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A method for computing close approach events for space objects 
having ellipsoidal threat volumes is presented. An event is deemed 
to occur whenever the closest distance between the an ellipsoid 
about a satellite of interest and an ellipsoid about another orbiting 
object is less than an user-specified threshold. The dimensions of 
each ellipsoid, representing the position uncertainty of an object, 
is also user-specified. Both fixed and time-varying ellipsoids are 
considered.  We first describe the solution to the problem of 
computing the closest distance between a point and an ellipsoid. 
We then use this solution in an iterative scheme to compute the 
closest distance between two ellipsoids. 
 
 

INTRODUCTION 

In light of the increasing number of objects in orbit about the Earth and the 
construction of the International Space Station (ISS), the determination of close approaches 
between objects is becoming an increasingly important aspect of satellite operations.  A 
study by Jenkins and Schumacher1 indicates the growing importance of close approach 
prediction for the Shuttle and the Mir space station.  Alfriend et al.2 recently presented work 
focusing on the probability of collision of space debris with the ISS.  Typical conjunction 
analyses determine the risk to a particular satellite of interest, the primary object, posed by 
the set of all other orbiting objects, the secondary objects.  To be useful, analyses of 
conjunction events must provide a metric that may be used to determine when the risk of 
collision is unacceptably large. 

One common measure of the risk of collision is the distance between two objects at 
the point of closest approach as determined from the nominal ephemeris.  A simple decision 
rule is then constructed stating that any conjunctions with a specified minimum separation 
distance provide reason for concern.  The separation distance is selected to be much larger 
than the actual physical dimensions of the bodies involved to account for uncertainty in the 
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nominal ephemerides.  To improve the efficiency of detecting close approaches based on 
minimum separation distance, Hoots et al.3 designed a series of three filters through which 
secondary objects must pass before a final determination of the minimum separation distance 
is made.  The filters serve to eliminate the majority of the objects in the catalogue and greatly 
reduce the number of computations needed. A special adaptation of the algorithms presented 
in Hoots et al.3 has been developed to allow for efficient predictions of close approaches for 
entire constellations of satellites4. Other authors have approached restricted versions of the 
minimum separation distance problem considering only the distance between the orbital 
paths4 or only circular orbits5.  While the computation of close approaches based on the 
minimum separation distance is efficient, it assumes that the uncertainty in the position of 
each body is the same in all directions.  This assumption leads to the detection of an 
excessive number of conjunctions due to the need to consider the direction of greatest 
uncertainty.  Alfriend et al.2 stressed the desire to minimize the number of reported close 
approaches for applications such as the ISS due to the high cost of performing maneuvers to 
avoid collisions.  

The use of a minimum separation distance may also be thought of as using spherical 
threat volumes about the primary and secondary objects.  Conjunctions occur when the 
threat volumes have an intersection.  The sum of the radii of the threat volumes is equal to 
the minimum separation distance.  Using this definition of a conjunction, it is possible to use 
shapes other than spheres to represent the threat volumes.  Current Space Shuttle operations 
predict the entry of secondary objects into a box centered at the predicted Space Shuttle 
location with fixed in-track, radial and cross-track dimensions2. Alfano and Negron7,8  
developed an algorithm allowing for the specification of an ellipsoidal threat volume about 
the primary.  In these cases, filtering methods may still be used to eliminate the vast majority 
of secondary objects from consideration and threat volumes about the secondary objects are 
not used.  In this study, a formulation that allows for the specification of ellipsoidal threat 
volumes about the primary and the secondary objects is presented.   

FORMULATION 

The threat volumes are defined as triaxial ellipsoids centered at the predicted 
locations of the primary and secondary objects.  The orientations of the ellipsoids relative to 
a common reference frame are assumed to be known.  Conjunction intervals are defined as 
periods of time when the distance between the ellipsoid about the primary and an ellipsoid 
about a secondary object are smaller than a specified threshold.  The crossings of this 
threshold are determined based on a time history of the distance between the ellipsoids.  The 
dimensions and orientation of the ellipsoids are allowed to vary with time, but it is assumed 
that all dimensions of the ellipsoids are always greater than zero.   

Consider two ellipsoids E  and E  with primary semi-axis lengths of ( , , )a b c  and 

( , , )a b c  respectively. The primary axes of each ellipsoid describe a natural coordinate 

system for each ellipsoid, also denoted by E  and E .  Let 
r
R X Y Z T= ( , , )  locate the relative 

distance vector between the centers of the ellipsoids, expressed in E . Let M  denote the 
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rotation matrix that transforms between E  and E .  The geometry of the problem is 
illustrated in Figure 1. 
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Figure 1.  Two ellipsoids of arbitrary shape and orientation 

The minimum distance is found by minimizing the square distance between points 
that are constrained to lie on the ellipsoids. Let 

rr x y z T= ( , , )  be a point on E  expressed in 

E ; let 
r
ρ = ( , , )x y z T  be a point on E  expressed in E .  The constraint equations become 

 φ( , , )x y z r DrT= − =
r r 1 0 , (1) 

 φ ρ ρ( , , )x y z DT= − =
r r

1 0 , (2) 

where 

 . (3) 
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The relative distance vector between the points, expressed in E , is 
r r r rd R M r= + −ρ  and the 

square distance is d d dT2 =
r r

.  Introducing Lagrange multipliers λ  and λ , the augmented 
objective function is 

 F x y z x y z d( , , , , , , , )λ λ λφ λ φ= + +2  (4) 
Points on the two ellipsoids for which the relative distance is minimum are found by setting 
the derivative of F with respect to each of its arguments to zero.  The derivatives with 
respect to the multipliers simply recover Eqs. (1) and (2). The additional equations are 
 

r r r rr R M Dr− − + =ρ λ 0 , (5) 

 − + + + =M r M R DT Tr r r r
ρ λ ρ 0  (6) 

Eqs. (1), (2), (5), and (6) are 8 coupled quadratic equations for the 8 unknowns that must be 
solved to determine the minimum distance. 

While the formulation of the equations is rather straight-forward, determining 
solutions to these equations can be quite difficult for several reasons.  First, there are 
multiple solutions to the equations because the equations describe conditions for both the 
maximum and minimum relative distance.  Second, there may be multiple values for 

rr  or 
r
ρ  

that generate the same distance, i.e., there is an unknown number of solutions to the 
equations.  Lastly,  a numerical nonlinear equations solver such as Newton-Raphson must be 
used to find solutions, and such methods typically only converge to a solution given a 
sufficiently good guess.  These difficulties led us to pursue an alternate strategy. 

Consider the problem of determining the closest distance from a point P  to 
ellipsoid E .  Let 

r
R locate P  expressed in E .  The minimum distance problem can be 

generated from the above formulation by setting 
r
ρ = 0  and λ = 0 . This results in Eq. (1) 

and in a modified Eq.(5) 

 
r r rr R Dr− + =λ 0 . (7) 

Solving, we find 

 
r r
r I D R= + −( )λ 1  (8) 

where I is the identity matrix.  Substituting into Eq. (1), we find 1 equation for the 1 
unknown λ  

 
r r
R I D D I D RT T( ) ( )+ + − =− −λ λ 1 1 0 . (9) 

An equivalent result was derived using only geometrical arguments in a paper by Tang9.  Eq. 
(9) can be solved using many methods, e.g., Newton iteration. Of course, there are multiple 
solutions to Eq. (9) representing the minimum and maximum distance cases between P  and 
E . 

 It is very instructive to look for the geometrical meaning of the solutions to Eq. (9). 
Noting that 

r
ρ = 0 , Eq. (7) can be solved for 

r
d  to yield 

 
r rd Dr= λ . (10) 



5 

The vector Drr  is an outward normal vector to the ellipsoid surface at 
rr . Thus, the shortest 

relative distance vector from the surface to P  lies normal to the surface. In fact, Eqs. (5) and 
(6) indicate that the shortest relative distance vector between ellipsoid surfaces is normal to 
both ellipsoids. Multiplying by 

rr T  and using Eq. (1), we also see that 

 λ =
r r
r dT , (11) 

so that the sign of λ  can be inferred from the geometry of the solution.  

 We now make use of the convexity of the ellipsoid surface. If P  lies outside the 
surface of E , then the shortest 

r
d  necessarily points outward from the surface at 

rr , so that 
λ > 0 .  Moreover, the minimum distance and the closest point 

rr  on the ellipsoid are 
unique, implying that there is only 1 solution to Eq. (9) with positive λ  for any point P  
outside of E .  For P  outside of E , the existence and uniqueness of the solution to Eq. (9) 
is no longer in doubt and any competent numerical scheme will be able to determine the 
solution. For P  inside of E , however, an unknown number of solutions exists. 

STRATEGY 

Rather than solving the eight nonlinear simultaneous equations for determining the 
closest distance between ellipsoids, we begin by first solving for the closest distance between 
a point P  on E  to the surface of ellipsoid E .  The solution identifies the closest point P  
on E (given by the vector 

rr ).  We then solve the problem of determining the closest 
distance from P  on E  to the surface of ellipsoid E . This problem will identify a new point 
on E  to be used as P .  The iteration scheme continues until the distance between the 
ellipsoids (i.e., between P  and P ) no longer changes significantly.   At that point, one may 
choose to solve the simultaneous equations directly using P  and P  as initial guesses.  This 
iteration scheme is illustrated in Figure 2. 
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Figure 2. Iteration scheme for computing ellipsoid separation 

To speed the solution of Eq. (9) that is required during each iteration, a seed value of 
λ  from the previous computation is used as the initial guess.  After a few iterations between 
ellipsoids, the seed value of λ  used for Eq. (9) is such a good initial guess that Eq. (9) itself 
is solved without performing many iterations. 

Convergence.  Because the iterative scheme chooses candidate points along the surface 
normals, the scheme converges faster the further the ellipsoid surfaces are apart.  As the 
surfaces become closer together, more iterations are required because the candidate points 
move slowly along the surfaces whenever the normals are nearly aligned.  Setting a maximum 
number of allowed iterations prevents the routine from performing an infinite loop. 

Intersection.  While iterating, each point is tested for whether or not it lies inside the ellipsoid 
surface, thereby determining whether the ellipsoids have intersected. For example, if 

 
r rr DrT < 1  (12) 

then P  lies inside E .  When the ellipsoids have intersected, a new definition of distance 
between ellipsoids is required if a measure of the degree of intersection is desired.   

In some cases, the iterative scheme cannot distinguish tangency from intersection. 
Consider the condition shown in Figure 3 where the iterative scheme converges toward a 
point of intersection from the outside.  In such a case, the scheme fails to detect intersection.  
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Figure 3.  This sequence converges toward the intersection point and does not detect 
that the ellipsoids have intersected. 

To account for these problems, the solution found from the iterative scheme is tested 
in two ways. First, if the distance is very small, nearby points are checked to determine 
whether intersection has occurred. Second, a check is performed to determine if the 
computed 

r
d  indeed is normal to the surface at 

rr . If not, a grid search is used to determine 
the closest points on each surface.  The search begins by creating on each ellipsoid an 
equally-spaced ring of points lying on the surface of the ellipsoid centered on the current 
best solution.  The distances between points on each ring is then computed to test whether 
any pair of points are closer than the current best solution. If a closer pair is found, then new 
rings are created using this pair and the procedure continues. Every time a new pair of closest 
points is found, the tests for intersection are performed.  If no closer pair is found, then 
smaller rings are used.  The routine stops whenever the distance changes insignificantly or 
intersection is detected.  

Filters. The computational cost of determining the distance between two arbitrary ellipsoids 
increases the importance of the use of filters. While the most commonly used tests were 
originally designed for the case where only a minimum allowed separation distance was 
specified, they are easily adapted to the current problem.  The simplest adaptation of the 
filters is to sum the maximum dimension of the threat volume for the primary satellite with 
that of each secondary object to yield a separation distance which can be used in a minimum 
separation distance analysis.  Only the set of secondary objects which are not rejected on the 
basis of minimum separation distance are subjected to the ellipsoidal threat volume analysis. 

EXAMPLE 

Example threat analyses were performed using an IRIDIUMTM satellite, SSC number 
24836, as the primary object and a set of 7819 secondary objects from the Space Surveillance 
Catalog over a four day interval.  In the first analysis, the threat volumes associated with the 
primary and secondary objects were defined as spheres with constant radii. In the second 
analysis, the threat volumes associated with the primary and secondary objects were defined 
as ellipsoids with constant dimensions.  The dimensions of the ellipsoids and spheres are 
shown in Table 1.  A minimum separation distance between threat volumes of one kilometer 
was used in both cases.  
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Table 1. DIMENSIONS OF THREAT VOLUMES IN KM 

OBJECT TANGENTIAL  CROSS-TRACK  NORMAL  SPHERICAL 
RADIUS 

Primary 1.0 0.5 0.5 1.0 

Secondary 4.0 2.0 1.0 4.0 

 

Fourteen instances of close approaches were detected when spherical threat volumes 
were considered over the analysis window, while only eight were detected using the 
ellipsoidal threat volumes.  The detected close approach periods for the spherical case and the 
ellipsoidal case are shown in Table 2 and Table 3 respectively.  The lower number of close 
approaches detected using ellipsoidal threat volumes is due to the relative geometry during 
the interval around the time of closest approach.  The decrease in the number of reported 
close approaches is smaller than usual for this case due to repeating geometry between the 
primary satellite and SSC 25274.  Figure 4 shows the relationship between the primary and 
secondary threat volumes for the case where the IRIDIUMTM satellite has a close approach 
using spherical threat volumes with SSC 24197.  Figure 5 shows the same relationship when 
the ellipsoidal threat volumes are used. Because the separation distance between the 
ellipsoids remained greater than one kilometer, no close approach event occurred. 

Table 2. CLOSE APPROACHES USING SPHERICAL THREAT VOLUMES 

SSC # DURATION (SEC) MIN RANGE (KM) 

20898 0.111 5.942 

22327 0.022 5.998 

18997 0.437 5.091 

24197 1.008 3.964 

13649 0.702 3.183 

13649 0.419 5.173 

25274 0.496 5.682 

25274 1.369 2.763 

25274 1.541 0.251 

25274 1.321 3.095 

25274 1.150 3.988 

25274 1.501 1.324 

25274 1.431 2.210 

25274 0.838 5.032 
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Table 3. CLOSE APPROACHES USING ELLIPSOIDAL THREAT VOLUMES 

SSC # DURATION 
(SEC) 

MIN SEPARATION 
(KM) 

MIN RANGE 
(KM) 

13649 0.375 0.598 3.183 

25274 0.908 Intersect 2.763 

25274 1.069 Intersect 0.251 

25274 0.863 Intersect 3.095 

25274 0.638 0.137 3.988 

25274 0.983 Intersect 1.324 

25274 0.915 Intersect 2.210 

25274 0.264 0.833 5.032 

 

CONCLUSIONS 

We have presented a method for determining close approach events for objects 
having ellipsoidal threat volumes.  Ellipsoid shapes provide a method for distinguishing 
different levels of position uncertainty in three orthogonal directions, providing more 
realistic model than a simple worst-case approach.   By defining conjunctions as those times 
at which the minimum separation distance between ellipsoids is less than a user-specified 
threshold, the number of close approach events is reduced when compared to analyses based 
only on range.  This is believed to be a reasonable technique for reporting close approaches 
when realistic covariance information for all objects is not available. 
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Figure 4.  IRIDIUM TM satellite and debris near TCA with spherical threat volumes 

 

Figure 5. IRIDIUM TM satellite and debris near TCA with ellipsoidal threat volumes 
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