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ASSESSING SATELLITE CONJUNCTIONS FOR THE ENTIRE 
SPACE CATALOG USING COTS MULTI-CORE PROCESSOR 

HARDWARE 

Vincent T. Coppola,* Sylvain Dupont,† Kevin Ring,‡ and Frank Stoner§ 

The recent collision of the Iridium 33 spacecraft with Cosmos 2251 debris has 
shown the importance of conducting conjunction assessments on a continual 
regular basis for operational spacecraft. We study the feasibility of assessing the 
entire space object catalog (i.e., all-on-all assessment) for 1 and 5 day analysis 
periods, using both low and high fidelity ephemerides, using COTS software 
and COTS multi-core processor hardware. We show that a catalog of 12,000 
space objects (involving almost 72 million pairings) can be assessed within one 
hour and thus incorporated into an operational environment. The impact on the 
assessment of larger catalogs (e.g., 20K or 100K objects) will also be discussed. 

INTRODUCTION 

The number of near-Earth space objects being tracked in the US space catalog is well over 
19,000 and continues to increase.  As the recent collision of the Iridium 33 spacecraft and the 
Cosmos 2251 debris illustrates, identifying possible collisions between space objects is necessary 
for maintaining the viability of operational assets and for forecasting changes in the number of 
hazards present in the space environment.  Prediction of these events in advance of 1 to 5 days is 
necessary to allow for further assessment and execution of any actions needed to mitigate risk to 
the affected spacecraft. 

In general, the determination of the times when two space objects are close together is rather 
straight forward to understand, implement, and apply.  However, hardware and software perform-
ance quickly becomes a consideration when attempting to perform this determination over an ex-
tended analysis period for every possible pair of objects from the entire space catalog.  For a cata-
log of 12,000 objects, almost 72 million pairs must be evaluated; a catalog of 20,000 objects re-
quires almost 200 million pairings; a catalog of 100,000 objects requires almost 5 billion pairings. 

Software performance can by markedly improved by foregoing direct search methods on each 
and every pairing in favor of more selective algorithms which can quickly eliminate pairs of ob-
jects based on characteristics of orbital motion.  Typically, a series of geometrical and temporal 
filters is used to quickly reduce the search space.1,2,7  Robust root and extremum finding algo-
rithms are then employed to isolate intervals of time when a pair of objects are within a specified 
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proximity to one another and to determine precise times of closest approach.  The use of filters 
greatly decreases the time necessary to determine all close approaches while maintaining accu-
racy.7 

Improved performance is not limited to an improved algorithm, however.  Because each pair 
of objects must be considered independently, the assessment of the entire catalog is very amena-
ble to parallelization.  The search space can be divided among multiple processing units to reduce 
the overall execution time required to obtain a solution.  Historically, such processing require-
ments necessitated use of expensive or exotic hardware configurations.3  Recently, multiple 
core/multiple processor personal computers have come into the commercial market which can 
perform the necessary computations. By marrying an improved algorithm with COTS multi-
core/multi-processor hardware, the entire space catalog can be assessed in less than one hour---a 
time scale amenable for use operationally. 

This paper presents results for the all-on-all conjunction assessment of ~12,000 objects over 
both a 1 day and a 5 day analysis period.  Two methods for obtaining the state information for the 
space objects are considered.  The first method utilizes analytical propagation of the orbit state 
from known elements at a given epoch (i.e., using SGP4 with TLEs).   Analytical propagation 
reduces the computer memory footprint of each object at the expense of reduced accuracy of the 
ephemerides themselves. This has been the most common mechanism for assessing the entire 
catalog.  The second method models the path of each space object using a table of ephemeris cou-
pled with an interpolation method. The accuracy of the ephemeris can be made quite high using 
this scheme; however, the memory footprint per object is greatly increased. 

Three different software implementations will be used.  The first software implementation is a 
general purpose Commercial Off-The-Shelf (COTS) 32-bit application which has, as part of its 
feature set, the ability to perform conjunction analysis between space objects.  The second soft-
ware implementation builds on the first by splitting the computations into groups and running the 
first implementation for each group on different processors. Results are then assembled at the 
end.  The third software implementation is a custom application designed specifically to perform 
conjunction analysis between space objects, but built using a set of COTS software components. 
It can run natively on 32 and 64-bit architectures.  A 32-bit process on the Microsoft Windows 
operating system is limited to a 3 gigabyte address space.  No matter how much RAM is physi-
cally installed in the system, the application will not be able to allocate more than 3 gigabytes.  In 
contrast, an application running as a 64-bit process on a 64-bit version of Windows has no such 
address space limitation and can address terabytes (or more).  The extra address space, combined 
with cheap RAM, enables an application that is written to run as a 64-bit process to be both faster 
and simpler than an otherwise equivalent 32-bit application. 

Performance and consistency of the determination will be presented using 2 hardware configu-
rations: (i) a single 32-bit 4Gb RAM dual-core COTS personal computer; and (ii) a single 64-bit 
32Gb RAM 4-core dual processor COTS personal computer.  Each will be running on a com-
monly available Windows operating system. 

THE SPACE OBJECT CATALOG 

One of USSTRATCOM’s missions is the tracking and cataloging of space objects.  Some of 
the catalog is made available to the public while some information is restricted. As of Feb 2009, 
the public catalog consisted of about 12,000 space objects. Our testing will use the public catalog 
from 11 Feb 2009 that consisted of 11,970 space objects. 

The conjunction assessment for the entire space catalog requires conjunction determinations 
for each unique pairing amongst all the objects. The number of unique pairings can be computed 
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as N*(N-1)/2 where N is the size of the catalog.  For N > 10,000, the linear term in the formula 
contributes less than 0.01% so N^2/2 provides the correct order estimate for the pairings to con-
sider. For 12,000 objects, this would be about 72 million pairings that must be considered.* 

While each pairing must be considered, it is not necessary to compute close approaches for 
every pairing. We are interested in performing conjunction assessment to determine when objects 
are close to one another—objects that are never close to each other are of no interest. Thus, 
there’s no computation needed for the assessment of a LEO object with a GEO object; once the 
regimes for the two objects have been determined, no further consideration for this pairing is nec-
essary. 

Space Object Ephemerides 

The public catalog consists of TLEs (two-line elements) that contain state information for use 
with SGP44,5, an analytical propagator---one TLE per space object.  The resulting ephemerides 
are not often high fidelity ephemerides (i.e., they differ from truth by more than tens of meters). 
In fact, the quality of the ephemerides produced using TLEs is not known. It is commonly 
thought that the largest difference from truth will be on the order of a few kilometers, yet there 
are cases where the difference is much worse (30-100s of km). In such cases, the large differences 
are not a fault of the SGP4 modeling capability; instead, they represent other issues (e.g. mis-
identifying measurements, maneuvering spacecraft)6. 

Given the nature of the TLE-based ephemerides, it’s difficult to rely on their use for conjunc-
tion assessment purposes unless a large threshold of interest is used. Ideally, a catalog consisting 
of high fidelity ephemerides (or lacking that, state information and force modeling parameters for 
performing a numerical integration to produce high fidelity ephemerides) would be available for 
use.  While USSTRATCOM has such a catalog, it is currently not available to the public. 

Our interest is the processing of conjunctions assessments for the entire space catalog. The 
best conjunction assessment is made using the highest fidelity ephemeris data available.  Assess-
ments using TLEs can be suspect because of the lower quality ephemeris.  In contrast, a table of 
ephemeris is the most natural mechanism for representing high fidelity data. Ephemeris tables 
inject a new consideration into the processing methodology because of the large memory foot-
print required for their use. 

Of course, while we want to use ephemeris tables, we have no access to that data from 
USSTRATCOM. We are also not able to generate our own space catalog because the space ob-
servation measurements, (upon which TLEs and those ephemeris tables are generated) are not 
made available to the public either.  Lacking a high fidelity ephemerides source, we cannot assess 
the accuracy of our analysis compared with truth data. However, we can assess the impact of us-
ing ephemeris tables on the solution methodology and expected computational performance, as 
compared to using TLEs.   

Thus, we need only a space object catalog consisting of a table of ephemeris for each space 
object—whether those ephemerides are high fidelity or not is immaterial for our purposes. The 
simplest choice for generating these ephemerides, then, is simply to use SGP4 with each of the 
TLEs of the public catalog to create an ephemeris table for each object. The processing then 
needs to deal with the ephemeris tables directly, rather than using any TLE information whatso-
ever for an object.  While the end results will not speak to accuracy, they will speak to perform-
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ance so that organizations that do have access to the USSTRATCOM ephemeris data have a basis 
for understanding the operational implication of assessing the catalog using high fidelity data. 

We will store each ephemeris table as its own ephemeris file and perform the conjunction as-
sessment using the ephemeris files. An advantage of our approach is that we can compare directly 
the use of TLEs versus the use of ephemeris tables on performance (i.e., time to complete the 
task) and consistency (i.e., obtaining the same results).  

Ephemeris Interpolation 

While SGP4 can be used to compute an ephemeris value at any requested time, an ephemeris 
table must be interpolated to find values at times off its grid.  Some conjunction assessment 
strategies avoid interpolation entirely by requiring all ephemerides for all objects to have the 
same time grid.3 This complicates the preparation of the ephemerides and forces all objects to use 
the smallest time step needed for analysis, bloating the required memory footprint. Our approach 
instead relies on interpolation of the ephemeris to produce an accurate ephemeris sample when 
off the time grid.  This can be accomplished through a judicious choice of time step when creat-
ing each ephemeris table (where the choice of time step for each object can be made independ-
ently of the knowledge of any other object). 

It is important that each ephemeris table be created so that interpolation of the table differs lit-
tle from the value that would have been computed using SGP4 with the TLE directly. Typically, 
90 points per orbit is needed for adequate interpolation of nearly circular orbits. For eccentric or-
bits, it is critical to have enough samples near perigee to do accurate interpolation. A general rule 
is to use a step size that would produce 90 points per orbit for a circular orbit at the same perigee 
as the eccentric orbit. We also set a maximum step of 300 sec.  Thus, LEOs generally use 60 sec 
steps while GEOs typically use 300 sec steps. 

Each ephemeris table contains a listing of time and 3 Cartesian values each of position and ve-
locity for a total of 7 values per time step. Each value is represented in the computer as a double 
that contains 8 bytes; hence, there are 56 bytes per time step.  

Assessing Larger Catalogs 

The number of unique pairings of objects that must be considered scales as N^2/2. The mem-
ory footprint, however, scales linearly with N. Pairing and memory estimates for larger catalog 
sizes are given in Table 1. 

Table 1. Computation size as a function of catalog size N. 

Catalog Size N Pairings Memory Footprint 

  
1-day Ephemeris 

(Gigabytes) 

5-day Ephemeris 

(Gigabytes) 

12,000 72 million 0.87 4.3 

20,000 200 million 1.4 7.2 

50,000 1.25 billion 3.6 18 

100,000 5 billion 7.2 36 
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The 20,000 object catalog is 1.66 times larger than the 12,000 object catalog and yet requires 2.78 
times as many pairings to consider. The 100,000 object catalog is 8.33 times the size of the 
12,000 object catalog but requires 69.4 times as many pairings.  

If the distribution of objects in the 12,000 object catalog over different orbit regimes is the 
same as in the larger catalogs, then one could use the number of pairings as a simple estimate of 
the time needed to compute the larger catalogs. Thus, the 100,000 object catalog would require 69 
times as long as the 12,000 object catalog.  However, it is expected that many more LEO space 
objects will exist in the larger catalogs. LEO objects take more computation time to assess than 
other objects, so the simple estimate is probably on the low side---the computation time should be 
expected to be even longer. 

CONJUNCTION ASSESSMENT ALGORITHM 

Different organizations use different metrics for assessing conjunctions. Range, radial separa-
tion, maximum probability, and true probability are commonly used.  In this paper, a pairing of 
objects will be declared to have a conjunction whenever the range between them is less than some 
specified threshold. Our focus is the assessment of the entire catalog, not on weighing the relative 
merits of different metrics.  While the other metrics may have merits, their computation is not 
much more complicated than computing the range at the time of closest approach and thus has 
little impact on the ability to assess the entire catalog. 

Detecting Conjunctions 
In most cases, conjunctions occur over very short time intervals, usually measured in seconds, 

while the assessment is performed over long time intervals, typically days. A simplistic approach 
to finding these small time intervals within the larger analysis intervals is to sample the range be-
tween the objects over the larger analysis interval using a small time step and detect which sam-
ples were below the specified threshold. To detect conjunctions whose duration was at least 1 
second long, the approach would take 86,400 samples over each day.  This simplistic approach 
using fine time step sampling does indeed work but is computationally expensive. Since the con-
junction durations are often small, most all the samples produce a range outside the threshold and 
are not of value. 

Better approaches use far less samples while still detecting the conjunction intervals. Our ap-
proach combines two strategies: (i) using a series of geometric filters to quickly determine times 
when a pairing cannot possibly have a conjunction; and (ii) searching for conjunctions using 
coarse time stepping coupled with numerical root finding techniques to reduce the number of 
samples while precisely determining conjunction times. 

Conjunction Filters 

The idea of conjunctions filters goes back at least as far as Hoots et al1. Before any computa-
tionally intensive search for conjunctions is performed, objects are first passed through a series of 
tests to winnow the large analysis interval into a set of much smaller time intervals that need to be 
investigated by a search algorithm. 

The first filter is the Apogee/Perigee filter. The apogee and perigee for each object is deter-
mined over the analysis interval. The radius value for an object will lie within the range from 
perigee to apogee over the entire analysis interval. If the two range intervals do not come within 
the specified threshold, then the objects themselves can never be closer than the threshold, and 
there can be no conjunctions. This filter quickly determines that LEOs and GEOs will never have 
a conjunction and no further processing is done. 
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The second filter is the Orbit Path filter.  When the two space objects are orbital, one can as-
sociate an elliptic orbit path with each object using Keplerian elements for each object evaluated 
at some time during the analysis interval.* One can then compute the minimum distance between 
the ellipses in 3D space using a numerical minimization algorithm. If the minimum distance is 
larger than the specified threshold, then the objects cannot have a conjunction at any time and no 
further processing is done. 

The third and last filter is the Time filter. Building upon the geometry of the Path filter, infor-
mation about where each object is in its elliptical motion is now incorporated.  For each object, 
time intervals are determined wherein the object is within the specified threshold of the other ob-
ject’s orbital plane.† These sets of intervals for each satellite of the pair are then intersected, pro-
ducing time intervals in which each object is within the specified threshold of the other’s orbital 
plane.  If no intervals survive because of the phasing the two objects’ motion, then there can be 
no conjunctions and no further processing is performed.  However, if time intervals do exist, then 
any conjunctions must occur within these intervals.  Only these intervals need to then be searched 
for conjunctions.  Typically, these intervals are small and represent a very small portion of the 
original analysis interval. 

The actual implementation of the filters is more complicated than described by Hoots et al.1 

Woodburn et al.7 document some deficiencies in the original implementations and described im-
provements that avoid incorrect filtering. One simple improvement noted is the addition of extra 
padding beyond the threshold value itself when determining whether to filter out an object from 
further consideration.  Moreover, the improvements adopt a ‘trust but verify’ approach to filtering 
where assumptions made by the filters are checked for their validity before accepting their con-
clusion. 

The software being used in this paper incorporates improvements to the Apogee/Perigee and 
Time filters. The Orbit Path filter, however, will not be used in this paper to generate results. 

Event Detection  
Once a set of intervals to investigate has been determined from the filters, each must be 

searched to determine whether conjunctions exist.  The search routine uses coarse sampling cou-
pled with event detection that builds upon a robust numerical root finding routine and numerical 
extremization routine. Samples are taken not for the purpose of identifying a conjunction but 
rather to identify the trend in the value of range over time. They do not require sampling to occur 
only on grid points of an ephemeris table but rather rely on interpolation of the table to produce 
accurate sampling. 

The event detection routine monitors when the samples cross the range threshold.  It also in-
vestigates whenever the trend changes between increasing and decreasing (and vice-versa), in-
voking the extremization routine to isolate the range at its minimum. The local extreme value is 
then used to detect times when the range value has crossed the specified threshold.  Once a cross-
ing has been detected, numerical root finding is used to accurately and precisely compute the time 
at which a crossing occurred.  Crossing times are then assembled into conjunction intervals. 

                                                   
* In rare instances an object may be hyperbolic; in few instances objects may be sub-orbital. In such situations neither 
the orbit path nor time filtering is applied: the entire analysis interval must be searched for conjunctions. 
† In cases where the relative inclination is small (i.e., in nearly coplanar orbits), the time filter is not applied: the entire 
analysis interval must be searched for conjunctions. 
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This strategy achieves fine time accuracy with coarse time step sampling: it is computational 
fast and yet achieves all required accuracy. 

METHODOLOGY: ASSESSING THE ENTIRE CATALOG 

Assessing the entire space catalog amounts to performing an investigation for each unique par-
ing of objects in the catalog – resulting in millions of independent assessments. The computation 
is very amenable to parallelization. The assessment can easily be split up into pieces and distrib-
uted to different processors on a group of machines. The entire assessment can be performed as 
quickly as the hardware resources will allow. 

The only data required to perform the computation is an ephemeris for each object. If TLEs 
are being used, then all TLEs can be loaded into memory quite readily and then SGP4 can be 
used to compute ephemeris at any requested time. If ephemeris files are being used, however, 
then these files must be read from a hard disk into memory. One should avoid reading from the 
hard disk as much as possible because it is slow. A 64-bit Windows application has the ability to 
simply read all the ephemerides into memory, up to the hardware’s capacity, and avoid reading 
ephemeris files more than once. 32-bit Windows applications, however, are memory constrained-
--reading all files into memory only works for smaller problems.  

If multiple machines are being used, then networking speed may affect performance depend-
ing on the amount of information being passed. Serving out ephemeris over a network from one 
machine can affect performance depending on how often files are being requested during compu-
tations. We found it beneficial for each machine to have its own local copy of ephemeris files 
rather than relying on a single server. 

TEST CONFIGURATION 

Hardware 

We tested on several COTS hardware configurations, available from Dell.  CATMachine is a 
Dell Precision T3400 Intel Core 2 Duo 3Ghz E6850 32-bit machine with 4 Gigabytes RAM and 2 
processors running Windows Vista SP1. This is a high-end box suitable for an engineer’s office 
and costs around $2,000.  MadCATMachine is a Dell Precision T5400 Intel 2x4 Core XEON 
X5450 3 Ghz 64-bit machine with 32 Gigabytes RAM and 8 processors running Windows XP 
SP2. This is a high-end compute server and costs around $3,500. It has 10,000 RPM hard disk 
drives for even faster disk access than the standard 7200 RPM drives.   

We also tested on a computer farm involving 5 dual-core Dell 32-bit machines with 2 Giga-
bytes RAM networked together with one machine serving as an ephemeris server. While we have 
preliminary results showing superior performance over CATMachine, the performance of Mad-
CATMachine was so superior we did not continue testing with the computer farm.  We fully ex-
pect that adding more hardware resources can improve performance, but our goal was to show 
that the entire catalog can be assessed on readily available hardware and software and the two 
machines satisfy these requirements. 

Software 

We used 3 different software solutions to perform the conjunction assessment: STKEngine, 
ParallelCAT, and FastCAT. 

STK Engine.  STK Engine (version 8.1.3) is a member of Analytical Graphics’ STK product 
suite that incorporates STK’s computational capabilities without its user interface.  While it can 
support both 2D and 3D graphics, neither graphics windows were used. STK Engine is a single-
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threaded 32-bit application that has the ability to perform conjunction assessment using 
STK/CAT for one group of objects against another group of objects, using either TLEs or ephem-
eris files, upon purchase of a Conjunction Analysis Extension license. It uses conjunction filters, 
efficient trend sampling, and event detection to find conjunctions. The standard cost including 
one year of support is around $19,250. 

STK/CAT was designed to perform conjunction assessment of a group of primary objects 
against a group of secondary objects. Normally, an object would not appear in both lists. How-
ever, when assessing the entire catalog, it is natural to have the same object appear in both lists. 
STK/CAT computes correctly in that case too; however, it treats the object as two separate enti-
ties. The consequence of this is that the ephemeris for the object is loaded twice; hence, the mem-
ory footprint for assessing the catalog is doubled. 

Being a 32-bit application, STK Engine is limited by Windows to 3 Gigabytes RAM. [Nor-
mally, the limit is 2 Gigabytes RAM unless special operating system settings are enabled.]  This 
memory constraint precluded the ability to assess the entire catalog using ephemeris files. More-
over, STK Engine uses the resources of only 1 processor because it is not multi-threaded, leaving 
the other processor available for other activities (or idle).   

ParallelCAT.  ParallelCAT is a 32-bit application server program that was written to perform 
the catalog assessment by partitioning it into groups of a size that can be computed using multiple 
instances of the STK Engine operating in parallel. The server organizes the computations into 
groups, instantiates STK Engine on different processors (on 1 or more machines), requests each 
STK Engine to compute a group of the computation, and then assembles the results.  While writ-
ten as a .NET application, it simply acts as a sophisticated batch file running a set of groups si-
multaneously. ParallelCAT can make use of every processor on the machine simultaneously to 
achieve the fastest computation possible using STK Engine as the compute engine. 

The object catalog can be divided into P groups of nearly equal size M. We then perform the 
assessment on each unique pair of groups and combine the results together. This is represented 
pictorially in Figure 1 where the catalog has been divided into 5 groups (A, B, C, D and E). Only 
the lower triangle is computed since each pairing located in the upper triangle is already repre-
sented by a pairing in the lower triangle.  

Heterogeneous pairings (B-A, C-E, D-B, etc.)  are represented by squares: they require M^2 
assessments.  Homogeneous pairings (A-A, B-B, etc.) are represented as triangles: they require 
only M*(M-1)/2 assessments (i.e., the number of unique pairings). The total number of ‘square’ 
tasks is P*(P-1)/2 (which for P = 5 is 10) and the number of ‘triangle’ tasks is P; the total number 
of tasks is P*(P+1)/2.  The triangle tasks are expected to require roughly half the time of a 
‘square’ task. 

The most efficient computation strategy is to use all available processors 100% of the time, 
with each ending at the same time. However, it is not known ahead of time how long any task 
may take. Some tasks will inevitably contain more conjunctions than others and thus require 
longer to process.  Some load balancing can be done up front using orbit class, though we did not 
implement such a strategy. The more tasks being performed the more the up front costs, associ-
ated with the starting of a task, contribute to the total time. Too few tasks, however, and the 
memory requirement may exceed the limitations set by the 32-bit operating system and thus 
overwhelm STK Engine. 
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Figure 1. Graphical depiction of the partition strategy. 
The assessment is done only for the pairs represented  
in the lower triangle since every pairing in the upper  
triangle is already represented in the lower triangle. 

 
When the number of tasks is neither too few, nor too many, the driving force for the total com-

putation time is how many processors are being used near the end of the computation when no 
new tasks are being requested. When only a small number of the available processors are being 
used near the end, then it may have been possible to rearrange the tasking to more effectively use 
the processing resources.  We found that the best strategy was to assign ‘square’ tasks first and 
perform the quicker ‘triangle’ tasks at the end. This helps to use all available processors longer. 

FastCAT.  FastCAT is a 64-bit single-machine application written using AGI Components.  It 
is a multi-threaded application that makes use of all processors available. Because the MadCAT-
Machine has enough memory, all ephemerides are loaded into memory simultaneously. 

The FastCAT application also uses the Apogee/Perigee and Time filters, smart sampling, and 
event detection to precisely find conjunction times.  The filter implementations are not directly 
supported by AGI Components (as of the date of this writing).  However, the algorithms neces-
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sary for processing TLEs, SGP4 propagation, root and extremum finding, element set conversion, 
etc., are available.  This made implementation of the filters relatively straight forward. 

FastCAT takes the most direct approach to assessing the entire catalog. The application loops 
through every pairing, assigning its computation to a thread and collects together the results as 
each thread completes. It can also show a 3D graphical display of its progress to satisfy an opera-
tor’s curiosity, though it lengthens the computation time somewhat. The standard cost for the 
software developer kit with 1 runtime license is $6,650. 

RESULTS 

The test data consisted of the public catalog from 11 Feb 2009 involving 11,970 objects. The 
analysis start time was 12 Feb 2009 05:00:00 UTC and durations of 1 and 5 days were investi-
gated. Both the Apogeee/Perigee filter and the Time filters were used, with extra padding of 30 
km; the Orbit Path filter was not used.  The range threshold was set at 5 km.  The total number of 
conjunctions reported for the 1-day analysis is 5338 and for the 5-day analysis is 26933.   

Figure 2 shows the distribution of the minimum range at conjunction for the 1-day analysis re-
sults. The closest conjunction was at 84 meters.  The distribution shown in Figure 2 is typical for 
the catalog---the test data is not special in any way. 
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STK Engine 

The first tests used TLEs with SGP4 to generate ephemeris rather than ephemeris files. The 
use of filters was exercised to assess the impact on performance and accuracy. Table 2 shows that 
the computation speed is greatly enhanced when using the filters and that the use of the filters 
does not degrade the accuracy of the results. 

Table 2. Computation time for STK Engine running on 1 processor on 
CATMachine, for a one day analysis using TLEs.  Each analysis  found 
the same 5,338 conjunctions. 

Apo/Peri 
Filter 

Time 
Filter 

Compute 
Time (mins) 

N N 1716  

Y N 747 

Y Y 101 

 

ParallelCAT 

CATMachine. Table 3 shows an improvement in computation speed when using 2 processors 
rather than just 1, even when using ephemeris files rather than TLEs. Both the Apogee/Perigee 
and Time filters were used. The results for each of the 3 runs were identical and differed from the 
runs using TLEs by round-off noise.* The results demonstrate that the computation using ephem-
eris files is accurate and that ParallelCAT’s group strategy works correctly as well. Still, on the 
CATMachine computer, it takes a little over an hour to assess the entire catalog for one day using 
ephemeris files. 

Table 3. Computation time for ParallelCAT running on 2 
processors on CATMachine, for a one day analysis using as-
cii ephemeris files.  

Group size Groups Tasks Compute 
Time (mins) 

4000 3 6 64.8 

2000 6 21 65.3 

1500 8 36 71.5 

 

MadCATMachine. Table 4 shows the results for both the 1 day and 5 day analyses, using 8 
processors on MadCATMachine.  The 1-day results match the baseline results to within round-off 
noise.  Since a significant amount of time is needed for loading ephemeris files, we also investi-
gated using ascii and binary formatted ephemeris files. The use of the binary format was a sub-
stantial improvement because of the manner in which STK Engine loads files. 

                                                   
* Output results for each conjunction include the identification numbers for each object, the start time and stop time of 
the conjunction, the time of closest approach, and the minimum range. Times were rounded to the nearest milli-second; 
the range was rounded to 0.1 meters. 
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Table 4. Computation time for ParallelCAT running on 8 
processors on MadCATMachine, Both the Apogee/Perigee 
and Time filters were used. 

Analysis dura-
tion (days) Group Size Tasks Ephemeris 

Type 
Compute 

Time (mins) 

1 3000 10 ASCII 19.5 

1 2000 21 ASCII 17.8 

1 1000 78 ASCII 17.9 

1 1500 36 ASCII 17.3 

1 1500 36 Binary 13.2  

5 1500 36 ASCII 72.8 

5 1500 36 Binary 51.5   

 

Since MadCATMachine has 8 processors, a group size of 4000 is not very effective because it 
uses only 6 tasks and thus 6 processors. The group size of 3000 is also not very efficient because 
after 8 tasks are complete there is only 2 to do leaving 6 processors not in use. Group sizes of 
2000 and 1000 do better but still leave the possibility of idle processors. The group size of 1500, 
however, uses 36 tasks which divide evenly onto the 8 processors: this achieved the best perform-
ance. Note that the up front costs associated with performing a task (e.g., reading ephemeris files) 
can be significant, explaining why the times do not scale linearly. 

Of note is that the entire space catalog of nearly 12,000 objects, modeled using binary ephem-
eris files, can be assessed for a 5-day duration in less than 1 hour on 1 inexpensive commercially 
available machine. Moreover, after setting the input parameters (e.g., start time, duration, group 
size, name of results file), no further user involvement is required: the entire activity could be run 
as an automated process. 

FastCAT 
Table 5 shows the results for both the 1 day and 5 day analyses, using 8 processors on the 

MadCATMachine.  Both the 1-day and 5-day results match the ParallelCAT results to within 2 
milliseconds.  Since loading of ephemeris into memory occurs up front only one time, it is not as 
significant a contributor to the overall computation time: the use of binary ephemerides is ex-
pected to diminish the computation time by just a few percent. 

Table 5. Computation time for FastCAT running on 8 processors on Mad-
CATMachine, Both the Apogee/Perigee and Time filters were used. 

Analysis duration 
(days) Ephemeris Type Compute 

Time (mins) 

1 ASCII 12.2  

5 ASCII 44.4  
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CONCLUSION 
We show that a catalog of 12,000 space objects (involving almost 72 million pairings) can be 

assessed within one hour and thus incorporated into an operational environment.  Moreover, the 
computational hardware necessary to achieve this level of performance is available commercially 
for about ~$3.5K.  Certain considerations must be given to the software implementation in order 
to attain desired response time. 

Certainly, the use of geometric and temporal filters greatly reduces the processing time over 
that resulting from direct search alone without degrading the accuracy of the results.  The use of 
tabular ephemeris has additional advantages in that it may be of higher accuracy and may account 
for alterations to the orbit due to orbit maintenance, momentum unloading, etc. 

For a long analysis time interval, the memory footprint required by the ephemerides may ex-
ceed the memory made available by the operating system.  This can be addressed by partitioning 
the object catalog and distributing each group to a separate processor.  Assuming that the objects 
in the catalog are not ordered with respect to orbital characteristics, choosing a group size which 
results in a number of tasks that is a multiple of the number of processors provides a simple parti-
tioning scheme that is effective for load balancing across the available processors.  We found that 
the strategy of analyzing the ‘square’ tasks first and the quicker ‘triangle’ tasks at the end helps to 
use all available processors longer. 

Alternatively, an application running as a 64-bit process on a 64-bit version of Windows can 
address terabytes of memory and can readily load all ephemerides into memory. Since partition-
ing the catalog is not necessary, this type of implementation can be both faster and simpler than 
an otherwise equivalent 32-bit application. 
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