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Four methods of spin-axis estimation are presented and examined in a 
manner analogous to the study of three-axis attitude estimation with a 
particular emphasis on the treatment of constraint. Accuracy and 
efficiency of the methods are compared both numerically and analytically 
including a thorough covariance analysis. 
 

 

INTRODUCTION 

Spin-axis attitude estimation is in some respects analogous to three-axis attitude estimation. For 
example, both use known reference vectors along with measurements from spacecraft-based sensors to 
estimate spacecraft attitude. Of course, there are also fundamental differences.  Three-axis attitude 
estimation seeks a complete attitude solution, which belongs to the group of rotations, while spin-axis 
attitude estimation seeks only a spin-axis direction, which certainly does not belong to a group. In 
addition, the typical measurements for three-axis attitude estimation are directions, whereas those for 
spin-axis estimation are usually angles (or, equivalently, cosines). Nevertheless, there are interesting 
parallels between the two estimation domains, one of which, the presence of a constraint, is the subject of 
this study.  

This work is an extension of Ref. 1, which, among other things, includes a thorough discussion of 
the measurements and models employed in spin-axis estimation. The models are linear in the spin-axis 
unit vector, which is very helpful in developing estimation methods within the framework of maximum-
likelihood estimation, an approach that also works well for three-axis attitude estimation. However, the 
proper treatment of the spin-axis norm constraint is of concern. We will reexamine different spin-axis 
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attitude estimation methods and provide statistically sound recommendations based on their accuracy and 
efficiency. 

 

MEASUREMENT MODELS AND THE COST FUNCTION 

We begin by defining an effective measurement vector which is linear in the spin-axis unit vector 
n̂  and satisfies 

 ˆ , 1,...,k k kH k N= + =Z n v  (1) 

with white measurement noise 

 ( , ), 1,...,k KN R k N=v 0∼  (2) 

Here the rows of sensitivity matrix kH  are known reference vectors [1], and the effective measurement 

vector kZ  consists of cosines of angles between these vectors and the spin-axis direction. The subscript 
k  indicates the frame number. There are, of course, many choices for the effective measurements, 
depending on the sensor suite and the choice of dihedral angles. 

 We construct the data-dependent part of the negative-log-likelihood function [2-4] using the 
above measurement model 

 ( ) ( )T 1

1

1ˆ ˆ ˆ( )
2

N

k k k k k
k

J H R H−

=

= − −∑n Z n Z n  (3) 

where T  denotes the matrix transpose. The maximum-likelihood estimate [3] is simply 

 *

ˆ 1
ˆ ˆarg min ( )J

=
≡

n
n n  (4) 

Any method that minimizes ˆ( )J n  directly in terms of n̂  must take account of the norm constraint 

  Tˆ ˆ 1=n n  (5) 

The cost function ˆ( )J n  can be expanded as 

 T T1ˆ ˆ ˆ ˆ( )
2

J = + +n n n nJ FG  (6) 

with  
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 T 1

1

N

k k k
k

H R−

=

≡ −∑ ZG  (7b) 

 T 1

1

N

k k k
k

H R H−

=

≡ ∑F  (7c) 

 
The scalar J , the column matrix G , and the symmetric matrix F  are introduced for computational 
convenience as they encapsulate all the individual measurements. The matrix F  is positive semidefinite, 
and positive definite if the measurements are not all coplanar. We focus principally on the non-singular 
case in this study. 
 

There are two approaches to finding the minimizing value of n̂ . One approach uses the original 
three-dimensional variable n̂ , but requires additional operations to satisfy the constraint of equation (5) at 
each step; the other approach satisfies the constraint automatically by changing the argument of the cost 
function to a two-dimensional variable. We consider both approaches in the present work. 
 
 

LAGRANGE-MULTIPLIER METHOD   
 

We consider Lagrange’s method of multipliers, for which we write the augmented cost function 
[1] 

 ( )T1ˆ ˆ ˆ ˆ( ) ( ) 1
2

J J λ′ = + −n n n n  (8) 

with λ  a yet undetermined constant, and minimize ˆ( )J ′ n  without constraint leading to 

 ( )
T

* *
3 3ˆ ˆ( )

ˆ
J Iλ ×

′∂  = + + = ∂ 
n n 0

n
FG  (9) 

This yields both the explicitly constrained estimate 

 ( ) 1*
3 3ˆ Iλ −
×= − +n F G  (10) 

And, from the constraint, the equation for the Lagrange multiplier 
 

 ( ) ( )
T 2* * T

3 3ˆ ˆ 1Iλ −
×= + =n n FG G  (11) 

The latter can be used to solve for λ  (and *n̂ ) by the Newton-Raphson method 

 0 0λ =  (12a) 

 ( ) 1
1 1 3 3i iD Iλ −

− − ×= +F  (12b) 

 1 1i iD− −= −n G  (12c) 
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 (12d) 

and 

 lim ii
λ λ

→∞
= ,             *ˆ lim ii→∞

=n n  (12ef) 

 Based on equation (10), the estimation error evaluated about the noise-free (or true) solution is 
given to first order in the measurement noise by 

 ( )( )* 1 trueˆ ˆλ−∆ = − ∆ − ∆n nF G  (13a) 

with 

 T 1

1

N

k k k
k

H R−

=

∆ = −∑ vG  (13b) 

The values of the spin-axis vector and the Lagrange multiplier for the true values of the measurements are 

 true 1 trueˆ −= −n F G ,      true 0λ =  (14ab) 
Note that 

 { }E ∆ = 0G      and     { }TE ∆ ∆ = FG G  (15ab) 

where { }E ⋅  denotes the expectation. The first-order error in λ  can be obtained from the constraint 
equation (Eq.(11)) with some effort as 

 ( )( ) ( )
1T Ttrue 1 true true 1ˆ ˆ ˆλ

−
− −∆ = ∆n n nF F G  (16) 

from which it immediately follows that  

 { } 0E λ∆ = ,        ( ){ } ( )( ) 1T2 true 1 trueˆ ˆE λ
−

−∆ = n nF  (17ab) 

and 

 ( ){ } ( )( ) 1Ttrue 1 true trueˆ ˆ ˆE λ
−

−∆ ∆ = n n nFG  (17c) 

We can see from equation (17b) that the root-mean-square (RMS) value of λ  and, consequently, of 
*ˆ+ nFG , will be of order  2/N σ , i.e. generally much smaller than 2/N σ , the order of F . 

 
The calculation of the spin-axis attitude covariance matrix is now straightforward with the result 

 1 T
ˆ ˆP −= Λ Λnn F  (18) 

where 

 ( )( ) ( )
1T Ttrue 1 true 1 true true

3 3 ˆ ˆ ˆ ˆI
−

− −
×Λ = − n n n nF F  (19) 
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Note that this covariance matrix is singular and that, as expected, the true spin-axis vector lies in its null-
space 

 true
ˆ ˆ ˆP =nnn 0  (20) 

 

 

UNCONSTRAINED BRUTE-FORCE METHOD 
 
The second estimation method that deals directly with n̂  initially finds an unconstrained estimate 

*
ucn  that minimizes ˆ( )J n  without constraint. This leads immediately to  

 
T

* *
uc uc( )

ˆ
J∂  = + = ∂ 

n n 0
n

FG  (21) 

or 

 * 1
uc

−= −n F G  (22) 

The constrained estimate of equation (10) can now be rewritten in terms of this unconstrained estimate as 

 ( ) 1* 1 *
3 3 ucˆ I λ

−−
×= +n nF  (23) 

While, in general, *
ucn  does not have unit norm and, thus, cannot be a direction, in the absence of 

measurement noise it must coincide with the true spin-axis truen̂ . From this we infer that the two must be 
close in value and that *

ucn  must also be close to *n̂ . We can define the “estimate error” 

 * * true 1
uc uc ˆ −∆ ≡ − = ∆n n n F G  (24) 

and the corresponding covariance matrix must satisfy 

 ( ){ }Tuc * * 1
uc ucP E −≡ ∆ ∆ =nn n n F  (25) 

The brute-force normalization of *
ucn  

 
*

* uc
uc *

uc

ˆ ≡
nn
n

 (26) 

results in 

 ( )( )T* true true *
uc 3 3 ucˆ ˆ ˆI ×∆ = − ∆n n n n  (27) 

and the covariance matrix for the brute force estimate is  

 
uc uc

1 T
ˆ ˆ uc ucP −= Λ Λn n F  (28) 

with  
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 ( )Ttrue true
uc 3 3 ˆ ˆI ×Λ = − n n  (29) 

analogous to equation (18). Note, however, that the two covariance matrices will be very different if F  
shows strong correlations, in which case the unconstrained estimate will be a poor approximation. In any 
event, the computation of an explicitly constrained estimate is so simple, that the brute-force method has 
little practical value.  At best, it provides only an approximate estimate. 
 
 

INCREMENTAL-VECTOR METHOD 
 

The incremental-vector method defines a (proper) orthonormal triad of vectors, { }ˆˆ ˆ, ,i i in a b , 

where the last two vectors lie in the plane, the tangent plane  perpendicular to the ith spin-axis estimate 
ˆ in . Using this triad, we may write 

 2
1ˆ ˆ ( )i i i iC O−= + +n n ε ε  (30) 

where iε , the 2 1×  column matrix of incremental variables, and the 3 2×  matrix iC  are given by 

 
T

, ,i a i b iε ε ≡  ε      and     1 1
ˆˆi i iC − −

 ≡  a b  (31ab) 

We may rewrite the cost function ˆ( )J n  in terms of the incremental variables 

 ( ) ( ) ( )TT
1 1 1 1

1ˆ ˆ ˆ ˆ( )
2i i i i i i i i i i i iJ C C C C− − − −+ = + + + + +n ε n ε n ε n εJ FG  (32) 

and minimize it to find 

 ( ) ( )
1* T T

1ˆi i i i iC C C
−

−= − +ε nF FG  (33) 

and 

 2*
1ˆ ˆ ( )i i i i iC O−= + +n n ε ε  (34) 

In practice, we replace the last equation with  

 *
1ˆi i i iC−= +n n ε         and        ˆ /i i i=n n n  (35ab) 

So that we have a unit vector at every step of the iteration.  When the iterations are initialized with 

 *
0 ucˆ ˆ≡n n  (36) 

and we must have  

 *lim ii→∞
=ε 0         and        *ˆ ˆlim ii→∞

=n n  (37ab) 

 It is important to emphasize the distinction between the estimate error ε%  and the incremental 
vector iε . The former is based on the true triad { }true true trueˆˆ ˆ, ,n a b , whereas the latter is based on the triad 
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{ }ˆˆ ˆ, ,i i in a b  defined by the ith spin-axis estimate. The computation of the Fisher information matrix is 

straightforward now that the two components of ε%  are independent  

 TF C C=εε%% F  (38) 

with true trueˆˆC  ≡  a b . The estimate-error covariance matrix follows immediately as 

 1P F −=εε εε%% %%  (39) 

provided that the Fisher information matrix is invertible (i.e., the spin axis attitude is observable). The 
first-order relationship between the estimate error and the spin-axis attitude error is given by 

 *ˆ C∆ =n ε%  (40) 
from which we obtain the spin-axis error covariance 

 ( ) 1T T
ˆ ˆP C C C C

−
=nn F  (41) 

or 

 ( )( ) 11T uc T
ˆ ˆP C C P C C

−−
= nnnn  (42) 

INCREMENTAL-ANGLE METHOD 
 
The incremental-angle method uses two spherical angles, the polar angle 1θ  and the azimuthal 

angle 2θ , to parameterize the spin-axis vector 

 
1 2

1 2

1

sin cos
ˆ ( ) sin sin

cos

θ θ
θ θ

θ

 
 =  
  

n θ  (43) 

and the cost function 

 ˆ( ) ( ( ))J J= nθ θ  (44) 

with [ ]T
1 2θ θ=θ . Then the gradient vector and Hessian matrix are given by 

 ( )
T

T ˆ( ) ( ) ( )J M∂  = + ∂ 
nFGθ θ θ

θ
 (45) 

 ( )
22 3

T
T T

1

ˆ
ˆ( ) ( ) ( ) ( ) ( )j

j
j

nJ M M
=

∂∂
= + +

∂ ∂ ∂ ∂∑ nF FGθ θ θ θ θ
θ θ θ θ

 (46) 

 
with  
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T

1 2 1 2 1

1 2 1 2

cos cos cos sin sinˆ
( ) ( )

sin sin sin cos 0
M

θ θ θ θ θ
θ θ θ θ

− ∂
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nθ θ
θ

 (47) 

 
The second term in equation (46) will nearly vanish when we evaluate the expectation to compute the 
Fisher information matrix. Therefore, we are led to good approximation to 

 T true true( ) ( )F M M= Fθθ θ θ  (48) 

and, in a manner entirely analogous to equations (39, 41, 42), we obtain 

 -1P F=θθ θθ  (49) 

 ( ) 1true T true true T true
ˆ ˆ ( ) ( ) ( ) ( )P M M M M

−
=nn Fθ θ θ θ  (50) 

or 

 ( )( ) 11true T true uc true T true
ˆ ˆ ( ) ( ) ( ) ( )P M M P M M

−−
= nnnn θ θ θ θ  (51) 

The Gauss-Newton estimation sequence for θ  becomes 

 ( )
( )( )
( ) ( )( )

1 * *
uc uc30

* *
2 uc uc2 1

cos /

arctan /

− 
 =  
  

n n

n n
θ  (52) 

 ( ) ( ) ( ) ( )( ) ( ) ( )( )1i i-1 i-1 i-1 i-1 i-1T T ˆ( ) ( ) ( ) ( )M M M
−

= − + nF FGθ θ θ θ θ θ  (53) 

 ( )i* lim
i→∞

=θ θ  (54) 

The matrix ( )M θ  as defined by equation (47) is singular if the spacecraft spin axis is collinear with the 
z-axis. Of course, the problem is easily solved by choosing a different set of polar and azimuthal axes for 
which new equations can be obtained.  We accomplish this, effectively, by cyclic permutations of the 
indices in equations (43, 47, 52). 

 
 

NUMERICAL RESULTS 
 
All four algorithms described in this study are evaluated using two numerical examples that differ 

mainly in the levels of spin-axis observability.§ 
The first example, illustrating the case of good observability, uses an Earth-locked spacecraft in a 

100-minute circular equatorial orbit with the spacecraft z-axis parallel to the spin-axis of the Earth (the 
inertial z-axis) and the spacecraft x-axis pointing toward the nadir. The spacecraft obtains data once per 
minute from a (coarse) sensor suite of three equally accurate sensors, a magnetometer, a vector Sun 
                                                
§ Both examples are selected for the purpose of generating a set of data and illustrating analytical findings of this 
study. Our conclusions remain valid regardless of the selected spin-rate which for many missions may be 
considerably higher. Our scenarios, however, are typical of missions from the 1970s and 1980s. 
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sensor, and an Earth-horizon sensor, each with angle-equivalent accuracy σ  equal to 0.5 deg. For 
simplicity of simulations, we assume that the geomagnetic field at the equator is constant and is directed 
along the inertial z-axis  

 
0

ˆ 0
1

I

 
 =  
  

B  (55) 

 
and that the Sun direction remains inertially fixed and defined as 

 
cos

ˆ 0
sin

I

α

α

 
 =  
  

S  (56) 

where 23α =  deg and where the subscript I  denotes the inertial frame. We also assume that the Sun 
will be observable for one half of the orbit, specifically for longitude l  in the interval 

90 deg 90 deg− ≤ ≤ +l . Thus individual sensor measurements  

 T
, ,

ˆ ˆB k k B kz v= +B n  (57a) 

 T
, ,

ˆ ˆS k k S kz v= +S n  (57b) 

 T
, ,

ˆ ˆE k k E kz v= +E n  (57c) 

are grouped accordingly  

 
[ ]

[ ]

T 2
, , , 3 3

T 2
, , 2 2

with for 90 deg, 90 deg

with for 90 deg, 270 deg

B k S k E k k
k

B k E k k

z z z R I

z z R I

σ

σ

×

×

  = ∈ − + = 
  = ∈ + + 

Z
l

l
 (58ab) 

where Ê denotes the Earth nadir direction, and the subscript k  denotes measurement frame number. Such 
a model is exceedingly simplified but will be adequate for highlighting the effects of the unit-norm 
constraint. 
 The results computed based on one full orbit of data are displayed in Table 1 and equations (59a-
c). The table includes results for the Lagrange-multiplier method (Table 1A), the unconstrained brute-
force method (Table 1B), the incremental-vector method (Table 1C), and the incremental-angle method 
(Table 1D).  

  6

1.231 0 0.241
0 0.650 0 10

0.241 0 1.415

 
 = × 
  

F ,            6

0.241
0.001 10
1.416

− 
 = − × 
 − 

G   (59ab) 

 -1 6

0.841 0 0.143
0 1.538 0 10

0.143 0 0.731

−

− 
 ≡ = × 
 − 

P F           (59c) 
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Table 1A contains the three unnormalized components of the spin-vector and the Lagrange 
multiplier. The single iteration in Table 1B shows the result of the brute-force normalization of the spin-
vector. Table 1C and Table 1D contain normalized components of the spin-vector as well as the 
magnitude of the difference between successive iterations. Note that the two incremental methods 
presented in these tables are initialized with the brute-force estimate. The iteration was terminated in each 
case when the last change in the result was smaller than 0.000001. It is important to emphasize that the 
fast convergence of all constrained estimation methods was the result of the good initial estimate ucn̂  
provided by the unconstrained approximation. Without the use of ucn̂ , as many as a dozen iterations were 
found to be necessary. The errors in 3n  are much smaller than the others due to the disproportionate 

influence of the norm constraint on this component given our choice of truen̂ . Had we chosen truen̂  to be 
different from a coordinate axis, this would not have been the case.  

Accuracies of the spin-axis attitude estimation for all four methods can be compared using the 1-
σ  confidence intervals calculated using their corresponding covariance matrices. Not surprisingly, all 
three properly constrained methods produce the same confidence intervals, and, given the relatively low 
correlations in P  (Eq.(59c)), the unconstrained brute-force method performs only slightly worse. The 
large value of λ  was also not unexpected based on the fact that according to equation (17b) 

 0 1170λ = ±           (60) 
We designed the second example to evaluate performance of the algorithms for the case of a 

poorer observability. To this end, we reduced the orbit angular interval to one quarter of the orbit, i.e. 
0 deg 45 deg≤ ≤l , and reduced the measurement set so that  

 
T 2

, , 2 2withk E k S k kz z R Iσ × = = Z  (61ab) 

Other aspects of this example remained the same as in the previous example, including the number of 
measurements, 100, which was accomplished by adjusting the time interval between measurements 
appropriately. 
 The results, also organized in the same manner as in the previous example, are shown in Table 2 
and equations (62a-c). Note that the three correctly constrained methods (Tables 2A, 2C, 2D) all yield the 
same result to six decimal places for the estimate of the spin-axis vector.  
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TABLE 1  COMPARISON FOR CASE OF GOOD OBSERVABILITY 
 

A. Lagrange-Multiplier Method 

iteration 
1n  2n  3n  λ  

0 0.000241 0.000156 1.000103 0 
1 0.000261 0.000156 0.999999 143 
2 0.000261 0.000156 0.999999 143 
  ± 0.000901 ± 0.001240 ± 0   

 

B. Unconstrained Brute-Force Method 

iteration 
1n  2n  3n   

0 0.000241 0.000156 0.999999  
  ± 0.000917 ± 0.001240 ± 0   

 

C. Incremental-Vector Method 

iteration 
1n  2n  3n  1ˆ ˆi i−−n n  

0 0.000241 0.000156 0.999999 −  
1 0.000261 0.000156 0.999999 2.0×10-5 
2 0.000261 0.000156 0.999999 2.3×10-9 
  ± 0.000901 ± 0.001240 ± 0   

 

D. Incremental-Angle Method 

iteration 
1n  2n  3n  1ˆ ˆi i−−n n  

0 0.000241 0.000156 0.999999 −  
1 0.000261 0.000156 0.999999 2.0×10-5 
2 0.000261 0.000156 0.999999 1.4×10-7 
  ± 0.000901 ± 0.001240 ± 0   
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Performance of the unconstrained brute-force method is decidedly poorer.  It results in the 
standard deviations of the estimates of 1n  and 2n  which are larger than those of the properly-constrained 
methods by 100%  and 50% , respectively.  The trace of the Cartesian spin-axis attitude covariance 
matrix for the brute-force estimate is larger than that for the properly-constrained estimate by a factor 2.3. 
 

 6

2.186 0.417 0.472
0.417 0.239 0 10
0.472 0 0.200

 
 = × 
  

F ,            6

0.471
0.001 10
0.201

− 
 = × 
 − 

G  (62ab) 

 -1 6

2.879 5.015 6.784
5.015 12.909 11.814 10
6.784 11.814 20.969

−

− − 
 ≡ = − × 
 − 

P F           (62c) 

 In this example, correlations in the unconstrained covariance matrix P  (Eq.(62c)) 12 0.862ρ = − , 

13 0.873ρ = −  and 23 0.718ρ =  are considerably higher than those in the previous example. The 
convergence of the iterative algorithms in this case is poorer but better than more than a dozen iterations, 
which would be the case without a good initial estimate.  
  

When evaluating the computational efficiency of the proposed algorithms, we tested two 
implementations of the Lagrange-multiplier method. The first one followed equations (12) exactly 
including the matrix inverse of equation (12b). The second implementation employed an alternate 
iteration scheme in which linear-equation solvers were used to compute the two auxiliary vectors 1V  and 

2V  defined to be the solutions of  

 ( )1 3 3 1, 1i iIλ − × −+ =V GF        and       ( )1 3 3 2, 1 1, 1i i iIλ − × − −+ =V VF  (63ab) 

respectively. Then, 

 T T T
1 1 2, 1 1, 1 1, 1i i i i i− − − − −= =n n V V VG     (64a) 

 T T
1 1 1 1, 1 2, 1i i i i iD− − − − −=n n V V     (64b) 

and 

 *
1,ˆ lim ii→∞

=n V     (64c) 
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TABLE 2  COMPARISON FOR CASE OF POOR OBSERVABILITY 
 

A. Lagrange-Multiplier Method 

iteration 
1n  2n  3n  λ  

0    − 0.000602      − 0.002632 1.003112 0 
1 0.000400    − 0.004375 1.000010 148 
2 0.000407    − 0.004387 0.999990 149 
3 0.000407    − 0.004387 0.999990 149 
  ± 0.000828 ± 0.002501 ± 0   

 

B. Unconstrained Brute-Force Method 

iteration 
1n  2n  3n   

0    − 0.000600      − 0.002620 0.999996  
  ± 0.001697 ± 0.003593 ± 0   

 

C. Incremental-Vector Method 

iteration 
1n  2n  3n  1ˆ ˆi i−−n n  

0    − 0.000601      − 0.002624 0.999996 −  
1 0.000407    − 0.004388 0.999990 0.0020 
2 0.000407    − 0.004388 0.999990 7.0×10-7 
  ± 0.000828 ± 0.002501 ± 0   

 

D. Incremental-Angle Method 

iteration 
1n  2n  3n  1ˆ ˆi i−−n n  

0    − 0.000601      − 0.002624 0.999996 −  
1 0.001180    − 0.004017 0.999991 0.0022 
2 0.000361    − 0.004309 0.999991 0.00087 
3 0.000408    − 0.004387 0.999990 0.000091 
4 0.000407    − 0.004387 0.999990 7.0×10-7 
  ± 0.000901 ± 0.001240 ± 0   
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TABLE 3  EXECUTION TIMES FOR SPIN-AXIS ESTIMATION 
 

Method Relative Execution Time 

Iterative Optimal Methods  
Lagrange-multiplier (matrix inverse) 76 

Lagrange-multiplier (linear equation) 88 

Incremental-vector 66 

Incremental-angle                                   100 

Non-iterative Approximate Method  

Brute-force 34 
 

We devised the alternate implementation looking to exploit computational advantages that linear-
equation solvers often have over matrix inversion algorithms. However, as the relative execution times 
summarized in Table 3 show, in Matlab® the original implementation of the Lagrange-multiplier method 
performed better. All five results are for the first numerical example and are based on execution of 
optimized Matlab® code. Each iterative method was terminated after a single iteration beyond the initial 
brute-force step (in the implementations of the Lagrange-multiplier method, equivalently, the estimate 
uses 1λ ). Overall, the incremental-vector method would seem to offer the best value. 

We checked consistency of our calculations by comparing the results for the model covariances, 
as given by equations (18), (28), (41), and (50), with the sampled covariance matrices for the spin-axis 
attitude estimate 

 ( )( )Tsampled * true * true
ˆ ˆ

1

1 ˆ ˆ ˆ ˆ
N

m m
m

P
N =

≡ − −∑nn n n n n     (65) 

and with a similar definition for the sampled covariance matrix 
uc uc

sampled
ˆ ˆPn n . Here, *ˆ mn  is the estimate of the 

spin-axis vector for the m-th sampled data set, 1,...,m N= . The sampled covariance matrix is a random 
matrix that satisfies  

 sampled sampled
ˆ ˆ ˆ ˆ ˆ ˆP P P= + ∆nn nn nn     (66) 

where for N  very large ( )sampled
ˆ ˆ ij

P∆ nn  will be approximately Gaussian and zero-mean with variance given 

by 

 ( ){ } ( ) ( ) ( )2sampled
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

1Var ii jj ijij
P P P P

N
 = + nn nn nn nn     (67) 

We found agreement within the anticipated confidence bounds for all four spin-axis attitude estimation 
methods and both numerical examples for 100 sample tests ( 100N = ). As an example, for the iterative 
algorithms of the second numerical example we present  
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 6 6 60.707 1.530 0.685 1.193 0.116 0.231
10 10 10

1.530 7.549 1.193 6.253 0.231 0.500
− − −− −     

× = × ± ×     − −     
   (68) 

where the three matrices are in the same order as in equation (66), but where, for reasons of space, we 
have deleted the uninteresting third row and third column. The errors in the sampled covariances are 
0.3σ , 1.7σ−  and 0.2σ , where σ  is the appropriate standard deviation for each covariance. 

 

CONCLUSIONS 

Four algorithms have been presented for spin-axis attitude estimation, all of which estimate a 
spin-axis vector, which is a representation of the spacecraft spin-axis with respect to some reference 
(typically inertial) coordinate system. All but one of these algorithms produce solutions that account for 
the norm constraint of the spin-axis attitude, but the manner in which they account for it differs from 
algorithm to algorithm. The first method presented in this work estimates simultaneously all three 
components of the spin-axis vector directly and maintains the norm constraint explicitly by means of a 
Lagrange multiplier. The second method also estimates all three components simultaneously but imposes 
the constraint by brute force at the end of the calculation and is only approximate. The third and fourth 
methods estimate the spin-axis vector incrementally using different two-dimensional parameterizations, 
vectors and angles, to maintain the constraint to second order in the increment, which is driven to zero. 
Note that all of these algorithms are iterative with the exception of the brute-force method which simply 
generates a first approximation of the spin-axis vector estimate and is, in fact, used to initialize the 
iterative methods. 

The main conclusion of this study is that the norm constraint must be taken into account properly 
in the estimation algorithm and not simply applied to the unconstrained estimate at the end of the 
calculation. In our numerical examples, we found the unconstrained estimate to be an excellent first 
approximation. In fact, in the first example that lacked significant correlations, the unconstrained estimate 
when normalized provided all the accuracy that was needed. However, in the presence of significant 
correlations in the second example, the brute-force method produced decidedly poorer results. We can 
support this finding by a simple analytical exercise in which we write the inverse unconstrained Fisher 
information matrix and the true spin-axis vector as 

 -1

a d e
d b f
e f c

 
 ≡ =  
  

P F          and       true

0
ˆ 0

1

 
 =  
  

n  (69ab) 

Then it follows from equations (18), (19), (28), and (29) that  

 

2

2
ˆ ˆ

/ / 0
/ / 0

0 0 0

a e c d ef c
P d ef c b f c

 − −
 = − − 
  

nn          and       
uc ucˆ ˆ

0
0

0 0 0

a d
P d b

 
 =  
  

n n  (70ab) 

from which it is evident that the variances of the components of the correctly constrained spin-axis vector 
are smaller in general and the difference is more pronounced for larger correlations.  

 Another way to see the importance of constraint is by computing the figure of merit 
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 ( ) ( )T* -1 *
ˆ ˆˆ ˆ ˆ ˆ ˆ( ) Pµ ≡ − −nnm n m n m     (71) 

When this quantity is computed for trueˆ ˆ=m n , we expect the result to have a 2χ  distribution for two 
degrees of freedom (since n̂  has only two degrees of freedom). In a test for the first example with 100 
sample orbits we found a sampled mean of 2.07 and a sampled standard deviation of 1.87, both of which 
are consistent with mean 2 and variance 4 expected from the distribution. However, for a good initial 
guess of the spin-axis vector, we expect to have much smaller values. Thus, we can test the accuracy of 
the brute-force estimate by computing ˆ( )µ m  at ucˆ ˆ=m n . For the first example, we have found a 
sampled mean of 0.0015, which indicates that the brute-force estimate serves as a good initial guess and 
differs from the true value by terms only of order 2σ . On the other hand, in a similar test for the second 
example, we have found the sampled value of trueˆ( )µ n  to be 1.73, compared to an anticipated value of 
2 0.2± , and ucˆ( )µ n  to be 4.15, the very large value (eleven standard deviations from the expectation) 
demonstrating an unacceptable level of accuracy given the accuracy of the data. 

Note that the error bounds in Tables 1 and 2 are meaningful despite the fact that both the 3 ×3 
Cartesian spin-axis covariance and Fisher information matrices with the constraint are of rank 2. The error 
bounds reflect the true variation of the estimates, even though they provide no information on the 
correlation of individual components of the estimate. 

We see that there are indeed interesting similarities between spin-axis and three-axis attitude 
estimation [2]. For example, constrained optimization carried out in the Lagrange-multiplier method is 
analogous to that of the QUEST algorithm [5] and to similar techniques found in later fast solutions to the 
Wahba problem [6] like FOAM and ESOQ [7]. Both batch least-square [2] and Kalman filter [8] methods 
of three-axis attitude estimation use the idea of incremental parameterization that is also employed by the 
two tangent plane methods of spin-axis estimation.  

Similarities can be found not only in the mathematical techniques, but also in the structures of 
spin-axis and three-axis attitude estimators. For example, the 3×3 Cartesian spin-axis attitude covariance 
can be regarded as representing both the spin axis attitude (at least, within a sign) and its covariance 
matrix in the same way that the attitude profile matrix B  does for the three-axis attitude estimation [4]. 
We find additional similarities when we compare the spin-axis attitude and the direction-cosine matrix 
(DCM) estimators. Both employ linear measurement models which, in the presence of the Gaussian 
measurement noise, result in similar quadratic cost functions [2, 9] that assure global convergence and 
computational efficiency of the estimators (no need to re-compute quantities like F  and G  in analogy to 
the attitude profile matrix for the Wahba problem).  

We have found that, of the four presented algorithms, the incremental vector method 
demonstrates the best performance.  It converges in a smaller number of iterations than the other iterative 
methods and ensures better accuracy than the brute-force method. The Lagrange-multiplier method, 
however, although slightly slower, has the advantage of being able to treat cases in which F is only of 
rank 2. We have also found that, implemented in Matlab®, a single iteration of the incremental method 
took the shortest amount of time compared to the other methods (Table 3). Although, execution times 
may not be very significant in an interpreted language such as Matlab®, this result appears reasonable due 
to a likely greater computational burden of trigonometric functions and 3 ×3 matrix inversion found in the 
incremental angle and the Lagrange-multiplier methods, respectively.  

The results of the present work will be presented in more detail in a later publication [10]. 
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