a circular orbit or at apoapsis and periapsis, 
C is naturally aligned with R. 
 
The nominal launch time was varied by 10 minutes, 
before and after.  Each trajectory was targeted back to 
the same lunar orbit.  This targeting was done in three 
steps.  These steps were automated in Astrogator so no 
user intervention was necessary between them. 
 
First, the conormal component of MCCM was 
controlled to target a constraint that when the spacecraft 
was within 300,000 kilometers of the Moon, the 
distance from the Earth was the nominal value of 
555,610 kilometers.   
 
The second step controlled the normal and conormal 
components of MCCM to target on constraints at 
periselene: rM = 3000 kilometers, iM = 90 degrees. 
 
The final step was to add the velocity component of 
MCCM to the controls of step 2, and add the constraint 
of lunar C3 = -0.12 kilometers2/second2. 
 
Figure 6 shows a linear dependence of the MCCM ∆V 
on the time from launch.  These data indicate that a 
launch window of 20 minutes on this day could be 
achieved for a possible ∆V of less than 50 
meters/second. 
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Figure 6:  MCCM ∆V as a Funtion of Launch Time 
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There is no reason to think that apogee is the optimal 
place to perform this MCCM.  We varied the true 
anomaly of MCCM on one occasion by plus and minus 
two degrees, and saw a change in MCCM magnitude of 
a few meters per second.  For the sake of consistency, 
all were performed at apogee in this study, but further 
investigation could prove useful. 
 
The Launch, ∆V, and Periselene data for these cases are 
given in Table 1 in the Appendix. 
  

5. LAUNCH PERIOD OVER SEVERAL DAYS 
 
This section describes the “Launch Period”, which we 
define for this analysis as the days of the month that the 
spacecraft can be launched and return to it’s nominal 
orbit.  As with the previous launch window study, we 
assume that the TLI ∆V magnitude cannot be changed 
from day to day.  However, we assume that the coast 
duration in LEO can be reprogrammed on the launch 
vehicle, and therefore we used it as a control parameter. 
 
Because the Moon moves about 13 degrees every day, 
there is a serious timing problem in trying to return to a 
nominal orbit.  A single maneuver at apogee will not 
correct the orbit for a one-day launch slip; the period of 
the transfer orbit must be changed.  We used an 
“Energy Correction Maneuver” (ECM) to accomplish 
this change in period.  The ECM was applied along the 
inertial velocity direction using the VNC axes, and can 
be positive (direct) or negative (retrograde). 
 
The most efficient place to change the period of an 
elliptical orbit is at periapsis, which is where the TLI 
occurs.  In maneuver operations, the maneuver cannot 
be planned until a good orbit state vector is produced 
from tracking the spacecraft and performing orbit 
determination.  For orbits with high eccentricity, the 
orbit determination solution requires from 4 to 12 hours 
of tracking.  For this analysis, we assume that no 
maneuver can be performed until after 24 hours from 
TLI.  (If the maneuver can be performed earlier, the ∆V 
will be less than reported here.) 
 
In addition to the ECM, the MCCM from the previous 
section was also used.  This with the time of launch and 
the coast duration give six control parameters: 
 
1. Launch epoch, 
2. Coast duration in LEO, 
3. ECM velocity component, 
4. MCCM velocity component, 
5. MCCM normal component, and the 
6. MCCM conormal component. 
 

With such a variety of control parameters, we can 
expect a unique solution to the targeting problem with a 
like number of constraints.  After inspection of the 
perturbed trajectories and some experimentation it was 
found that the easiest place to target constraints was not 
at periselene, but at 300,000 kilometers from the Moon.  
At this point we targeted on the remaining 6 parameters 
that made up the nominal state vector at this same 
radius, represented with respect to a Moon-centered 
inertial coordinate system as: 
 
1. Epoch, 
2. Right Ascension, 
3. Declination, 
4. Lunar C3, 
5. horizontal flight path angle, and 
6. inertial velocity flight path azimuth. 
 
This 6x6 targeting method converged very rapidly for 
the “nominal plus 1 day” case, and up to the “nominal 
minus 3 day” cases.  Figure 7 shows the relationship of 
the total ∆V (ECM + MCCM) to the days from the 
nominal launch. 
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Figure 7: Total ∆V as a Function of Launch Date 
 
These data indicate that a 5-day launch period including 
the nominal could be achieved for a possible ∆V of 50 
meters/second 
 
The “nominal plus 2 day” case and the “nominal minus 
4 day case” converged very slowly, but are not even 
reported here because they never converged 
completely, and the MCCM ∆V was growing in excess 
of 500 meters/second.  Perhaps other maneuver 
strategies would allow these to converge for a 
reasonable ∆V cost. 
 
The Launch, ∆V, and Periselene parameters for these 
cases are given in Table 2 in the Appendix. 
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6. SOFTWARE MODELS 
 
The software used in this analysis is the Satellite Tool 
Kit (STK).  STK/Astrogator is the maneuver planning 
and trajectory design module of STK.  Additionally, the 
Visualization Module (VO) was used extensively to 
analyze the complex 3-dimensional nature of the 
trajectories as they fall towards the Moon.  (More 
detailed descriptions of Astrogator’s  algorithms can be 
found in the on-line help.) 
 
STK/Astrogator was developed commercially by 
Analytical Graphics, Inc., in cooperation with the Flight 
Dynamics Analysis Branch at the NASA Goddard 
Space Flight Center (GSFC).  Astrogator was 
developed as a commercial follow-on to the software 
program Swingby7,8,17, previously developed at GSFC. 
 
6.1 Launch Model 
 
STK/Astrogator uses a simple launch model to support 
this type of analysis.  The launch model is configured 
with the LEO insertion, or “burnout” state vector, 
represented relative to the Earth-body-fixed system.  
These parameters are normally obtained by the 
trajectory analyst from the launch vehicle organization.  
In addition to the burnout parameters, the time-of-flight 
from launch to burnout is entered.  By making the 
assumption that the burnout state will remain the same 
with respect to the Earth-body-fixed system for a wide 
range of launch times and days, Astrogator adds the 
time-of-flight to the launch epoch, rotates the body-
fixed state to an inertial coordinate system, and uses 
this as the initial state vector for the LEO.  This allows 
all targeting to be done in a forward manner, and the 
analyst does not need to try to “patch” a trajectory back 
to a launch inclination and RAAN. 
 
6.2 Orbit Propagation 
 
There are several user-configurable orbit propagation 
algorithms in STK/Astrogator.  They all consist of 
variable step Runge-Kutta numerical integrators, and 
for this study, the Cowell form of the equations of 
motion were integrated.  The analyst configures the 
force model through the user interface, and can select 
from a variety of options: The central body of 
integration; the spherical harmonic model used along 
with the degree and order; the atmospheric model; 3rd 
body perturbations; and solar radiation pressure. 
 
For this study, the positions of the planets were 
calculated from the Jet Propulsion Laboratory’s DE-405 
ephemerides (although other theories can be 
substituted). 
 

 
 
6.3 Targeting 
 
The targeting algorithm used in Astrogator is a 
differential corrector.  This calculates a numerical 
sensitivity matrix describing the changes in the 
constraints as a function of changes in the controls.  
This matrix is used to estimate the corrections to the 
control variables based on the deviations from the 
desired constraints.  The user has control over the 
perturbation size used to calculate the numerical partial 
derivatives, as well as several other options to control 
the speed of convergence.  This technique has proven 
useful on a variety of missions, and the implementation 
in Astrogator has features so that the process can be 
automated though the GUI and through scripts. 
 

CONCLUSIONS 
 

We have shown examples of how WSB transfer 
trajectories can be targeted with readily available 
software.  We have also demonstrated that it is possible 
to return achieve a nominal lunar orbit for a 20 minute 
launch window on a given day for about 50 
meters/second ∆V.  Furthermore, for and additional 50 
meters/second a launch period of about 5 days per lunar 
cycle can be achieved. 
 
We are optimistic that by using other trajectory 
techniques, the launch opportunities can be expanded, 
and the ∆V cost reduced.  Other options include using 
cislunar loops to correct launch errors and launch slips 
before transferring to the large orbit.  The placement of 
the corrective maneuvers ECM and MCCM can be 
adjusted to reduce ∆V.  And possibly most 
significantly, if the mission can be accomplished with 
loose requirements on the lunar orbit, a “return-to-
nominal” method can be avoided, which could 
substantially reduce the ∆V costs. 
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APPENDIX:  TABLES 

 
The data in these tables have the following units: 
• ∆T in minutes and seconds, as noted;  
• ∆V in meters/second;  
• distance in kilometers;  
• C3 in kilometers2/second2; and  
• angles in degrees. 
 
 

 ∆T MCCM ∆V Periselene Parameters TOF 
Launch Epoch (min) (m/s) Rp Inc C3 Ecc RAAN ω Epoch ∆T (s) (Days) 

4/27/07 21:42 -10.00 41.52 2999.999 90.0000 -0.1206 0.9262 84.6346 10.7149 8/2/07 4:45 -64.90 -96.29 
4/27/07 21:47 -5.00 21.36 3000.022 90.0001 -0.1206 0.9262 85.1526 13.2575 8/2/07 5:30 -19.59 -96.32 
4/27/07 21:49 -3.00 12.97 3000.892 89.9958 -0.1206 0.9262 85.3038 14.2513 8/2/07 5:41 -8.53 -96.33 
4/27/07 21:50 -2.00 8.69 3000.024 90.0001 -0.1206 0.9262 85.3703 14.7454 8/2/07 5:45 -4.78 -96.33 
4/27/07 21:51 -1.00 4.37 3000.014 89.9996 -0.1206 0.9262 85.4267 15.2353 8/2/07 5:48 -1.91 -96.33 
4/27/07 21:52 0.00 0.00 3000.965 90.0044 -0.1206 0.9262 85.4785 15.7209 8/2/07 5:49 0.00 -96.33 
4/27/07 21:53 1.00 4.43 2999.974 89.9998 -0.1206 0.9262 85.5164 16.2065 8/2/07 5:50 0.77 -96.33 
4/27/07 21:54 2.00 8.90 3000.009 90.0001 -0.1206 0.9262 85.5492 16.6877 8/2/07 5:50 0.60 -96.33 
4/27/07 21:55 3.00 13.44 3000.001 90.0000 -0.1206 0.9262 85.5738 17.1663 8/2/07 5:49 -0.60 -96.33 
4/27/07 21:57 5.00 22.67 3000.016 90.0000 -0.1206 0.9262 85.5989 18.1155 8/2/07 5:43 -6.03 -96.32 
4/27/07 22:02 10.00 46.76 3000.151 89.9995 -0.1206 0.9262 85.5200 20.4460 8/2/07 5:12 -37.07 -96.30 

Table 1: Launch Window During a Single Day– Launch, ∆V, Periselene Data, and Time-of-Flight (TOF)  
 
 
 
 Launch Coast ECM ∆V MCCM ∆V Total ∆V Periselene Parameters TOF 

∆T (days) (min) (m/s) (m/s) (m/s) Rp Inc C3 Ecc RAAN ω Epoch ∆T (s) (days) 
-2.99 17.01 3.3379 46.0729 49.4108 2998.523 88.5977 -0.1199 0.9266 84.7838 15.7710 8/2/07 6:35 45.53 99.36 
-1.99 17.17 2.3589 29.7187 32.0776 2998.575 88.6061 -0.1200 0.9266 84.7878 15.7706 8/2/07 6:35 45.22 98.36 
-1.00 17.34 1.2081 14.3295 15.5376 2998.634 88.6044 -0.1200 0.9266 84.7869 15.7708 8/2/07 6:35 45.22 97.36 
0.00 17.53 0.0000 0.0000 0 3000.968 90.0044 -0.1206 0.9262 85.4785 15.7209 8/2/07 5:49 0.00 96.33 
1.00 17.74 1.6353 14.6953 16.3306 2998.490 88.7504 -0.1200 0.9266 84.8589 15.7646 8/2/07 6:30 40.52 95.36 

Table 2: Launch Period Over Several Days– Launch, ∆V, Periselene Data, and TOF. 


