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APPROXIMATE-OPTIMAL FEEDBACK GUIDANCE FOR SOFT
LUNAR LANDING USING GAUSSIAN PROCESS REGRESSION

Pradipto Ghosh∗, James Woodburn†, and Cody Short ‡

A recently-developed optimal feedback synthesis method based on Gaussian Pro-
cess Regression (GPR) is applied to soft lunar landing guidance. GPR is a form of
supervised learning technique that is highly useful in constructing surrogate mod-
els of unknown functions from input-output training dataset. In this work, GPR
has been utilized in capturing the functional relationship between optimal state and
control using a pre-generated field of extremals as training data. At each guidance
call, when control computation is desired for a newly-sensed state, a new Gaus-
sian process model regressing state and control is created with only a subset of
the offline-computed training data, those that are “temporally similar” to the cur-
rent state. It is argued that this method of sequentially generating approximately-
optimal controls from a new regression model at each step effectively relaxes the
assumption that the underlying map is smooth over the domain of interest. Having
designed the GPR-based optimal state-feedback algorithm, its usefulness is as-
sessed by verifying that its application leads to near-optimal trajectories when the
lander starts from perturbed initial conditions. A distinctive feature of this work
is the realistic quantification of the initial state uncertainty in the form of a full
position-velocity estimation error covariance matrix obtained from lunar orbit de-
termination. By randomly sampling states within the extent of this uncertainty, it
is shown through numerical experiments that the GPR-based guidance algorithm
is highly effective in compensating for imperfectly-known initial conditions of the
lander.

INTRODUCTION

As interest in lunar missions thrives unabated from space agencies around the world, the problem
of designing improved autonomous guidance strategies for lunar soft landing, or the somewhat
related problem of near-zero-velocity touchdown on asteroids and other atmosphere-free bodies,
continues to receive close attention from the global research community. In early 2017, SpaceX
announced its intention of sending a crewed Dragon 2 vehicle to a lunar orbit sometime in 2018 [1].
At the time of writing, China is planning to fly a robotic lunar sample return mission, the so-called
Chang’e 5 mission, in late 2017 [2]. The Indian Space Research Organization’s (ISRO) upcoming
Chandrayaan-2, planned for launch in 2018, will include a lunar orbiter, lander, and rover for lunar
surface exploration [3]. In a similar vein, the Japan Aerospace Exploration Agency (JAXA) is
developing the Smart Lander for Investigating Moon (SLIM), a lander that is being designed to
perform precise, pin-point landing on the lunar surface, powered by an image-based navigation
system [4].
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The landing phase for a probe is generally initiated from a low lunar parking orbit. Soft landing
typically implies a vertical velocity of less than ∼ 5 m/s and near-zero horizontal velocity on or
close to the lunar surface. The vertical velocity requirement ensures that the structural stress on the
landing mechanism remains under acceptable levels, whereas a small horizontal velocity reduces
the risk of the craft tipping over on touchdown. In the absence of any appreciable drag forces to dis-
sipate the craft’s kinetic energy, it is clear that the desired terminal conditions can only be achieved
by selecting an appropriate thrust program, a process called powered braking. An enormous volume
of work analyzes various lunar soft landing guidance and control schemes, a consequence of inves-
tigations that began in the pre-Apollo era [5]. It is not the intent of the present paper to provide an
exahustive survey of the relevent literature. For this purpose, reference may be made to some of the
more recent papers, such as those those by McInnes [6], Ramanan and Lal [7], Chomel and Bishop
[8], Lee [9], Zhou et al. [10], and Cecchetti et al. [11], and the references therein. The work in
reference [6] proposes modulating of the instantaneous vehicle speed as a function of the velocity
pitch angle along a gravity turn descent trajectory, but does not adopt a control theoretic approach.
The velocity pitch angle is assumed to be independently regulated, and the trajectory is not optimal
in any sense. Ramanan and Lal present analyses of various minimum-fuel, open-loop thrust pro-
gramming strategies for vertical soft landing from different initial orbits, but they do not address
the feedback guidance problem, which is the focus of this paper. Chomel and Bishop develop a
reference trajectory generation algorithm as well as a guidance algorithm for the real-time tracking
of this reference trajectory. The authors use Lyapunov stability analysis to demonstrate that the
guidance law is able to track the reference states asymptotically. However, their formulation does
not utilize the optimal control framework. In reference [9], analytical expressions are derived for
a control-authority-minimizing guidance law based on a linear model of the lander dynamics. The
research reported by Zhou et al. in reference [10] is qualitatively similar to that presented in this
paper in that both involve synthesizing closed-loop optimal controls from open-loop ones, but there
are two main differences between that work and the current one. First, the success of the feedback
synthesis method followed in [10] is contingent upon the dynamical system model and the cost
function having special structures, namely affine-nonlinear dynamics and a quadratic cost function.
The applicability of the feedback synthesis method presented in this research, on the other hand,
is more universal because it does not place such a restriction on the problem structure. Secondly,
while Zhou et al. use spline interpolation to reconstruct a Riccati-like gain matrix for off-nominal
states, the present research utilizes sequential Gaussian Process Regression (s-GPR), a variant of
the framework developed in [12, 13] to approximate controls as a function of the current state.
Lastly, Cecchetti, Pontani and Teofilatto apply a modified neighboring optimal guidance method to
solve the lunar soft landing problem. Their modification consists in updating the so-called “sweep
method” so as to avoid singularities in the elements of the associated gain matrices.

In this paper, the lunar soft landing guidance problem is solved by adopting a particular imple-
mentation of dynamic programming, namely optimal feedback synthesis [14, Ch. 4]. Feedback syn-
thesis is computationally much more tractable than attempting a numerical solution of the Hamilton
Jacobi Bellman (HJB) equation for determining optimal feedback policies. In optimal feedback
synthesis, a feedback chart is constructed from a family of open-loop extremals, thus ensuring opti-
mality with respect to any state vector interior to the convex hull of the set of states in that family. In
this paper, feedback synthesis is realized using sequential GPR, a powerful non-parametric regres-
sion technique, where the control corresponding to each guidance-call state is approximated by a
Gaussian regression model valid only within a neighborhood of that state sample. An often-adopted
approach to testing the effectiveness of guidance laws is to verify that they can accomodate rea-
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sonable uncertainty in the initial conditions of the system. While most of the papers cited earlier
arbitrarily assume the size of an uncertainty volume surrounding the nominal initial state without
justifying how this was arrived at, this paper, notably, uses the full position-velocity covariance of
a lunar orbiter as the uncertainty region around the nominal de-orbit state. The covariance func-
tion is computed as part of the lunar orbit determination solution using an Extended Kalman Filter
(EKF) operating on a high-fidelity force model and simulated observations from the NASA/JPL
Deep Space Network (DSN).

PROBLEM DESCRIPTION

The point-mass lunar probe is initially assumed to be in an eccentric, polar, parking orbit with the
following nominal Keplerian orbit parameters referred to a Moon-centric inertial coordinate system:

a = 1837.1km, e = 0.0272, i = 90◦, Ω = 120◦, ω = 90◦, f = −90◦ (1)

where a, e, i, Ω, ω and f are the semi-major axis, eccentricity, inclination, right ascension of the
ascending node, argument of periapsis, and true anomaly, respectively. The objective is to design a
state-feedback control law that brings the lander “close” to the lunar surface in minimum time with
(ideally) zero vertical and horizontal velocities. No constraint is placed on the landing site location;
it is allowed to be anywhere in the initial orbit plane. For the purposes of optimal control design, the
following two-body, planar, spherical-gravity dynamical equations of motion of the lander powered
by a constant-specific-impulse (CSI) engine are considered:

ṙ = u (2)

u̇ =
v2

r
− µ

r2
+

T

m0 − |ṁ|t
sinβ (3)

v̇ = −uv
r

+
T

m0 − |ṁ|t
cosβ (4)

with initial conditions:

r0 =
a(1− e2)

1 + e cos f0
(5)

u0 =

√
µ

p
e sin f0 (6)

v0 =

√
µ

p
(1 + e cos f0) (7)

and final conditions:

rf −RM = 10 km (8)

uf = 0 (9)

vf = 0 (10)

minimizing the Mayer cost function:
J = tf (11)

In the above differential-algebraic system of equations Eqs. (2 - 11), r denotes the radial distance of
the vehicle center of mass from the moon center, u the radial (vertical) component of the velocity,
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v the tangential (horizontal) component of the velocity, T the engine thrust, β the thrust pointing
angle measured counter-clockwise from the local horizontal, f0 the true anonaly at braking initi-
ation and RM = 1737.1km. the mean lunar radius. A true soft landing usually requires that the
craft be vertical at touchdown. The above model, however, does not account for the vehicle’s yaw
kinematics, nor does it capture the operation of a Reaction Control System (RCS) for orienting the
thrust pointing angle, which will, in general be different from 90◦ when the terminal manifold is
reached. As such, the final altitude condition is selected to allow for a second, attitude re-orienting
phase to be initiated if one is deemed necessary. The following values are used for the (constant)
engine thrust T , initial mass m0 and the engine specific impulse Isp [7]:

T = 440 N, m0 = 300 kg., Isp = 310 seconds

Figure (1) shows the solution to the open-loop trajectory optimization problem described by Eqs. (2
- 11) obtained using GPOPS-II, a commercially available optimal control software [15]. GPOPS-II
uses Gauss pseudospectral collocation for discretizing the dynamcal equations and Interior Point
OPTimizer (IPOPT) for solving the resulting numerical optimization problem. It is clear from
Fig. (1) that the thrust pointing angle starts close to 180◦, and remains in the [120◦, 180◦] range
throughout, implying that the craft retro-thrusts over the entire duration to diminish altitude and
neutralize the velocity components. It may be recalled that for the current problem geometry, β =
0◦ is along-motion and β = 180◦ is the anti-motion direction. As noted already, the control β
numerically solved for is open-loop in the sense that it is a function of the initial states and current
time, i.e β = β(r0, u0, v0, t). This means that if the system starts from an off-nomal state, this
control will not be optimal with respect to that state and will not meet the algebraic constraints.

SOLUTION METHODOLOGY

As alluded to earlier, the focus of this paper is the design of a guidance strategy that will drive
the system states from an initial uncertainty hypervolume, realized by a complete position-velocity
ellipsoid obtained from lunar orbit determination (OD), to the desired terminal hypersurface while
honoring other optimality criteria as closely as possible. It was further indicated that the compu-
tation of such a guidance strategy begins with generating a field of open-loop extremals uniformly
covering this uncertainty region so that any random, nature-selected initial state interior to this re-
gion can be autonomously acted upon by the s-GPR guidance algorithm/feedback controller. Lunar
orbit determination was carried out in this research using the Orbit Determination Toolkit (ODTK)
software developed by Analytical Graphics Inc. [16]. The envisioned workflow can be summarized
in the following steps:

1. Select a de-orbit point on the parking orbit from general mission considerations.

2. Generate, offline, a field of extremals with initial conditions sampled from the interior of an
nσ ellipsoid around this nominal point. This step involves solving multiple instances of the
trajectory optimization problem described by Eqs (2 - 11).

3. Synthesize real-time controls from the extremals generated in step 2 using s-GPR.

In the sequel, the concept of optimal feedback synthesis is briefly explained, followed by details of
its implementation using s-GPR. Subsequently, an outline of the lunar orbit determination process
relevant to the current work is presented.
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Figure 1. Minimum-time trajectories for the lander

Optimal Feedback Synthesis

Consider the optimal control problem P described by:

P


ẋ = F (t, x(t),u(t)), x(0) = x0, t ≥ 0
u(t) = γ(t, x(t)) ∈ U , γ ∈ Γ

J (u) = φ(tf , x(tf )) +
∫ tf
0 L(t, x(t),u(t))dt

Ψ(tf , x(tf )) = 0

where x ∈ Rn is the state, u ∈ Rm is the control, F : R+ × Rn × Rm → Rn is a known smooth,
Lipschitz vector function (the system function), γ : R+ × Rn → Rm is the feedback strategy, U ⊆
Rm and Γ is the class of all admissible feedback strategies. The control function or control program
u must be chosen to minimize the Bolza-type cost-functional J (·), and Ψ : R+×Rn → Rq, q ≤ n
represents a smooth terminal manifold in the state space. Adopting a feedback information pattern
for P , the optimal feedback control problem is to find a γ∗ ∈ Γ such that:

J(γ∗) ≤ J(γ) ∀ γ ∈ Γ (12)

where J(γ) , J (u) with u(t) = γ(t, x). The function u∗ minimizing J (·) is the optimal open-
loop strategy while γ∗ is referred to as the feedback realization of u∗. Conversely, it also holds that
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the open-loop solution u∗ of P is a representation of the feedback strategy γ∗. This equivalence
between open-loop and feedback strategies can be summarized with the following two statements:

1. Both u∗ and γ∗ generate the same unique, admissible, state trajectory.

2. They both have the same value(s) on this trajectory.

Given a set V , {x0 ∈
n∏
i=1

[x0i − ai, x0i + bi] ⊂ Rn} of box-uncertain initial conditions, and an

associated family Q(x0) of optimal programming problems parameterized by x0 ∈ V , the proce-
dure for synthesizing optimal strategies forQ in feedback form now directly follows from the above
discussion:

1. First construct the set UOL (of finite cardinality, as opposed to Q) that are strategies that
depend only on the initial state x0 and the current time t. This can be achieved by solving
for open-loop control programs and trajectories for a sample of initial conditions from within
V . This process will also generate a corresponding set of open-loop states XOL and a set of
final times, or times-to-go from x0, T 0

2go . The collection of extremals {XOL, UOL} will be
referred to as the nominal ones, and can be obtained numerically using a direct or indirect
formulation of the optimal trajectory problem.

2. Given an off-nominal state, and perhaps also the current time (for a non-autonomous system),
predict the open-loop control that would be the optimal open-loop strategy for that state at
that time. Such an open-loop control would also constitute, by the equivalence-of-strategies
argument presented above, an equivalent feedback strategy γ̃∗(t, x), with the feedback infor-
mation pattern being enforced by the use of current state (and time) in the prediction scheme.
Under the adopted assumption of the existence of a family of unique, admissible state-control
pairs {x(t),u(t)} corresponding to γ(t, x(t)) for every x0 ∈ V , γ(t, x(t)) is also called a
control synthesis, and γ̃∗(t, x) the approximate control synthesis for the set V of initial con-
ditions.

In this paper, prediction is realized by the use of universal kriging, an instance of Gaussian Process
Regression, itself a form of supervised learning that can be used for approximating non-random,
deterministic input-output models arising from computer experiments [17]. It is assumed that all
the states are directly available for measurement for a full-state feedback controller synthesis.

Feedback Synthesis through Sequential Gaussian Process Regression (s-GPR)

A Gaussian process is a generalization of the familiar Gaussian distribution. Just as a Gaussian
distribution is fully specified by its mean vector and covariance vector, a Gaussian process is charac-
terized by its mean function and covariance function [17]. A function u(x) distributed as a Gaussian
process with mean function µ(x) and covariance Z(x) can be expressed as:

u(x) ∼ GP(µ(x), C(x)) (13)

Formally, a Gaussian process is a set of random variables any finite collection of which have joint
Gaussian probability distributions. Gaussian process regression can be utilized to address the fol-
lowing problem: suppose there is a training set S of p observations S = {{xi, ui}, xi ∈ Rn, ui ∈
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R, i = 1, . . . , p}, where x is an input vector to a black box model, perhaps a computer experiment,
and u denotes a dependent variable or the output. Given this training set of inputs and outputs, what
inference can be drawn about the functional relationship between x and u, or in other words, the
conditional distribution of the outputs given the inputs? Thus, GPR can be exploited to learn the
mapping between between x and u from the set S. In this work, GPR is used the learn the state-
optimal control mapping from a pre-generated field of extremals, the state samples XOL being the
inputs and control and time-to-go samples {UOL, T 0

2go} being the outputs.

Let the Gaussian process representing the state-control mapping be expressed as the following
additive composition of a regression polynomial µ(x) and a pure multivariate Gaussian process
Z(x, ω):

U(x, ω) = µ(x) + Z(x, ω) (14)

where x ∈ D ⊂ Rn is the domain in which samples are observed, ω ∈ Ω for some sample space Ω
and

E[Z(x, ·)] = 0, Cov[Z(xi, ·), Z(xj , ·)] = Cij = s2Rij , i, j = 1, . . . , p (15)

Here Cij and Rij are, respectively, the covariance and correlation between two of the observations
and s2 is the process variance. In other words, according to the model Eq. (14), the deterministic
outputs u(xi) = ui (from the extremals) can be regarded as a particular realization U(xi, ·) of the
Gaussian random function U(·) with mean µ(x) and covariance matrix [Cij ], cf. Eq. (13). The
discrepancy between the observed data (the open-loop controls) and the mean function is the co-
variance Cij = C(xi, xj), typically a smooth function. In order for GPR to be effective, the actual
form of the mean and covariance functions must be chosen conditioned on the data. This process
of training the GPR model is, however, non-trivial, given that in most practical applications, no
prior information is available regarding the process generating the data, the one whose metamodel
is sought. A common way to deal with the issue is to use a hierarchical prior, whereby the mean
and covariance functions are expressed in terms of the so-called hyperparameters that are subse-
quently computed given the data, for instance, through Maximum Likelihood Estimation (MLE)
[17]. For example, if it is a reasonable assumption that the map to be approximated is a second
order polynomial, then, for n = 3, the mean function can be expressed in the form:

(16)µ(x) = β000 + β100x1 + β010x2 + β001x3 + β110x1x2

+ β101x1x3 + β011x2x3 + β200x
2
1 + β020x

2
2 + β002x

2
3

If, in addition, a linear covariance function of the type:

Cij(θ, xi, xj) = s2max{0, 1− θ |xi − xj |} (17)

is assumed, then MLE estimation must determine the following hyperparameter vector:

V = [β000 β100 β010 β001 β110 β101 β011 β200 β020 β002 θ]
T (18)

In general, assuming that the regression polynomial µ is expressible as a linear combination of
regression basis functions , i.e µ(x) = βT f(x), it can be shown that the Minimum Variance Unbiased
Estimate (MVUE) of the control at a test point xtest reduces to the following expression [12]:

ũ∗(xtest) = γ̃∗(xtest) = R̂0(xtest)
TΦ + f0(xtest)

T β̂GLS (19)

where
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i) R̂0 is the training-test set covariances computed based on the ML estimated free parameters of
the covariance matrix [Cij ].

ii) Φ ∈ Rp is a matrix computed from the training control samples ui, the regression basis function
evaluations over the design matrix {xi} and control test set covariances, cf. reference [12] for
details.

iii) f0 := [f1(xtest) f2(xtest) . . . fk(xtest)]
T , fi being the regression basis functions.

iv) β̂GLS is the vector of the generalized least squares estimate of the regression coefficients β,
also computed based on the ML estimated free parameters of the covariance matrix.

Optimal control synthesis was accomplished through the principles outlined above, and in particular,
by using Eq. (19). All GPR-related computations were carried out using DACE, a Matlab-based
Kriging toolbox [18].

In sequential Gaussian Process Regression, control is synthesized each time a guidance call is
made, or equivalently, at each numerical integration step, by constructing a local GPR model with
extremal samples drawn from a temporal neighborhood of the current state xcurr. Thus, if control at
the current time tcurr corresponding to the current state xcurr is desired, a subsetW ⊆ S of the origi-
nal training set is mined from S with the criteria that the times associated with the design submatrix
be in a neighborhoodNε of tcurr. Figure (2) schematically illustrates the concept for a scalar system
at two successive instants of control approximation. This manner of sequentially constructing local
GPR models as numerical integration proceeds is the principal difference in control synthesis im-
plementation between this work and previously reported, related work of references [12, 13]. There,
a global GPR model is formed only once from the entire extremal training set S at the simulation
outset, which is then queried each time a guidance call is made. To appreciate the motivation for
adopting s-GPR, it may be recalled that the role of the prior covariance function Eq. (15) in GPR is
to control the smoothness of the model, the influence of nearby design points on the test location,
and the differentiability of the mapping, by quantifying the correlation between two observations.
Typically, not enough prior information is available about the “truth” map, such as β(r, u, v), to
be able to confidently specify a functional form of Cij . Typical choices for this are exponential,
Gaussian, spherical and linear covariance models, all of which are smooth functions. Adopting the
global GPR approach is tantamount to presupposing that the underlying multivariate function being
approximated is indeed smooth over the entire domain of interest. The s-GPR method, on the other
hand, only demands local smoothness around each new state sample, which is less restrictive. In
addition, greater flexibility in modeling the control hypersurface is afforded by the fact that each
local GPR mean function, associated with its own set of regression coefficients β (see Eq. (16)),
will in general be different from the next GPR mean function in the sequence. Thus, each local
GPR structure can be molded to follow the local surface trend more faithfully as compared to global
GPR, as the latter would effectively result in fitted coefficients forced to model an “averaged out”,
global surface. The trade-off is, however, the lag or the control computation time. While the global
GPR approach results in near-instantaneous feedback control computation given the current state,
this is not so for the s-GPR method. This is not surprising because a GPR model construction at
each step involves solving a non-linear optimization problem to determine the covariance hyperpa-
rameters, in addition to manipulating matrices [12]. In spite of this, simulation result in the sequel
indicates that control computation time is small enough to be suitable for consideration in real-time
applications with reasonable guidance call intervals. Implementation-specific details of the s-GPR
algorithm adopted for the lunar lander guidance problem are presented in the Results section.
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Figure 2. Sequential GPR in the Neighborhood of a State

Orbit State Estimation Error Covariance From Lunar Orbit Determination

Lunar orbit determination is accomplished in this work by applying a commercially available
optimal sequential filter, in particular the EKF available in ODTK, to simulated DSN observations
of the nominal lunar orbit described by Eq. (1). Figure (3) graphically illustrates the concept,
capturing an instant at which the lander is visible from two of the three DSN stations. An EKF can
be described as a continuously running recursive machine consisting of an alternating series of time
updates and measurement updates. Time updates transition the state and estimation error covariance
to the following measurement instant, while measurement updates are performed to incorporate the
latest measurement information, producing an improved state estimate, with an attendant reduction
in the σ’s of the state error covariance matrix. The state estimation error covariance matrix is
recursively updated using the following matrix difference equation as part of EKF time update:

Pk+1|k = Φ(tk, tk+1)Pk|kΦT (tk, tk+1) + Q(tk, tk+1) (20)

where Pk+1|k is the state estimation error covariance at time tk+1 with measurement information
through time tk, Φ(tk, tk+1) is the linear state error transition function and Q(tk, tk+1) is the addi-
tive process noise matrix that accounts for dynamical modeling uncertainty in the interval [tk, tk+1].
The role of Q quantifying dynamical modeling uncertainty in Eq. (20) is crucial in that it ensures
that the covariance is realistic at the time of measurement processing. If the dynamical process noise
is either too small or too large, filter divergence may occur [19]. Traditionally, the greatest chal-
lenge to the successful application of an EKF to lunar OD has been the large process noise arising
out of inaccurate mapping of the lunar gravity field, especially of that on the far side of the Moon.
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Figure 3. Lunar lander orbit visibility from DSN stations

These large uncertainties were reflective of the lack of far-side tracking on missions such as Lunar
Prospector (LP). Large uncertainty in lunar gravity field has been greatly reduced with data from
the recent GRAIL mission. GRAIL data have been incorporated into ODTK, but this work uses a
process noise model based LP150Q gravity solution. The motive for this is to provide increased
uncertainty in the estimated orbit, with an eye to “stress test”-ing the proposed guidance algorithm.
For more details on lunar OD and the associated challenges, cf. [19, 20] and the references therein.

To generate a realistic position-velocity covariance time history for the lunar lander, visibility
time intervals of the lander orbit from each of the DSN ground stations 27 (Goldstone, CA an-
tenna), 34 (Canberra, Australian antenna), and 54 (Madrid, Spain antenna) were computed for a
month from Aug 25 2017 00:00:00 to Sep 25 2017 00:00:00 using STK Access [21]. During the
tracking interval, the Moon completed slightly more than one complete revolution about the Earth,
leading the ground stations to experience all possible tracking geometries of the lander orbit, in-
cluding instances when the polar lunar orbit is viewed edge-on and those when it is nearly perpen-
dicularly viewed. The former viewing geomertry will result in relatively large cross-track position
uncertaintly, whereas the latter geometry results in large in-track position uncertainty. The access
intervals so generated were converted to a tracking schedule and tracking data where each ground
station experienced exactly one lander pass per day. This modest observation volume is expected to
result in evenly spaced coverage of the orbit while keeping cost (the number of tracking passes) at
a reasonable level. Table (1) shows the OD force modeling options for the lunar lander, while Table
(2) enumerates the measurement summary for each tracker by observation type. Typical numerical
values were chosen for measurement statistics for each measurement type, namely, DSN total count
phase and two-way sequential range and are reported in tables (3) and (4) respectively. Figure (4)
shows the measurement residuals normalized by the measurement error root variance, a quantity
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Table 1. Force Models for the lander

Lunar Gravity
Field: 50 × 50

Solid Tides: On, k2 = 0.03

Third Body Gravity Sun, Earth

Solar Pressure
Satellite Model: Spherical, Cr = 4.61538, A = 1.3 m2

Shadow Model: Dual Cone

Table 2. Measurement Types By Tracker

Tracker Name Measurement Type Number of Measurements

DSS27
DSN Sequential Range
DSN Total Count Phase

930
930

DSS34
DSN Sequential Range
DSN Total Count Phase

930
930

DSS54
DSN Sequential Range
DSN Total Count Phase

930
930

called residual ratios. This is a unitless metric typically used to indicate valid measurements when
its numerical value is with ±3. It is clear that data points primarily lie within the desirable range,
which is theoretically predicted if the samples follow a Gaussian distribution. Position and velocity
uncertainties from the filter at the 0.99 probability level are shown in Figs. (5) and (6), respectively.

GENERATING OPEN-LOOP EXTREMALS FROM OD COVARIANCE

Having associated each state on the lander parking orbit with an error covariance, the next
step is to select a de-orbit point, the covariance extent of which affords a sampling region for
generating a field of extremals, which in turn will act as a training set for the s-GPR controller
model. However, before choosing a de-orbit point, it is instructive to examine the relation be-
tween Clohessy-Wiltshire-Hill frame coordinates and classical orbit element differences. Sampling
a 6 × 6 position-velocity covariance ellipsoid around a mean state {rµ, vµ} will generate states
{rµ + δri, vµ + δvi, i = 1 . . . nsamples} where {rµ, vµ ∈ R3}. With:

δri :=

 xi
yi
zi

 , δvi :=

 ẋi
ẏi
żi

 (21)

Table 3. Station Total Count Phase Measurement Statistics

Station Bias Model Constant Sigma Half Life (min) White Noise Sigma Count Interval (sec)

DSS27
DSS34
DSS54

Gauss Markov 0 0.02 300 0.003 1
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Table 4. Station Sequential Range Measurement Statistics

Station Bias Model Constant Sigma (m) Half Life (min)
White Noise
Sigma (m)

Tropospheric
Measurement
Corrections Sigma

DSS27 Gauss Markov 0 0.5 300 1 0.05

DSS34 Gauss Markov 0 1.5 300 1 0.05

DSS54 Gauss Markov 0 1.5 300 1 0.05

Figure 4. Total Count Phase and Sequential Range Normalized Residuals

where x, y, z and ẋ, ẏ, ż denote the radial (R), in-track (I) and cross-track (C) components of the
position and velocity, it can be shown that the following relation holds between [δr δv]T and δeT :=
[δa δθ δi δq1 δq2 δΩ]T [22]:

x = δr (22)

y = r(δθ + cos i δΩ) (23)

z = r(sin θ δi− cos θ sin i δΩ) (24)

(25)ẋ = −u0
2a
δa+ (

1

r
− 1

p
)hδθ + (u0aq1 + h sin θ)

δq1
p

+ (u0aq2 − h cos θ)
δq2
p

(26)ẏ = −3v0
2a

δa− u0δθ + (3v0aq1 + 2h cos θ)
δq1
p

+ (3v0aq2 + 2h sin θ)
δq2
p

+ u0 cos iδΩ
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Figure 5. 3-σ position uncertainty from EKF

Figure 6. 3-σ velocity uncertainty from EKF
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(27)ż = (v0 cos θ + u0 sin θ)δi+ (v0 sin θ − u0 cos θ) sin iδΩ

In the above relations, θ is the true latitude angle, q1 = e cosω, q2 = e sinω, h is the orbit an-
gular momentum of the mean Keplerian orbit, and u0 and v0 are the radial and tangential velocity
components of the lander nominal state. From Eqs. (23), (24), and (27), it is clear that any perturba-
tion in in-track position, cross-track position and cross-track velocity is caused purely by the lander
starting in an orbit of different inclination and orientation. Since the control objective in this paper
is not pin-point landing, such perturbation is neither relevant nor modeled by the lander dynamics.
Once the lander has started in an orbit of slightly different orientation, the guidance objective would
still be to bring the lander to an altitude of 10 km. above the surface with negligible speed in the
starting orbit’s plane. Thus, in conclusion, only radial velocity, radial position and in-track veloc-
ity perturbations are sampled from the 6 × 6 state estimation error covariance matrix to generate
{XOL, UOL}.

The de-orbit initiation epoch is selected as tdo = 09 Sep 2017 15:14:00.0 UTCG, an instant at
which radial velocity (and in-track position) uncertainty are large owing to nearly perpendicular
viewing of the lander orbit by DSS27 and DSS34. Figure (7) visually depicts the 3σ position
uncertainty of the lander in the vehicle-centered RIC frame at tdo. Specifically, the region enclosed
by the position estimation error ellipsoid shown in the figure can be represented by the following
inequality:

[x y z]P−1r

 x
y
z

 ≤ 32 (28)

where Pr represents the 3× 3 position submatrix of the position-velocity covariance matrix, cf. Eq.
(20). This situation corresponds to the uncertainty peak approximately in the middle of the analysis
interval in Figs. (5) and (6). From ODTK computations, the nominal (mean) radial position, radial
and tangential/in-track velocity components at the de-orbit epoch are easily obtained to be:

r0(tdo) = 1.787× 103 km., u0(tdo) = −30.2037 m/s, v0(tdo) = 1.6783 km/s (29)

At the same epoch, the following 3σ uncertainties are extracted from the position-velocity covari-
ance matrix associated with the above state:

δr3σ(tdo) = 387.4192 m., δu3σ(tdo) = 841.9125 cm/s, δv3σ(tdo) = 40.2120 cm/s (30)

In order to synthesize a near-optimal feedback controller based on s-GPR, a set of 25 initial con-
ditions are randomly sampled from within a hypervolume represented by the following Cartesian
product:

(31)V , [r(tdo)− δr6σ(tdo) r(tdo) + δr6σ(tdo)]

× [u(tdo)− δu6σ(tdo) u(tdo) + δu6σ(tdo)]× [v(tdo)− δv6σ(tdo) v(tdo) + δv6σ(tdo)].

Note that 6σ rather than 3σ uncertainty is used to generate controller training data to account for
greater uncertainty during feedback synthesis, allowing for a more pessimistic controller design.
Random sampling is accomplished with Latin Hypercube Sampling (LHS), a stratified sampling
method commonly used to generate space-filling designs for computer experiments [23]. Figure
(8) shows a family of solutions to the trajectory optimization problem posed by Eqs. (2 - 11)
corresponding to the 25 LHS-drawn initial conditions from OD-generated uncertainty. All solutions
are obtained using GPOPS-II.
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Figure 7. 3-σ error ellipsoid of the lander at the de-orbit instance

RESULTS

The aim of this section is to examine the effectiveness of the s-GPR guidance algorithm. To this
end, the intention is to verify that the feedback control β(r, u, v) computed at each guidance call and
simulated as a numerical integration step, is able to guide the system autonomously from a random
initial condition (that was not a member of the controller synthesis training set but still sampled
from the OD-generated uncertainty), to the desired terminal manifold with a reasonable degree of
accuracy while closely meeting the optimality criteria. Clearly, in the light of the earlier discus-
sion on Optimal Feedback Synthesis, this verification process should involve noting the agreement
between the feedback state-control pair and the corresponding open-loop quantities; a close agree-
ment between the open and closed-loop solutions is indicative of the “goodness” of the guidance
algorithm. The following steps are taken to verify that the s-GPR guidance strategy is suitable for
the problem at hand:

1. Randomly generate a sample of ntest initial condition vectors xtesti = [r0i u0i v0i]
T within V

(cf. Eq. (31)). Call this test set T , {xtesti}
ntest
i=1 . LHS is once again used for this purpose to

ensure that the entire uncertainty extent is faithfully represented in the test samples. In this
paper, ntest = 10.

2. For any given member xtesti ∈ T , predict, using a GPR implementation (the DACE Kriging
Toolbox in the present case as mentioned earlier), the time-to-go t2goi(r0i u0i v0i) for that
initial state. This is the simulation interval or the approximate optimal final time for xtesti .
The GPR model construction data for this step consists of the input-output pairs {x0j , t2goj},
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Figure 8. Optimal Feedback Synthesis Extremals

j = 1, . . . , 25 from the original field of extremals set {XOL, T
0
2go}. By trial and error, a

first-order polynomial model and a exponential correlation model are found to result in the
smallest prediction error in t2goi during the leave-one-out cross-validation stage using the
pre-generated field of extremals.

3. To perform numerical integration with the feedback controller in the loop, at a generic current
step tcurr, a GPR model is first constructed with input-output sets {xOL, uOL} ⊆ {XOL, UOL}
where {xOL, uOL} are open-loop states and controls at time instants tOL ∈ Nε(tcurr), a
neighborhood of tcurr. The method of selecting Nε is, by no means unique and may be prob-
lem dependent. In this work, Nε := {t ∈ TOL : tcurr − ∆t ≤ t ≤ tcurr + ∆t}, where ∆t
is 3 times the maximum time step in the open-loop family of extremals. Having generated
a GPR model at a given integration step, the control γ̃∗ = β(xcurr) can be queried from it
by supplying the current state xcurr. This control is then used in the lander dynamics, and
the dynamical equations are propagated by sequentially computing a feedback control ap-
proximation at each integration step. Again, following trial and error and leave-one-out cross
validation, a first-order polynomial regression model with a linear correlation function kernel,
both available in DACE, yields the best agreement between open and closed-loop solutions.

Table 5 reports the mean terminal constraint violations, while Figs. (9) and (10) compare open-
loop and the s-GPR-based feedback solutions for two representative members of the 10 test cases.
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Table 5. Mean Terminal Constraint Violation Over Trial Cases

State Mean Constraint Violation

Radial distance (r) 6.73 m

Radial velocity (u) 0.092 m/s

Tangential velocity (v) 0.0861 m/s

The agreement between the state and control functions for both cases are seen to be very good, so
much so that differences are not perceptible at the scale of the graph. Comparing Eq. (30) and table 5
it can be seen that the mean terminal constraint violation in each state is several orders of magnitude
smaller than the corresponding initial uncertainty. Another aspect relevant to the performance of
guidance algorithms is the computation time. It may be recalled that generating a control at a single
integration step requires querying the original field of extremals and selecting a subset of it before
constructing a GPR model at that step. While an exact estimate of the time required for this process
is non-trivial to obtain for a program executing on a high-level-language program environment such
as Matlab, the average control computation time as each state “measurement” arrived was found
to be 0.1511 seconds counting all the integration steps over 10 test cases. The simulation platform
was Matlab 2016a on a Windows 10 Core(TM) i7-4900 Desktop clocked at 3.60 GHz with 32GB
RAM [24]. Counting the overhead involved in the simulation, the actual control computation time
should be smaller, although even this value leaves sufficient buffer for hardware-related overhead
for a 1-second guidance call interval in a real-time application.

Figure 9. Open-loop and s-GPR feedback trajectories compared, case 1
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Figure 10. Open-loop and s-GPR feedback trajectories compared, case 2
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CONCLUSION

A near-optimal, explicit, guidance law based on Gaussian Process prediction was applied to an
instance of the lunar soft landing problem. At each new state sample, an optimal feedback con-
trol for the current state was synthesized by creating a GPR model with state-control information
collected only from a neighborhood of that state. It was pointed out that this mode of local, sequen-
tial, control approximation along the trajectory does not necessarily require the assumption that the
state-control mapping being learned by the GPR be smooth over the entire domain of approxima-
tion. The effectiveness of the proposed optimal feedback algorithm was evaluated by verifying that
it could satisfactorily compensate initial state uncertainties of the lander, originally in a low lunar
parking orbit. A key feature of this work is the mathematical characterization and numerical compu-
tation of the lander initial state uncertainty. A realistic measure of the orbit state uncertainty in the
form of a full position-velocity covariance was computed from lunar orbit determination. Simulated
observations from the NASA/JPL Deep Space Network was used for this purpose.
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