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ABSTRACT 

The expanding role of positional covariance data in 
modern spacecraft operations leads to a need for better 
understanding of the time evolution of covariance by 
mission planners and operators.  It is common to see 
positional covariance information presented as uncer-
tainties in the radial, cross-track and in-track directions.  
While such a time history does provide some informa-
tion, it tends to obscure the true directionality of the 
uncertainty.  A methodology for improving the under-
standing of position covariance based on 3D visualiza-
tion is presented.  The methodology utilizes sequential 
estimation to provide insight into the evolution of the 
covariance in the presence of measurements and to in-
corporate the effects of dynamic modeling uncertainties 
between measurements. Display of the covariance as a 
triaxial ellipsoid representing a desired probability level 
is discussed.  Various methods for interpolating posi-
tional covariance are examined resulting in a recom-
mendation of a technique based on an eigenvalue-
eigenvector decomposition of the covariance.   

 

INTRODUCTION 

An understanding of the uncertainty in the trajectories 
of spacecraft is quickly becoming a prerequisite for 
solving many of the pressing problems in the field of 
astrodynamics. The uncertainty in the trajectory is typi-

cally determined from the covariance resulting from 
orbit determination.  The computation of the covariance 
during the estimation process depends on the contents 
of the estimation state, the available measurements, the 
uncertainty in the dynamical model, the uncertainty in 
the measurement model and the estimation algorithm.  
The position covariance, extracted as a 3x3 sub-matrix 
from the overall covariance, is useful both as a direct 
measure of orbit uncertainty and as input to subsequent 
analyses such as the computation of probability of colli-
sion with other satellites1-7. 

Visualization of the position covariance can be a pow-
erful tool in the understanding its evolution. In this 
study, we use 3D visualization of the position covari-
ance to obtain a better understanding of how the covari-
ance evolves in the presence and absence of measure-
ments.  Observation of the behavior of the covariance 
resulting from sequential estimation provides insight 
into relationship between the dynamics of the problem 
and the observability of the state. 

The geometrical representation of the position covari-
ance in 3D space is an ellipsoid, the dimensions of 
which may be computed to represent a desired probabil-
ity boundary. For visualization purposes, it is common 
to replay a scenario at different time steps or to select 
views at specific times.  If the times requested for visu-
alization are not on the grid of times associated with the 
ephemeris information, then an interpolation operation 
must be performed. We investigate several techniques 
for interpolating a time history of covariance.  We also 
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examine how the principal axes of the covariance ellip-
soid move relative to the Gaussian frame which is 
commonly used in the specification of orbit accuracy.   

 

SURFACES OF EQUAL PROBABILITY 
DENSITY 

One means of visualizing the position covariance is by 
constructing a surface of equal probability density.  We 
restrict ourselves to a discussion of covariance matrices 
given in Cartesian coordinates.  This is not a severe 
restriction since a covariance matrix, AP , given in 
terms of a different element representation, Α , can 
always be transformed to Cartesian coordinates, X , 
via the appropriate Jacobian matrix as shown in Equa-
tion 1, 
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 At least one prior study has demonstrated the benefits 
of appropriate coordinate selection and nonlinear map-
ping to produce more representative confidence sur-
faces for situations involving long prediction intervals 
and large uncertainties8. Our interest, however, is in 
situations where uncertainties are relatively small. Un-
der such circumstances, the linear mapping of Equation 
1 and the subsequent representation of the covariance as 
an ellipsoid in Cartesian space produces a very good 
approximation to the confidence surface. If we assume 
that the state estimate error, x , has a mean of zero and 
has a Gaussian probability density function, then such a 
surface will be an ellipsoid centered on the estimated 
position of the satellite.  The shape of these surfaces 
can be determined from the probability density func-
tion, 
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where n is the dimension of the state and the mean of 
the state estimate error is zero9.  The surfaces of equal 
probability density are therefore given by, 

 .21 kxPx x
T =−  (3) 

Equation 3 is the equation of an ellipsoid in n dimen-
sions.  It is important to note that the ellipsoid is de-
fined not in terms of the the covariance matrix, but in 
terms of the inverse of the covariance matrix.  For the 
purposes of visualization of the position covariance, we 

are specifically interested in the 3x3 submatrix that 
corresponds to the positional uncertainty.  Gura and 
Gersten describe two possible methods for reducing the 
n dimensional space to the 3 dimensional subspace of 
interest10.  In the first method, the inverse of the entire n 
dimensional covariance matrix is computed and the 
desired 3x3 submatrix is extracted.  This method can be 
thought of in geometrical terms as creating the intersec-
tion of the n dimensional ellipsoid with the three di-
mensional subspace.  The second method consists of 
extracting the 3x3 submatrix first, then performing the 
inversion operation.  In this method, the behavior of the 
other elements of the state is ignored.  Geometrically, 
the second method can be thought of as computing the 
projection of the n dimensional space onto the three 
dimensional subspace.  Since it is only the position sub-
space that is of interest in this analysis, we will follow 
the second method. 

Gura and Gersten make several other points that are 
important enough to reiterate here.  It is common for 
the covariance matrix to be rotated into a set of axes 
that are familiar to the person working with the data.  In 
the case of satellite position covariance this often means 
rotating the covariance into a frame defined by the ra-
dial, in-track and cross-track directions.  This frame is 
often referred to as the RIC frame, the UVW frame or 
the Gaussian frame.  It is then a common practice to 
treat the square roots of the diagonal elements of the 
resulting matrix as the dimensions of a sigma surface 
oriented along those axes.  In fact, it is the reciprocals 
of the square roots of inverse of the covariance matrix 
that define the intersection of the axes with the one 
sigma ellipsoid.  The dimensions of the ellipsoid are 
only directly related to the diagonal elements when the 
axes of interest coincide with the principle axes of the 
ellipsoid.  In this special case, the dimensions of the 
ellipsoid can be determined from either the covariance 
or its inverse, both of which will be diagonal matrices. 

To obtain a convenient representation of the covariance 
for extracting the ellipsoid dimensions, an eigenvalue-
eigenvector decomposition is performed on the covari-
ance matrix.  The original covariance matrix is related 
to its factors as 

 DUUP T
x = . (4 ) 

The diagonal matrix, D , contains the eigenvalues of 

xP  while  the columns of U contain the corresponding 
eigenvectors. If we only deal with the 3x3 position 
submatrix, then the orthogonal transformation matrix, 
U , is a three dimensional rotation matrix which may 
be used to convert from the reference axes relative to 



 

3 
American Institute of Aeronautics and Astronautics 

 
 

which the covariance is defined and the principle axes 
of the ellipsoid.  The elements of D  correspond to the 
squared dimensions of a one sigma surface of the co-
variance ellipsoid. 

 

COVARIANCE GENERATION 

A prerequisite for the display of covariance information 
is the computation of such information.  For the pur-
pose of this paper, an extended sequential filter was 
used in conjunction with a fixed interval smoother. The 
extended filter algorithm consists of a sequence of time 
updates, which move the state estimate and covariance 
forward in time, and measurement updates which fold 
in measurements to update the estimate of the state and 
covariance at the time of the measurement.   The filter 
process flow is shown in Figure 1.  The filter algorithm 
employs local linearization during the time and meas-
urement updates.  The time update portion of the algo-
rithm also includes the effects of dynamical modeling 
errors for the geopotential, atmospheric density and 
solar radiation pressure.   

 

Figure 1. Filter process flow 

The subscripts on the state and covariance in the filter 
flow diagram, Figure 1, give the time associated with 
the state and the time associated with the last processed 
measurement.  For example, kkX |1+  represents the es-

timated state at time, 1+kt , having processed all meas-

urements through time kt .   

The fixed interval smoother is initialized using an esti-
mate from the filter and moves the state estimate and 

covariance backwards in time to the epoch of each prior 
measurement update and time update produced by the 
filter.  The smoothed estimate and the covariance of the 
smoothed estimate are then updated using information 
computed during the execution of the filter.  The 
smoother process flow is shown in Figure 2. The state 
estimates and covariance resulting from the filter con-
tain discontinuities at the measurement update times, 
but the state estimates and covariance resulting from the 
smoother are continuous and smooth. 

 

Figure 2. Smoother process flow 

The subscripts on the state and covariance in the 
smoother flow diagram, Figure 2, give the time associ-
ated with the state, the time associated with the last 
processed update and the time that the smoothing proc-
ess was initiated.  For example, LkkX ||1−  represents the 

smoothed state at time, 1−kt , having processed all filter 

output from the start of the smoothing interval, Lt , to 

time kt . 

Time histories of the angular separations between the 
principle axes of the covariance ellipsoid and the Gaus-
sian frame are given in the following figures.  Figure 3 
demonstrates the large variations that occur during the 
filtering of measurements.  Figure 4 shows that signifi-
cant motion also exists between the frames in the ab-
sence of measurements. The two histories shown in 
Figures 3 and 4 are the angle between the long axis of 

Time Update (tk->tk+1) 
Xk|k->Xk+1|k, Pk|k->Pk+1|k 

Measurement Update 
Xk+1|k->Xk+1|k+1, Pk+1|k->Pk+1|k+1 

k=k+1 

Time Update (tk->tk-1) 
Xk|k|L->Xk-1|k|L, Pk|k|L->Pk-1|k|L 

Smoother Update 
Xk-1|k|L->Xk-1|k-1|L, Pk-1|k|L->Pk-1|k-1|L 

k=k-1 

tk = tL, Xk|k|L = Xk|k 
Pk|k|L = Pk|k 
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the ellipsoid and the in-track direction and the angle of 
the smallest eigenaxis rotation that is required to align 
the long axis of the ellipsoid with the in-track direction 
and orient the other axes of the ellipsoid along the ra-
dial and cross-track directions.  In this second measure, 
there is no preference given to aligning the minor axis 
in either the radial or cross-track directions.  The com-
bination requiring the smallest rotation angle was cho-
sen.  The results shown here are based on the process-
ing of two way ground ranging on a satellite in Low 
Earth Orbit (LEO). 

 

Figure 3. Ellipsoid Orientation during 
Measurement Processing 

 

 

Figure 4. Ellipsoid Orientation during 
Propagation 

 

COVARIANCE INTERPOLATION 

The output of the sequential filter and fixed interval 
smoother algorithms are time histories of state esti-
mates and associated covariance matrices.  Each time 
history provides all the information needed to produce a 
visualization of the covariance at the times included in 
the history.  If we desire to produce visualizations at 

any arbitrarily selected time with the span of the gener-
ated data, we need methods for interpolating the state 
and covariance information.  There are a number of 
widely used methods for ephemeris interpolation in-
cluding Lagrange interpolation and Hermitian interpo-
lation.  The interpolation of the covariance information 
presents a slightly more difficult problem. 

The extended filter algorithm produces updates to the 
state and covariance at each measurement time.  These 
updates result in discontinuities in the time histories.  
Each discontinuity is characterized by having two en-
tries at the same time; one entry representing the esti-
mate and uncertainty in the estimate prior to the incor-
poration of the measurement and another entry repre-
senting the estimate and uncertainty in the estimate 
considering the measurement.  Using information that 
spans a discontinuity in an interpolation procedure can 
result in large interpolation errors.  We therefore restrict 
ourselves to interpolation methods requiring informa-
tion at only the two time points in the history which 
bound the time at which the covariance is desired.   

  

Element by element 

One means of interpolating covariance matrices is to 
interpolate each element of the covariance matrix, or 
some matrix derived from the covariance matrix, inde-
pendently.  All methods of this type have the common 
flaws that they treat matrix entries as being independent 
of one another when they are not and that an artificial 
dependence on the coordinate system used in the repre-
sentation of the covariance is introduced.  

The simplest method of interpolating the position co-
variance matrix is to perform independent interpolation 
on each element of the covariance matrix itself. There is 
an obvious problem with this method, the interpolated 
position covariance matrix is not guaranteed to be posi-
tive definite. Another disadvantage of this method is 
that dimensional change will occur at a higher rate in 
the vicinity of the smaller ellipsoid. This can be demon-
strated via a simple example where interpolation is de-
sired at three intermediary times between two entries in 
the covariance time history.  The entries from the time 
history are chosen to be, 
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We then interpolate the covariance matrices using di-
rect element by element interpolation to construct ellip-
soids at times 1.25, 1.5 and 1.75.  The results of the 
interpolation are given in Table 1. The resulting varia-
tion of the rate of growth of the ellipsoid can be easily 
computed based on a constant rate of 2σ  as, 

 
( )
dt

d 2

2
1 σ
σ

σ =& . (5) 

 

Table 1. Direct Interpolation of P 

Time 2σ  σ  σ&  

1.0 1.0 1.0 4.0 

1.25 3.0 1.73 2.31 

1.5 5.0 2.23 1.79 

1.75 7.0 2.65 1.51 

2.0 9.0 3.0 1.33 

One solution to the problem of maintaining a positive 
definite matrix through the interpolation process is to 
perform element by element interpolation on a square 
root form of the covariance matrix.  One square root 
form of the covariance matrix can be obtained through 
the use of Cholesky decomposition.  The relationship 
between the covariance matrix and its Cholesky 
factorization is given by 

 TLLP = , (6) 

where L  is a lower triangular matrix11.  The process 
therefore involves first converting the time history of 
covariance to a time history of lower triangular square 
root matrices.  Interpolation is then performed to pro-
duce a lower triangular matrix at the requested interpo-
lation time and the covariance is reconstructed based on 
Equation 5.   

A third possible method of performing element by ele-
ment interpolation is to interpolate the entries of corre-
sponding sigma-correlation matrices.  The sigma-
correlation matrix is constructed from the covariance 
matrix by taking the square roots of the diagonal ele-
ments and dividing the off diagonal elements by the 
square roots of the diagonal elements in the same row 
and column.  This process may be represented as, 
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The method requires first transforming the covariance 
matrices into sigma-correlation matrices, then interpo-
lating.  After the interpolation is performed, the covari-
ance matrix is reconstructed. 

Finally, since the ellipsoid is really defined by the in-
verse of the position covariance, see Equation 3, we 
examine the possibility of performing interpolation on 
the square root of the inverse.  In this case, the time 
history of covariance is  converted to a time history of 
inverse lower triangular matrices, 1−L , the interpola-
tion is followed by an inversion of the lower triangular 
matrix and the interpolated covariance is reconstructed 
based on Equation 5. 

All of the element by element interpolation methods 
are, of course, able to correctly reconstruct the covari-
ance matrices on the nodes of the time history.  While 
interpolating between the nodes, however, element by 
element methods have the potential to exhibit quadratic 
behavior in the dimensions of the ellipsoid.  This quad-
ratic behavior, indicated by a change in sign of the rate 
of the dimension, is due to interpolation of the off-
diagonal elements and the subsequent squaring opera-
tion used to reconstruct the covariance.  We note that 
the dependence upon the coordinate system with re-
spect to which the covariance is specified is also related 
to the existence and therefore interpolation of the off-
diagonal elements.  This also means that the result of 
the interpolation is dependent upon the coordinate sys-
tem used in the specification of the covariance.  The 
existence of such dependence is purely an artifact of the 
interpolation method and is a strong argument against 
the use of any of the element by element methods. The 
following example will serve to illustrate some of the 
problems that occur with these methods.  Let the fol-
lowing two covariance matrices represent matrices from 
the time history, 
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The dimensions of the ellipsoids at the nodes and at 
three intermediary times are shown in Table 2.  The 
dimensions are ordered such that xσ is always the larg-

est dimension and zσ is always the smallest.  The 

method designations are: σρP  refers to interpolation of 

the sigma-correlation matrices, P refers to interpola-
tion of the Cholesky decomposition matrices and 

1−
P refers to interpolation of the inverses of the Cho-

lesky decomposition matrices.  The extreme quadratic 
behavior of the square root formulations is not typical.  
Most of the time, all three formulations appear to per-
form as expected, but occasionally strange behavior is 
observed.  

Table 2. Element by Element Interpolation 

Method Time 
xσ  yσ  zσ  

σρP  1.0 861.716 95.685 22.950 

σρP  1.25 855.368 95.085 52.062 

σρP  1.5 850.557 94.335 51.220 

σρP  1.75 846.499 93.482 40.337 

σρP  2.0 842.656 92.590 25.149 

P  1.0 861.716 95.685 22.950 

P  1.25 644.011 92.538 37.580 

Method Time 
xσ  yσ  zσ  

P  1.5 547.172 91.492 47.897 

P  1.75 631.013 92.037 39.960 

P  2.0 842.656 92.590 25.149 

1−
P  1.0 861.716 95.685 22.950 

1−
P  1.25 541.810 96.483 30.604 

1−
P  1.5 432.254 97.388 36.783 

1−
P  

1.75 523.645 95.515 33.146 

1−
P  2.0 842.656 92.590 25.149 

 

Factorization 

Interpolation results free of the undesired higher order 
behavior of the element by element interpolation 
method can be obtained by interpolating the eigen-
value-eigenvector factorization of the covariance matri-
ces.  The relationship between the covariance matrix 
and its factors is given in Equation 4 and repeated here 
for reference,   

 DUUP T
x = . 

To support interpolation using this factorization, we 
first convert the covariance time history to a time his-
tory of ellipsoid dimensions and quaternions.  The el-
lipsoid dimensions are simply obtained by taking the 
square roots of the diagonal elements of D .  The qua-
ternions representing the orientation of the ellipsoid are 
constructed from the orthogonal transformation matrix, 
U . Interpolation of the ellipsoid axis lengths and qua-
ternions is then performed independently. At the end of 
the interpolation step, the ellipsoid dimensions and ori-
entation needed to produce a 3D visualization of the 
covariance is known. If the covariance is required for 
other purposes, it can be reconstructed by squaring the 
ellipsoid dimensions and entering them into D , con-
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verting the interpolated quaternion into a transformation 
matrix and applying Equation 4.  

At this point, the eigenvalue-eigenvector decomposition 
appears to be a perfect solution.  There are two subtle 
issues, however, that complicate this process.  The first 
issue is of the order of the eigenvalues.  If we simply 
follow a standard algorithm to compute the desired fac-
torization, there is no guarantee that the first eigenvalue 
at time kt  will correspond to the first eigenvalue at 

time 1+kt .  We compensate for this problem by choos-
ing a consistent ordering of the eigenvalues based on 
their size. Noting that all eigenvalues must be positive 
or zero, we place the largest eigenvalue first and the 
smallest eigenvalue last.  When the order of the eigen-
values is modified, the associated coordinate transfor-
mation must be updated. This update is easily achieved 
after conversion to quaternion form by applying a 90 
degree rotation about the axis which is not involved in 
the swap.  This rotation is performed by multiplying the 
existing quaternion by a quaternion evaluated as 

 
2

1,
2

1,0,0 ==== skji qqqq , (8 ) 

where iq  and jq  are the vector components of the 
quaternion associated with the axes being interchanged 
and sq  is the scalar component of the quaternion.  Note 
that achieving the correct order of the eigenvalues may 
require two axis interchange operations. 

The second issue is the lack of uniqueness in the rota-
tion between the reference frame in which the covari-
ance is provided and the principle axes of the covari-
ance ellipsoid.  This issue is a result of the squared, 
symmetric nature of the covariance.  If we say that we 
will define the X axis in the ellipsoid frame to be along 
the major axis of the ellipsoid, the selection of the +X 
direction is arbitrary. This arbitrary selection of axes 
occurs during the factorization of each of the provided 
covariance matrices.  If the selection is made in differ-
ent directions on two subsequent decompositions, inter-
polation between those points will produce a 180 de-
gree flip of the ellipsoid.  To avoid this problem, the 
rotations between subsequent quaternions must be 
minimized. The symmetry of the ellipsoid combined 
with the constraint of preserving the order of the eigen-
values allows for four potential orientations of the axes 
as shown in Figure 5. 

   

Figure 5. Equivalent Ellipsoid Axes 

If we assume that the set of axes in the upper left corner 
of Figure 5 are the axes resulting from the eigenvalue 
ordering procedure, then moving clockwise around the 
figure, the other sets of axes are constructed via 180 
degree rotations about the x, y and z axes respectively.  
Transformations between the original axes and each of 
the equivalent axes can be easily performed by multi-
plying the original quaternion by 

 0,0,0,1 ==== skji qqqq  (9 ) 

where iq  is the vector component of the quaternion 
about which the rotation is being applied.  Each of the 
possible orientations can then be checked to determine 
which one yields the smallest rotation from the prior 
quaternion. 

 

VISUALIZATION 

Visualization of the covariance ellipsoid requires that 
the orientation and size of the ellipsoid be known. The 
orientation of the ellipsoid is given by the transforma-
tion between the ellipsoid principle axes and the refer-
ence axes of the covariance data.  Additional coordinate 
transformations will have to be added if the reference 
frame for the graphics window is not the same as the 
reference axes of the covariance information. The 
dimensions of the ellipsoid may be specified in one of 
two ways: by a number of standard deviations at which 
to draw the surface or via a probability that the true 
location of the satellite is inside the ellipsoid.  If the 
ellipsoid is specified via a probability level, then this 
value must be converted to a number of standard devia-

x 

x 

x 

x 

y 

y 

y 

y 
z 

z 

z 

z 



 

8 
American Institute of Aeronautics and Astronautics 

 
 

tions prior to visualization.  The relationship between 
the probability level and the number of standard devia-
tions, k, for a three dimensional random vector is given 
by10, 

 ( )2/
3

22
2

)( kekkerfk −−





=Ρ

π
.

 (10 ) 

The number of standard deviations corresponding to a 
95% probability level for a three dimensional ellipsoid 
is 2.796 based on Equation 9.  Note that this is signifi-
cantly different than the value of 1.960 which applies to 
a one dimensional problem.  Reference 10 provides 
tables of )(knΡ  for spaces of various dimensions (n). 

Once the orientation and dimensions of the ellipsoid 
have been determined, the ellipsoid can be rendered.  
Figure 6 shows an example of such a rendering. The 
ellipsoid is shown as a mesh and the principle axes of 
the ellipsoid are depicted in relation to the Gaussian 
frame.  This frame was captured as measurements were 
being processed.  Note that the difference between the 
major axis of the ellipsoid and the in-track direction 
which is depicted by the RIC basis vector pointing to 
the left of the page. 

 

Figure 6. Oriented Ellipsoid 

 

CONCLUSIONS 

A method for converting the position covariance sub-
matrix to the dimensions and orientation of an ellipsoid 
representing a surface of constant probability density 
has been presented.  These quantities, which are re-

quired to support 3D visualization of the covariance, 
are obtained via an eigenvalue-eigenvector decomposi-
tion of the position covariance.  Several methods of 
performing covariance interpolation based on the use of 
covariance at only two time points have been analyzed.  
A method based on interpolation of the eigenvalue-
eigenvector decomposition of the position covariance 
has been shown to be preferable to any of the examined 
methods based on independently interpolating matrix 
entries.  The recommended interpolation method has 
the additional benefit that the results of interpolation 
can be used for the visualization of the covariance 
without need for further transformations. It should be 
noted that we did not examine the use of any interpola-
tion methods which use derivative information, such as 
Hermitian interpolation.  Such methods may prove to 
be useful in appropriately capturing higher order behav-
ior of the covariance during interpolation if the appro-
priate derivative information is available. 
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