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GOODNESS-OF-FIT TESTS FOR 
SEQUENTIAL ORBIT DETERMINATION 

John H. Seago* and David A. Vallado† 

Goodness-of-fit tests – sometimes called consistency tests – are useful for inves-
tigating the lack of optimality of an estimator. Statistical hypothesis tests involv-
ing observation residuals are often recommended; however, the most common 
diagnostic tests may have limited applicability to general orbit determination. In 
this paper, some less-familiar test statistics are presented and their usage is 
modified to apply them to observation residuals that are irregularly spaced with 
time. The supplemental test statistics are assessed using simulated time-series 
and sequential-estimation results based on genuine satellite tracking data. 

INTRODUCTION 
Goodness of fit implies the degree to which an experimental outcome reasonably meets prob-

able expectations. Specifically, sample data should not strongly disagree with the probability law 
that they are presumed to follow under the status-quo operating condition that is supposed to exist 
(the so-called null hypothesis). Goodness-of-fit techniques therefore involve the testing of statisti-
cal hypotheses, which help to make subjective decisions more objective by using a testable “sta-
tistic” having a pre-supposed distribution that is usually informative of the null hypothesis.1 

To conduct a statistical hypothesis test, an analyst chooses critical values for a statistic to be 
tested; appropriate critical values will represent extreme or unlikely outcomes for the statistic’s 
assumed distribution. If the statistical outcome does not fall between the chosen critical values, 
then the analyst concludes that the assumed operating conditions did not exist (the hypothesis test 
fails); otherwise, he presumes the null hypothesis holds due to a lack of evidence (the hypothesis 
test passes). 

Whenever the null hypothesis is true, the probability Pr{·} that a random statistical outcome 
will end up between the critical values is called the confidence level of the test, and the probabil-
ity of an accidental failure at this critical value is called the significance level of the test 
( 1 - Pr{·} ). For example, if one were testing a sequence of supposedly random outcomes at the 
1 - Pr{·} = 1% significance level, a “powerful” statistical test would reject 1% of the outcomes if 
the null hypothesis were true. Rejection rates much higher than 1% over many outcomes could 
provide evidence that the operating assumptions are being violated in some way; rejection rates 
much less than 1% might provide evidence that the test is unable to reasonably reject the null hy-
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pothesis. It is therefore possible to obtain insight into the validity of a statistical test by repeatedly 
evaluating simulated outcomes having well understood distributions: in the long run, one expects 
Pr{·} successes and 1 - Pr{·} failures for the assigned critical value(s). 

GOODNESS-OF-FIT (CONSISTENCY) CRITERIA FOR OPTIMAL FILTERS 

For sequential orbit determination, the desired estimator is usually the optimal one - one that is 
“best in a certain sense.”2 Regardless of how one might define “best”, sources seem to agree that 
the following criteria are generally necessary for optimal sequential estimation:3 

(1) State errors should have zero mean and have magnitude commensurate with the state 
covariance as yielded by the filter. 

(2) Predicted residuals should have zero mean and have magnitude commensurate with the 
residual variances as yielded by the filter. 

(3) Predicted residuals should be white (uncorrelated over time). 

Bar-Shalom et al. state that a filter is inconsistent (demonstrates a poor fit to the measurement 
data) if it does not satisfy the above criteria. Wright suggests more enumerative criteria for his 
definition of filter optimality specific to the orbit determination problem, specifically adding 
McReynolds’ filter-smoother consistence test.4 Also, most treatments of the sequential estimation 
problem presume Gaussian-distributed errors; sufficiently powerful tests of Gaussian distribution 
(normality) are discussed in an earlier manuscript.5 

To satisfy Criterion (1), Bar-Shalom et al. propose that the normalized mean-estimation error 
can be tested for normality with mean zero and variance 1/m (m being number of estimates con-
tributing to the statistic). Unfortunately, the average error can be assessed only through simula-
tion because it requires knowledge of the truth from which it deviates, so this test cannot be used 
with genuine experimental data where true result is unknown. 

Predicted Residuals (Innovations) 

Our acknowledgement of tests for state errors and state differences has been mainly for com-
pleteness, because the testing of actual tracking residuals will be the primary topic of this manu-
script. The following notation (due to Maybeck, 1979) specifies the definition of predicted filter 
residuals, or innovations, which will be tested in the sequel.6 For a linear estimator such as the 
Kalman filter, let the measurement update equations be expressed as: 

 [ ] 1TT )()()()()()()(
−−− += iiiiiii ttttttt RΗPΗΗPK  (1) 

 [ ])(ˆ)()()(ˆ)(ˆ −−+ −+= iiiiii ttttt xΗzKxx  (2) 

 )()()()()( −−+ −= iiiii ttttt PΗKPP  . (3) 

where )(ˆ −
itx  is the state (-correction) estimate array, )( −

itP  is state-error covariance matrix prior 
to the measurement update, K(ti) is the Kalman filter gain, )(ˆ +

itx  is the state (-correction) esti-
mate array, and )( +

itP  is the state-error covariance matrix updated by measurement vector zi at 
time (ti). The matrix H(ti) is realized according to the analytical observation-state relationship at 
time (ti), e.g.,  
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where )( itv  is an array of white measurement noise having zero expected value and variance 
R(ti). The array of predicted filter residual is defined as the difference between the actual meas-
urement and the best prediction of the measurement just before it is actually taken: 

 )(ˆ)()( −− −= iiii ttt xΗzr  , (5) 

which has mean and variance: 

 { } 0r =− )( itE  ,  { } )()()()()()( TT
iiiiii ttttttE RΗPΗrr += −−−  (6) 

Because the filter gain is based on the filter-calculated error covariance per Eq. (1), an incor-
rect covariance yields an incorrect gain. It follows that goodness-of-fit evaluation not only evalu-
ates estimator optimality, but it is closely related to the evaluation of covariance realism. 

The Kalman Filter as a Whitening Filter for Residuals 
Because the sequence of residuals at times ti are linear functions of previous measurements 

zi-1, zi-2, … by definition, each residual at time ti is independent of all measurements prior to ti, 
and each residual )( −

itr  is independent of all previous residuals such that the sequence of residu-
als is white. Therefore, in a “truly optimal” filter — one based upon a complete and perfectly cali-
brated model — the residuals should approximate a white Gaussian sequence, whereas a sub-
optimal or mis-calibrated filter will exhibit a time-correlated residual sequence.7 Additionally, the 
linear filtering problem can be turned around so that it is possible to think of a Kalman filter as a 
whitening filter for predicted residuals; that is, for the system described by Eqs. (2), (4), and (6), 
the output )( −

itr of residual sequence will be a white process.8 This justifies Criterion (3) above. 

TESTING THE MEAN AND VARIANCE OF RESIDUALS* 

Criterion (2) above suggests that predicted residuals should have zero mean and their magni-
tude should be commensurate with the residual variance of Eq. (6). Each residual divided by the 
square-root of its variance should therefore provide a sequence that has zero mean and variance 
of unity. If the sequence is also normally distributed, these properties can be tested with the fol-
lowing statistical hypothesis tests. 

Chi-Squared Test of Equal Variances. An unbiased “textbook” estimator of variance for dis-
crete samples Xi at times {t1, t2, … tn} is:9 
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µσ  , {Xi, i =  1, 2, … n}, (7) 

when the mean Xµ̂ is estimated from the sample: 

                                                   
* From this point, discussion focuses on predicted residuals (innovations), or, residuals divided by their square-root 
variance. We will treat each measurement type independently, and thereby drop the vector notation and represent the 
scalar time series generically for each measurement type, e.g., {Xi; i =  1, 2, … }. 
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In this case, the distribution of (n – 1) s2/σ2 is expected to follow a χ2-distribution of n – 1 degrees 
of freedom.10 Thus, to satisfy Criterion (2), s2 should not be considered significantly different 
than σ2 at, say, the α = 1% significance level, if χ2

1–α/2,h < (n – 1) s2/σ2 < χ2
α/2,h, where χ2

1–α/2,h and 
χ2

α/2,h are the critical values of the χ2 cumulative probability distribution, and h = n – 1.* When 
dealing with predicted residual ratios, σ2 is expected to be unity, and for “large enough” n, the χ2-
distribution approaches a normal distribution. 

One Sample t-Test of Equal Means. A t-test of equal means determines whether the sample 
mean Xµ̂ is significantly far away from a presupposed value (i.e., a “one-sample” test).11 For 
normally distributed samples, the distribution of Xµ̂  / s2 follows a t-distribution of n – 1 degrees 
of freedom. Thus, to satisfy Criterion (2), Xµ̂ should not be considered significantly different than 
zero at, say, the α = 1% significance level, if tα/2,h < (n – 1) Xµ̂  / s < t1–α/2,h, where tα/2,h and t1–α/2,h 
are the critical values of the cumulative t-distribution, and h = n – 1.† For “large enough” n, the t-
distribution approaches a normal distribution. 

ESTIMATORS OF CORRELATION 

For theoretically continuous distributions, the variance of a random variable X is: 

 σ2= ( ) ( )( )[ ] ( ) dxxfxXXEX XXX )(Var 2∫
+∞

∞−

−=−−≡ µµµ  , (9) 

where µX =E[X] is the expected value of the random variable X, and ƒ(x) is the probability density 
function evaluated for x = X.12 For discretely sampled data, Eq. (7) may be used. 

(Cross) Covariance and (Cross) Correlation 

The covariance between pairs of random variables X and Y is defined as: 

 ( ) ( )( )[ ]YX YXEYX µµ −−≡,Cov . (10) 

The discrete-sample estimator of covariance analogous to the textbook estimator of Eq. (7) is:13 
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For analyses it is useful to standardize the covariance between two random variables by divid-
ing by the product of their respective standard deviations. This yields the correlation coefficient: 

                                                   
* The Microsoft Excel spreadsheet function CHIINV(α, h) provides appropriate critical values from the χ2 distribution. 
It is also convenient to use the inverse function CHIDIST((n – 1) s2/σ2, h) and reject the null hypothesis should this 
value be too small or too large (say, less than 0.5% or greater than 99.5%). 
† The Microsoft Excel spreadsheet function TINV(α, h) provides appropriate critical values from the t2 distribution. It is 
also convenient to use the inverse function TDIST((n – 1) µX / s2, h, 2) and reject the null hypothesis should this value 
be too small or too large. 
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which is a measure of the strength of the linear relationship between two random variables.14 The 
correlation coefficient may be conveniently estimated using the Pearson product-moment form: 
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This is simply the ratio of the covariance expressed by Eq. (11) over the product of the sample 
standard deviations sX and sY as expressed by Eq. (7), such that -1 ≤ r(X,Y) ≤ 1. The distribution of 

),(ˆ YXρ  is normal for “very large” n. 

Autocorrelation (Serial Correlation) 
In the previous equations, if Yi is replaced with a value of Xi+k at a time some fixed lag Δtk 

away from ti, it is known as the autocorrelation (or serial correlation) at that interval. Thus, auto-
correlation may be defined analogously from Eq. (12) as: 
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TESTING RESIDUAL WHITENESS USING SERIAL CORRELATION ESTIMATES 
Bar-Shalom et al. and Crassidis & Junkins suggest a test of whiteness of residuals by estimat-

ing the “time-average” sample autocorrelation according to this expression: 
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where Xi is the residual at time ti.15 The number of points used in the numerator of Eq. (15) is the 
same as that in the denominator, providing a Pearson product-moment correlation limited to a 
sub-sample of size n – k. This estimator is often recommended because, for large enough n – k, 
there is a tendency for )(ˆ kρ  to be normally distributed with variance of 1/(n – k) whenever the 
expected value of )(ˆ kρ  is zero. Therefore, the hypothesis of residual whiteness should not be 
rejected at the 1% significance level if –2.58 < )(ˆ kkn ρ−  < +2.58. However, there are a few 
notable cautions: 

§ Some authors advise against the use of Eq. (15) “on the grounds that […] it is not a 
satisfactory estimate when a set of estimates is required for the first m autocorrelations.”16 
The demoninator, which intends to serve as a normalizing factor, changes with lag k, 
which may lead to curious behavior in the estimate of a sample spectrum, possibly making 
comparisons of )(ˆ kρ  problematic for differing values of k. 
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§ The sample size n – k being used to estimate the correlation necessarily decreases as lag k 
increases. As lag k increases, n – k becomes smaller and the normality assumption requir-
ing “large enough” n – k eventually fails. 

Testing Whiteness Using Gaussian Critical Values 

To help deal with small samples sizes with increasing lag k, Fisher’s variance-stabilizing 
transformation may be applied to Eq. (15), which is reputed to approach normality much faster 
than )(ˆ kρ . This transformation amounts to taking the hyperbolic tangent of the estimated coeffi-
cient: 

 ( ) 







−
+

== −
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)(ˆ1ln

2
1)(ˆtanh 1
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kkz
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Fisher’s z statistic has an expected value of tanh-1(ρ(k)) with variance of approximately (n –
 k – 3). Thus, under the null hypothesis of zero correlation, the hypothesis of whiteness cannot be 
rejected at the 1% significance level if –2.58 < ( ))(ˆtanh3 1 kkn ρ−−−  < +2.58. Note however, 
that as ρ(k) approaches zero, tanh-1(ρ(k)) approaches ρ(k) = 0, such that the transformation may 
not be very beneficial under the null hypothesis of zero correlation. It is therefore useful to pursue 
alternative statistics. 

THE SAMPLE SEMI-VARIOGRAM 

Let the variance of the kth lag between Xi and Xi+k be denoted as γ(k).* 

 ( )[ ]2
2
1)( iki XXEk −≡ +γ . (17) 

Known as the semi-variogram,† this function characterizes the second-order dependence proper-
ties of a time series alternative estimator of the variance of a time series.17 The sample estimator 
of the semi-variogram is: 
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Unlike Eq. (7), the semi-variogram estimator of Eq. (18) beneficially annihilates the series mean 
because μX differences out when Xi is subtracted from Xi+k. 

Expanding Eq. (17) using algebra of the expectation operator, and considering that Var(Xi) = 
Var(Xi+k), it can be shown that (c.f., Eqs. (9) and (10)): 

 γ(k) = Var(Xi) – Cov (Xi, Xi+k). (19) 

                                                   
* The kth-lagged semi-variogram is related to the so-called “Allan variance” from precision-timing community, and may 
also be known by slightly different terminology depending upon the discipline. 
† Usage varies surrounding application of the term variogram; technically it refers to the quantity 2γ(k), but it is often 
convenient to drop the “semi-” prefix when discussing γ(k). 
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Therefore, if a series is white, Cov (Xi, Xi+k) = 0 and the sample semi-variogram becomes an al-
ternative estimator for the sample variance. Also, from Equations (14) and (19), it is possible to 
show that, for stationary processes, the semi-variogram is simply related to the sample autocorre-
lation function (i.e., correlogram) through the relationship: 

 2
)(ˆ

1)(ˆ
s
kk γ

ρ −= , (20) 

where s2 is the sample variance of Xi from Eq. (7). Thus, the sample semi-variogram and the sam-
ple autocorrelation provide the same information for stationary time series, albeit in slightly dif-
ferent forms. Also note that Eq. (20) does not suffer from a normalizing factor that changes with 
lag k like Eq. (15) does. 

WHITENESS TESTING USING THE SAMPLE SEMI-VARIOGRAM 

Because the semi-variogram is an alternative estimator of variance under the null hypothesis 
of whiteness, it seems reasonable to employ a statistical test for the equality of variances using 

)(ˆ kγ  / s2 as a test statistic. There are at least three straightforward, if approximate, approaches 
that one might take toward this end. 

F-Test of Equal Variances Applied to the Semi-Variogram/Variance Ratio 

The F-distribution may apply to the ratio of two independent χ2 variables. To pass the F-test of 
equal variances at, say, the 1% significance level, F0.005,(n - k, n - 1) < )(ˆ kγ  / s2 < F0.995,(n - k, n - 1).18 
Technically, the F-test applies when )(ˆ kγ  and s2 are based on independent samples; however, in 
our situation )(ˆ kγ  is based on a subset of the same values used to estimate s2; thus, the F-test can 
only be expected to provide approximate results. 

Chi-Squared Test of the Semi-Variogram 

For normally distributed data, the distribution of (n – k) )(ˆ kγ  / σ2 may be expected to have a 
χ2 distribution of n - k degrees of freedom under the null hypothesis of zero correlation. To pass 
the χ2-test of equal variances at, say, the 1% significance level, χ2

0.005,(n - k) < (n – k) )(ˆ kγ  < 
χ2

0.995,(n - k), where σ2 ≡ 1 for residual ratios. This approach is exact; however, there is a subtle 
problem with assuming that σ2 ≡ 1 in that it is common practice to automatically reject outlying 
measurements whenever the magnitude of the residual ratio exceeds some threshold, say ±3. Un-
fortunately, complete outlier rejection followed by an ordinary analysis of the variance of the re-
maining data tends to bias the sample variance downward (even when the error-generating distri-
bution is outlier-prone), resulting in a value for s2 that is smaller than unity on average.19 When σ2 
≡ 1 is not representative of a (censored) sample, it is difficult to distinguish if the χ2-test is failing 
because σ2 ≡ 1 is an improper assumption for the censored data, or because there are significant 
serial correlations. (Note that sample correlation estimators like Eq. (13) lack this problem be-
cause they are scaled by actual sample variances rather than expected variances.) 

Chi-Squared Test Applied to the Semi-Variogram/Variance Ratio 
A hybrid, or compromise, statistical approach might substitute σ2 with s2 while still employing 

a χ2-test. Thus, to pass a χ2-test of equal variances at, say, the 1% significance level, χ2
0.005,(n - k) < 

(n - k) )(ˆ kγ  / s2 < χ2
0.995,(n - k). This substitution seems reasonable based on prior arguments, espe-

cially when n is large. A disadvantage is that the χ2-test (in contrast with the F-test) does not ac-
count for the sample uncertainty in the estimate of s2 (i.e., the test is valid for small n - k, but not 
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necessarily small n). However, the supposed advantage of the F-test may not be as virtuous as it 
first appears, because s2 and )(ˆ kγ  are not based on independent samples, as noted before. Also, 
improper scaling of s2 can be tested separately with an equal-variance test. 

TREATMENT OF IRREGULARLY SPACED OBSERVATIONS 

The Correlogram and Semi-Variogram 

A plot of the sequence of { )(ˆ kρ , k = 1, 2, … n-1} versus lag k or Δtk is known as the sample 
autocorrelation function, or, correlogram. The (semi-)variogram may be similarly plotted as a 
function of lag k. Interpretation of such graphical devices (or any other serial correlation) estima-
tor usually hinges on the assumption that Xi and Xi+k are always matched pairs; that is, the interval 
of time Δtk between all ti and ti+k will be constant for the kth lag. 

The tests of correlation presented so far have not presented any explicit requirements on the 
time-spacing of the residual differences being processed. This is partly because, under the as-
sumption of whiteness, the correlation between values in a series is expected to be zero regard-
less of the time interval between them. It therefore seems permissible to test for whiteness with-
out strictly regarding the sampling rate as even; however, the alternative hypothesis (that non-
zero serial correlations exist) should be more easily detected if sample data are evenly spaced in 
time. Unfortunately, evenly spaced observations rarely exist in actual orbit determination prob-
lems; even tracking data that are expected to be regularly spaced over time (such as those coming 
from a space-borne GPS receiver) may face tracking outages or outlier rejections, thereby requir-
ing a process that accommodates irregular time gaps. 

The Pseudo-Correlogram and Pseudo-Variogram 
Because one cannot presume that Δtk will be constant for the orbit-determination problem, we 

approach the problem by dividing the estimation timeline into regularly spaced time grids that are 
small enough to occupy either one measurement time ti, or, no measurement time tag. Each 
measurement can thereby be uniquely assigned to the time of the grid that contains it, which is 
equal to replacing the unevenly-spaced measurement times with evenly-spaced grid times Δtgrid. 
In so doing, the kth lag now corresponds to measurements separated by k evenly-spaced grids. 

We refer to a correlogram or semi-variogram where pairing is done by time grids instead of 
measurement times as a pseudo-correlogram or pseudo-variogram,* respectively. We differenti-
ate them in name because, unlike an ordinary correlogram or semi-variogram, we do not actually 
make any strong claims about the interpretation of these “pseudo-estimates” when correlations 
exist in the residual time series. Rather, we only claim that the pseudo-estimates are a generaliza-
tion that ought to provide a more powerful test of serial independence against the alternative hy-
pothesis of correlated data relative to an ordinary correlogram or semi-variogram if the measure-
ments are irregularly spaced.† 

                                                   
* It would be more accurately called the pseudo-semi-variogram-variance ratio, but the shorthand descriptor seems less 
cumbersome. 
† However, if the data are evenly spaced, and if the fixed grid size Δtgrid is chosen to be equal to the sampling rate of the 
time series data, then the pseudo-estimators provide the same result as the ordinary estimators. 
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Estimation of the Pseudo-Variogram and Pseudo-Correlogram 
The pseudo-variogram has a rather simple form. For a time-sorted series, the following nested 

loops (illustrated with FORTRAN code) suggest how the data might be associated and stored: 
DO I = 1,N 
 DO J = I+1, N 
  K = NINT(ABS(T(I) - T(J))/DTGRID) 
  SOS(K) = SOS(K) + (X(I) - X(J))**2 
  NPAIR(K) = NPAIR(K) + 1 
 ENDDO 
ENDDO 

The semi-variogram at lag k would then be calculated as half the sum of squares SOS divided by 
the number of pairs NPAIR, once a grid spacing ∆tgrid (DTGRID) is chosen. Our experience so far 
suggests that the precise value of ∆tgrid is not terribly critical under the null hypothesis, so long as 
it remains smaller than minimum successive difference encountered. Our preference has therefore 
been to divide the median of all successive time differences ∆t1 = |ti+1 – ti|, {i =  1, 2, … n – 1} by 
an integer multiple of say, two or four, to get a sufficiently fine grid spacing to guarantee no more 
than one measurement time per grid. The number of differences computed is n (n – 1)/2 ≈ ½n2, 
and the total of variable NPAIR(K) replaces (n – k) in estimators of γ(k) and ρ(k) in Equations 
(20) and (15). 

* * * * * * * * * * * * * *
* * * * * * * * * * * * * *

* * * * * * * * * * * * * *
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Figure 1. Example of Pseudo-Correlogram Time Gridding. 

Figure 1 illustrates how time gridding works for either the pseudo-correlogram or pseudo-
variogram for data that are almost regularly spaced, yet some gaps exist due to extended lapses in 
tracking or the rejection of outliers. In the example, fourteen measurements (represented by aster-
isks on the timeline) are separated on the timeline by intervals of {10.1, 9.8, 9.9, 50.1, 9.8, 15.0, 
34.8, 10.0, 24.9, 9.9, 9.9, 9.9, 15.0}. The median time difference of this set is found to be ∆tme-

dian = 10.0, and the minimum time difference is observed to be ∆tmin = 9.8. To create a sufficiently 
small grid, a divisor ∆tgrid is needed that exceeds ∆tmedian / ∆tmin ≈ 1.02. For this example, an inte-
ger divisor of two (2) is chosen such that ∆tgrid = ∆tmedian/2 = 5. Each measurement is then as-
signed to a grid that is five time units wide, and lagged pairs are identified according to grid time 
rather than actual time. At lag k = 1 (∆t =  5.0) then, no pairings exist; at lag k =  2 (∆t =  10.0), 
eight pairings exist; and so on, as indicated in Figure 1. Generally, as the grid size Δtgrid de-
creases, the measurements will appear more regularly spaced to the estimator. However, this 
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comes at a price, for the number of matched pairs at each lag may also decrease. It would not be 
uncommon for some gridded lags to have no available estimate of correlation because no meas-
urements could be associated. This suggests another need for statistical tests that must be accurate 
for small samples. 

TESTS FOR SHORT-TERM SERIAL CORRELATION 
Whiteness testing of sample correlogram or semi-variogram coefficients is applied to the es-

timate at each lag. Therefore, a test of short-term correlation easily follows by testing whether 
)(ˆ kρ  or )(ˆ kγ  is significantly far from its expected value for small k, especially k = 1 (the first 

lag). 

Mean Squared Successive Difference Test. A specialized test often used for testing the null 
hypothesis of randomness or trends in a data set is the mean squared successive difference test 
(MSSD). This test supposes that the k = 1 semi-variogram ratio for an uncorrelated, normally-
distributed series will approach the normal distribution with mean and variance:20 

 1)1(ˆ
2 =





s
E γ  ; 

1
2)1(ˆ

22 −
−

=





n
n

s
Var γ . (21) 

Therefore, if –2.58 < ((n2 – 1) / (n – 2)) )1(γ̂  / s2 < +2.58, then the hypothesis of residual white-
ness at k = 1 cannot be rejected at the 1% significance level. The advantage of this test is its sim-
plicity: it uses confidence intervals based on a normal distribution and it does not presume regu-
larly spaced measurements under the hypothesis of whiteness. 

OMNIBUS TESTS OF OVERALL SERIAL CORRELATION 
Testing individual correlation coefficients does not provide a conveniently single criterion for 

gauging whiteness “overall”. This inconvenience is addressed by the Ljung–Box test, which tests 
whether any of a group of autocorrelations of a time series is significantly different from zero.21 
The test is specifically intended as a goodness-of-fit test of time-ordered residuals when the Pear-
son product-moment form is used to estimate the sample correlogram, but for small n (< 100), the 
test is reputed to have limited power.22 A similar test, which is possibly more sensitive, is noted 
by Brockwell and Davis (1991), based on the correlogram of the sequence of squared residuals.23 

However, these omnibus tests do not necessarily apply to a pseudo-correlogram. Therefore, 
we consider that the significance level of any statistical test equals the overall false alarm rate 
whenever the null hypothesis is true. For example, if { )(ˆ kρ , k = 1, 2, …} were all being tested 
for whiteness at the 5% significance level, we would expect the cumulative number of failures to 
be ~5% if whiteness existed. However, simulation studies suggest that the actual cumulative fail-
ures for white Gaussian deviates might vary in the neighborhood of 4% to 6% depending on such 
factors as the measurement spacing, the number of measurements, and the gridding value ∆tgrid 
adopted. 

Example 

To illustrate the omnibus test, we consider 2220 irregularly-spaced satellite tracking residuals 
originating from an orbit-determination filter that are seemingly “non-optimal” due to the detec-
tion of short-term correlation (that is, the short-term correlation test statistics MSSD and first-lag 
pseudo-correlation )1(ρ̂  exceeded their 1% significance critical values). The measurements, 
spaced at ∆tmedian = 16.7 seconds, are evaluated using a pseudo-correlogram and pseudo-
variogram with grid spacing of ∆tgrid = 4.2 seconds to create approximately 7000 pseudo-



 

 11 

coefficients with at least h = 5 pairings. From the filter residuals, we computed and plotted 
)(ˆ kh ρ (“Correlogram” of Figure 2a), where h is the number of available pairs at lag k and 

)(ˆ kρ  is pseudo-correlogram coefficient estimated according to Eq. (15). Critical values of ±2.58 
(indicating 1% significance assuming normality) are superposed. Also superposed in Figure 2a is 
a plot of a transformation of 1 – )(ˆ kγ  / s2 (labeled “Variogram”), which recalling Eq. (20), trans-
forms the semi-variogram coefficient into a correlogram-like value.* We now compare these out-
comes to Figure 2b, where the tracking residuals are replaced by simulated Gaussian white noise 
at the same measurement times, such that no significant correlations should exist. Here we might 
notice that the scatter in the real-data statistics seem to be slightly greater than that for the simu-
lated white noise, resulting in more “failures” (values exceeding the 1% significance levels) rela-
tive to white noise. But since it is hard to tell from inspection, how should this be quantified? 
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Figure 2. Correlation Test Statistics for Sample Tracking Tested at 1% Significance. 

Figure 3 illustrates a plot of the accumulated number of failures versus the number of lags 
tested. Accumulated failures using normal critical values for Fisher’s z, as well as critical values 
for the pseudo-variogram based on the F-distribution, are also added to Figure 3. It may be ob-
served that, for the simulated data where zero correlation is known to exist, all four test statistics 
experience cumulative failures close to the 1% significance level used, as expected. Also, both 
types of test statistics (correlogram and semi-variogram coefficients) seem to detect that short 
term correlations exist in these tracking residuals, typified by the higher-than-expected failure 
rates for short lags. However, the number of overall failures appears higher than expected when 
semi-variogram coefficients are used as the test statistic, where the pseudo-correlogram is much 
lower than expected. This example suggests that the critical values of the pseudo-variogram esti-
mator (based on the χ2- and F-distributions) may detecting additional correlations that the pseudo-
correlogram estimators cannot. 

                                                   
* Critical values of the semi-variogram statistic (based on either the χ2- and F-distributions) are non-linear functions of 
the degrees of freedom h. For Figure 2, we rescale the semi-variogram-ratio statistic by multiplying by ±2.58 h /χ2

β,h 
(where β = 0.5% if )(ˆ kγ  / s2 < 1, and β = 99.5% if )(ˆ kγ  / s2 > 1) to display a statistic whose 1% significance critical 
values are also at ±2.58. This transformation is not operationally necessary, but is done solely for the purpose of creat-
ing a side-by-side illustration with the correlogram estimate of Eq. (13). 
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Figure 3. Cumulative False Alarms for Sample Tracking Tested at 1% Significance. 

Simulated Time Series 

In cases where simulated time series are truly white, there tends to be little difference in the 
outcomes of statistical tests using the pseudo-correlogram of Eq. (15) or the pseudo-variogram of 
Eq. (20). In simulation cases where significant autoregressive correlations are introduced (e.g., 
short-term recursions such as Xi+k = a Xi + vi, where a is some small constant and v is white noise, 
etc.), the two types of estimators tend to behave similarly, although the critical values of the semi-
variogram seems more sensitive to detecting the presence of correlations. We are therefore of the 
opinion that semi-variogram-based estimators show more power at rejecting the null hypothesis 
of whiteness when it is false, and may be preferred for that reason. 

Spectral analyses of real-tracking residuals also suggest that un-modeled accelerations in non-
optimal estimates may present slight periodic (per revolution) signatures. However, it is often the 
case that binning / gridding process of the pseudo-estimators can cause periodic signal to alias 
into other frequencies, with statistically significant failures appearing at lag values that are not at 
the actual period of the signal. This aliasing is quite acceptable for our purposes, since our use of 
pseudo-estimators is to simply identify the presence of significant correlation, rather than investi-
gate the structure of the correlation. However, differences in behavior between the conventional 
and pseudo-estimators in the presence of periodic signals in one reason why we cannot generally 
equate pseudo-estimates with those of conventional correlograms and semi-variograms. 

Simulated Orbit Determination 

The Orbit Determination Took Kit (ODTK) simulator-filter-smoother was used to briefly in-
vestigate the correctness of the mean, variance, and whiteness tests. ODTK maps the uncertainties 
of physical force models into covariance process noise, which is more physically realistic than 
ad-hoc tuning methods.24 Ordinarily, ODTK uses the filter-smoother consistency test as its pri-
mary goodness-of-fit test (discussed in the Appendix), but statistical hypothesis testing of the re-
siduals are not ordinarily employed. 

Our limited goodness-of-fit testing of residual mean, variance, and whiteness suggested that 
the ODTK filter-smoother provides optimal (good-fitting) results in simulation cases where the 
filter and smoother parameterizations reasonably match the simulator parameterization. We ob-
served that the test of the variance and the tests of short-term correlation are most sensitive to 
changes in tracking system parameterization, and thereby may be most useful for calibration. 
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CASE STUDY USING REAL TRACKING DATA 
Our next goal was to apply goodness-of-fit tests to genuine satellite-tracking residuals proc-

essed by the ODTK filter-smoother. For our case study, we used two-way ranging observations 
from two tracking stations relayed through the transponders of a geosynchronous satellite. 

System Initialization. We first established an initial filter parameterization whose solution con-
verged on the measurements but was not necessarily an optimal fit. A realistic satellite parame-
terization (mass, area, attitude, initial conditions, etc.) was required to begin the estimation proc-
ess. Parameterizations related to the force modeling, such solar radiation pressure, ballistic coef-
ficients, transponder characteristics, etc., were also carefully researched and set, as well as track-
ing-station characterizations (location, coordinate frame, bias and noise characteristics, refraction 
and attenuation modeling, etc.) Discussions with the owner operators and initial filter-smoother 
runs were conducted to set expectations for the parameters being explored, and a special program 
was written to vary these parameters in a systematic way. 

Transponder Calibration. The transponder was thought to operate according to its manufac-
turer’s configuration as it is not changed by the satellite’s owner / operator unless problems are 
observed. The estimated transponder noise was initially set to be a few meters based on reports of 
manufacturer’s pre-flight testing, but other parameters characterizing drifting ranging bias are 
generally unknown ahead of time. We therefore processed several weeks of tracking data with 
ODTK to obtain other preliminary estimates of transponder performance (transponder bias uncer-
tainty and transponder bias half-life). 

Tracking Station Calibration. The tracking stations had relatively well-known locations, but 
little was known about their bias and noise characteristics. Even while the random noise may be 
very small, the bias value may drift significantly over time. Three parameters were therefore ini-
tialized based on early ODTK runs using available tracking data: the ranging-system noise level 
(white-noise sigma), the ranging bias (drift) uncertainty, and ranging bias half-life. 

Approach 

After preliminary parameter values were set, we varied each of the transponder and tracking-
station parameters one at a time, and plotted the outcomes of the statistical tests versus the pa-
rameter values tried. Possible trends in the plots were used to identify what parameter values 
might be tried next.* Matching residual-test outcomes with successful filter-smoother consistency 
was more difficult to automate because plots of the filter-smoother consistency statistics tend to 
be assessed subjectively (visual examination by an analyst). Some sample trend curves are shown 
in Figure 4 illustrating how the test statistics can change as the parameterization changes. In this 
case, it is apparent that as the bias (drift) sigma is increased, the variance statistic moves down-
ward and the MSSD and 1st lag statistics move upward. Nearly “successful” test outcomes appear 
close to unity in this plot. 

                                                   
* Early attempts tried “mesh grids” over all calibrated parameters (transponder bias sigma and half-life, and tracker 
white noise sigma, bias sigma, and half-life); however, plotted results did not provide definitive guidance for subse-
quent trials. 
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Figure 4. Tracker Parameter Trends. 
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Best Results Encountered 
A “best-case” outcome was selected after testing extensive adjustments to the tracking-station 

and transponder parameters. Best-case is in quotes because the statistical hypothesis uncertainty 
of the tests can allow for a range of acceptable parameterizations. For example, with one of the 
tracking stations, a 1-meter bias (drift) sigma and 81-minute half-life seemed just as acceptable as 
a 5-meter bias sigma and a 1440-minute half-life (the values eventually adopted as “best”). 

For our adopted best case, the histograms suggest that the measurement residual ratios are ap-
proximately normally distributed (Figure 5) and the residual ratios appear sufficiently random at 
the proper scale (Figure 6). The observation interval included several maneuvers that we did not 
estimate using ODTK, because there was no noticeably adverse effect on the filter-smoother con-
sistency test using the maneuver estimates provided by the satellite’s owner-operator (Figure 7). 

Table 1. Case-Study Results: Overall Whiteness of Residual Ratios 

 Distribution for Cumulative Failures Tested at #1 Significance 

Test Statistic Critical Values Tracker #1 Tracker #2 

Pseudo-Variogram χ2 1.59% (120 of 7524) 1.16% (128 of 11049) 

Pseudo-Variogram F 1.42% (107 of 7524) 1.11% (123 of 11049) 

Pseudo-Correlogram 
(Fisher's z) Normal  0.89% (67 of 7524) 0.81% (90 of 11049) 

Pseudo-Correlogram 
(Pearson Product-Moment) Normal 0.54% (41 of 7524) 0.28% (32 of 11049) 

 

Table 2. Case-Study Results: Mean, Variance, and Short-term Whiteness of Residual Ratios* 

 2143 Residual Ratios from Tracker #1 955 Residual Ratio from Tracker #2 

Test 
Statistic 

1% 
Lower 
Critical 

Outcome 
1% 

Upper 
Critical 

Signifi-
cance 
(%) 

1% 
Lower 
Critical 

Outcome 
1% 

Upper 
Critical 

Signifi-
cance 
(%) 

Mean -0.056 0.014 0.056 52.5 -0.084 -0.044 -0.084 17.4 

Variance 0.923 1.058 1.080 6.19 0.885 0.960 1.124 39.7 

MSSD 0.944 1.043 1.056 4.58 0.916 1.070 1.084 3.23 

)1(γ̂  0.918 1.081 1.086 1.57 0.878 1.062 1.131 20.6 

 

Table 1 and Table 2 summarize the results of statistical hypothesis tests on the residual ratios 
for the best case. The results of an omnibus test of overall whiteness (Table 1) seems to affirm 
that critical values from a normal distribution used with the sample autocorrelation coefficients 
from Eq. (15) can under-report the presence of correlations relative to the other statistics. This 
                                                   
* The critical values and significance values assume that the mean is normally distributed, and the variance, mean-
square successive difference, and first-lag pseudo-variogram are χ2 distributed. 
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affect was noticed during our simulation studies, leading us to believe that this statistic is less 
likely to detect correlations should they exist. If so, then the residuals of Tracker #1 might not be 
as white as they could in this case, since the pseudo-variogram statistics are slightly above a 1% 
false alarm rate anticipated under white noise conditions. 

Table 2 summarizes test results for the mean, variance, and short-term correlation of the resid-
ual ratios. Basically, we consider the filter’s parameterization to be in the neighborhood of opti-
mality whenever all/most of the test statistics fall between their critical values. The column “Sig-
nificance (%)” is the significance of the critical value at which the test statistic would have failed 
if it had been tested as that level; thus, while all of short-lag whiteness statistics pass a 1% sig-
nificance test, some would not always pass a 5% significance test; this again suggests that there 
might still be room for very small improvements in our calibration of Tracker #1. 

POSSIBLE AREAS OF FUTURE STUDY 

One concern regarding Fisher’s z is that it may have less sensitivity to the presence of signifi-
cant serial correlations. Another transformation has been developed by Hotelling that employs 
higher-order corrections than Fisher’s z, thereby providing a more nearly normally distributed 
statistic than Eq. (16) for small samples.25 Future work may explore the use Hotelling’s z* as an 
alternative to Fisher’s z. 

Other future work may consider the use of variance estimators that more accurately compen-
sate for the fact that outliers have been rejected from the sample.26 Automating the search process 
for optimal parameters also appears feasible, and is being explored. 

SUMMARY RECOMMENDATIONS 
An optimal filter should generate predicted measurement-residual ratios that are zero mean, 

unit variance, and uncorrelated. While the need for white residuals is often noted, this condition 
seems to be rarely tested in practice; this is probably because the most commonly recommended 
test - namely significance testing of the sample autocorrelation function coefficients - may not be 
useful to orbit determination problems where tracking data are irregularly sampled with time. In 
this paper, we propose methods of estimating autocorrelation coefficients by pairing measure-
ments according to regularly spaced time grids so they can be time-paired in an approximately 
even way. Called the pseudo-correlogram or pseudo-variogram in this paper, these methods are 
thought to have better power at detecting serial correlations in irregularly sampled time series. 

We conclude that pseudo-variogram estimates )(ˆ kγ  demonstrate reasonable power at detect-
ing correlations in real and simulated data, and we therefore suggest the following goodness-of-fit 
tests for residual ratios: 

1. Test for zero mean using the critical values based on a t- or normal distribution. 

2. Test for unit variance using the critical values based on a χ2-distribution. 

3. Test for short-term autocorrelation using χ2 critical values for the first-lag pseudo-
variogram ratio )1(γ̂  / s2 (supplemented with mean-square-successive-difference test). 

4. Test of significant autocorrelations overall by monitoring the cumulative failure rate over 
many lagged pseudo-variogram ratios { )(ˆ kγ  / s2, k = 2, 3, … }. 

Our preference has been to use χ2 critical values for the test statistic )(ˆ kγ  / s2, instead of the F 
critical values, the F distribution being less conservative. 
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APPENDIX  - FILTER-SMOOTHER CONSISTENCY TEST 
While the whiteness of measurement residuals provides a testable criterion of optimality for 

real tracking data, Wright acknowledged that McReynolds filter-smoother consistency test should 
also be satisfied globally as a type of goodness-of-fit test for orbit determination.4 McReynolds 
(1984) proved that the difference between a filtered state xf(t) and a smoothed state xs(t) is nor-
mally distributed in k dimensions, if k is the size of the state-difference vector Δx(f-s)(t).27 He also 
showed that the covariance matrix ΔP(f-s)(t) of the state-difference vector is equal to the filter er-
ror-covariance Pf(t) minus the smoother error-covariance Ps(t). Therefore, the time sequence of 
z(f-s)(t) = [Δx(f-s)(ti)]T[P(f-s)(ti)]-1[Δx(f-s)(ti)], {ti , i = 1, 2, … n} provides an sample population over 
the estimation interval upon which the assumption of multivariate normality can be tested.28 If the 
sequence of z(f-s)(t) supports the hypothesis of multivariate normality, then the filter may be con-
sidered optimal. If the sequence z(f-s)(t) does not support the null hypothesis of multivariate nor-
mality, then the filter may be considered non-optimal. 

Due to difficulties in accessing the multivariate normality of the test statistic z(f-s)(t), z(f-s)(t) is 
replaced by a subset of its k univariate components: 

 Δx(f-s)  / σ(f-s) = (xfilter – xsmoother) / (σfilter – σsmoother), (22) 

where x is the parameter estimate and σ2 is the diagonal element of the covariance corresponding 
to that x.29 A time series of the univariate filter-smoother consistency test statistic Δx(f-s) / σ(f-s) is 
plotted and examined by an analyst and filter-smoother consistency is claimed when the scatter of 
this metric stays within ±3 over the fit interval. 
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