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THE MEAN-SOLAR-TIME ORIGIN OF 
UNIVERSAL TIME AND UTC 

John H. Seago* and P. Kenneth Seidelmann† 

Universal Time is the measure of Earth rotation that serves as the astronomical 

basis of civil timekeeping. Since the end of the 19
th

 century, Universal Time has 

been maintained to preserve continuity with Newcomb’s mean solar time at 

Greenwich. Here, the concept of a fictitious mean sun is revisited and compared 

with UT1. Simulations affirm that Universal Time has separated from New-

comb’s mean sun by approximately (
1
/365) ∆T as predicted by theory. The dis-

parity is about 0.2
s
 presently, which is much less than the ±0.9

s
 differences al-

lowed between UT1 and UTC, the atomic realization of mean solar time used 

for civil timekeeping. 

INTRODUCTION 

The solar day is the elementary unit of all calendars.
1, 2

 A natural solar day is measured as the 

duration between two culminations of the apparent Sun over a meridian, with apparent solar time 

being the hour angle of the Sun between culminations. However, the duration of apparent solar 

days and hours are irregular because of a non-uniform motion in the Sun’s right ascension due to 

the obliquity of the ecliptic and the eccentricity of the Earth’s orbit. The irregularity of such natu-

ral phenomena is mismatched with the behavior of man-made timekeeping devices, which tend to 

increment uniformly. 

Mean solar time is the time scale by which the solar days of the calendar have been resolved 

with the uniformity of synthetic timekeepers. Its purpose was to establish a time scale of equal 

hours and days that kept pace with the Sun in the long term.
3
 In the same way that successive 

culminations of the Sun on the celestial sphere define the apparent solar day, the mean solar day 

implies sequential culminations of a fictitious point along the celestial equator known as the mean 

sun, with mean time-of-day defined as the hour angle of this fictitious sun.
4
 

As a mathematical abstraction traveling at uniform angular velocity, the mean sun cannot be 

observed directly. Rather, its imagined diurnal motion is a consequence of Earth’s rotation rela-

tive to the mean longitude of the apparent Sun, at least in principle. Consider a sidereal day, d★, 

as the duration of the Earth’s rotation between two successive culminations of the precessing ver-

nal equinox (the point where the ascending Sun notionally crosses the celestial equator). Over one 

orbital revolution of the Earth about the Sun of duration P, the fractional number of sidereal days 

k can be counted, such that: 
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 d★ = 
k

P
, (1) 

with k ~ 366 ¼. Because the Earth circuits the Sun during P, there is exactly one fewer Earth rota-

tions relative to the Sun than to the equinox. Thus, the duration of a mean solar day, d⊙ becomes: 

 d⊙ = 
1−k

P
. (2) 

Combining equations (1) and (2) to eliminate k results in: 

 (d⊙)
−1

 = (d★)
−1

 − P 
−1

 . (3) 

Multiplying Eq. (3) by 2π, an expression for angular rate develops: 

 ω⊙ = ω★ − n⊕ , (4) 

where ω⊙ represents an angular rate for mean solar time, and where ω★ is the angular rate of 

Earth rotation and n⊕ is the mean motion of Earth’s orbit relative to the equinox. Consequently, 

the rate of mean solar time combines Earth’s rotation rate and Earth’s mean motion (Figure 1). 

 

Figure 1. Earth as a Clock (0
h
 UT, February 29, 2000). The Earth spins at rate ω★★★★ while the mean-

time “dial” rotates once per year with the fictitious mean sun at 12
h
. Each meridian indicates its own 

mean solar time.  

The concept of mean solar time has been used since antiquity as a specialized time scale for 

scientific and navigational purposes; for example, the relationship between mean solar time and 

apparent solar time was empirically determined by Ptolemy from lunar studies as early as the 2
nd

 

century A.D.
5
 However, it was the proliferation of well-regulated mechanical clocks that ushered 

mean-solar timekeeping into general usage. Mean solar time on the meridian of Greenwich 
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(GMT) was eventually recommended as a universal standard by the 1884 International Meridian 

Conference at Washington, D.C. That Conference proposed “the adoption of the meridian passing 

through the centre of the transit instrument at the Observatory of Greenwich as the initial meridi-

an for longitude.” It also proposed “the adoption of a universal day for all purposes for which it 

may be found convenient,” and that “this universal day is to be a mean solar day… to begin for 

all the world at the moment of midnight of the initial meridian.”
6
 

Figure 2. Greenwich Hour Angles of the Mean Equinox of Date and Fictitious Mean Sun

(February 29, 2000, Noon, Eastern Standard Time). 

Astronomical Convention from 1900 to 1983 

Different theories for mean solar time were in use at the time of the 1884 meridian conference. 

Recognizing the problem of disparate astronomical standards, Newcomb strove to develop a self-

consistent set of astronomical constants.
7
 These became the basis of discussions at the Paris Con-

ference of 1896 to further unify the calculation of astronomical ephemerides and phenomena in-

ternationally.
8
 Newcomb’s developments included a conventional expression for the right ascen-

sion of the fictitious mean sun, which was used through most of the 20
th
 century:

9
 

 R⊙(T) = 18
h
38

m
45.836

s
 + 86401845.42

s
T + 9.29

s
T

2
 , (5) 

where T is the number of Julian millennia of 365250 days elapsed since “1900, Jan. 0, Greenwich 

Mean noon.”
*
 Mean solar time at Greenwich, measured from midnight, was expressible as the 

hour angle of this fictitious mean sun + 12
h
, or equivalently:

10
 

 GMT = 12
h
 + Greenwich hour angle of the mean equinox of date − R⊙(T) , (6) 

Thus, mean solar noon (12
h
) occurred at Greenwich whenever the Greenwich hour angle of the 

mean equinox of date equaled R⊙(T) (Figure 2). The significance of a fictitious mean sun with 

                                                      

* In contemporary parlance, this zero epoch is 31 December 1899, 12h UT. Newcomb also originally used units of Jul-

ian centuries instead of Julian millennia; the larger unit is adopted here to be consistent with modern conventions. 
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right ascension R⊙(T) was that its transit over any meridian of the celestial sphere defined, in 

principle, the moment of mean noon for that meridian. 

Newcomb did not specify the measure of time that T reckoned, although units of mean solar 

days are presumed.
11

 In Newcomb’s era, no distinction was drawn between the progressions of 

time indicated by the rotation of the Earth versus the independent variable of solar-system theory; 

these two concepts were not separated until the mid-20
th
 century, after Earth rotation was con-

cluded to be slightly non-uniform. Eventually, the theoretically uniform argument of solar-system 

theory became known as Ephemeris Time, ET, and was intended for scientific applications, while 

Earth rotation persisted as the basis of civil timekeeping under the name Universal Time, UT. 

Accordingly, Newcomb’s T of Eq. (5) was interpreted as the independent variable of the 

Earth’s orbital motion, which became associated with Ephemeris Time (TE). Hence, the “ephem-

eris mean sun” R⊙(TE), was recognized as the right ascension of Newcomb’s fictitious mean sun. 

Meanwhile, the practice continued of using observed Universal Time (TU) in Eq. (5), and the 

“universal mean sun” R⊙(TU), was deemed a conventional expression that related Universal Time 

and Greenwich mean sidereal time (GMST) at 12
h
 UT per Eq. (6). Thus, GMST was not rigor-

ously attached to the right ascension of Newcomb’s mean sun, and Universal Time was not tech-

nically definable as the hour angle of Newcomb’s fictitious mean sun increased by 12
h
. Rather, 

UT was practically defined by the operational procedures employing the conventional relation-

ship of Eq. (6) with R⊙(TU). The difference between R⊙(TE) and R⊙(TU) is:
12

 

 R⊙(TE) − R⊙(TU) ≈ 0.002738 ∆T , (7) 

where ∆T, or “Delta-T”, is the accumulated excess of the measure of Ephemeris Time over Uni-

versal Time: ET − UT. 

Continuing operational improvements led to refined versions of Universal Time (UT0, UT1, 

UT2) having varying degrees of uniformity with periodic differences at the level of tens of milli-

seconds. A broadcast convention tying Universal Time to atomic frequency standards was further 

developed through the 1960’s, which became known as Coordinated Universal Time (UTC). 

By the 1970’s, limitations with the definition and determination of Ephemeris Time led to the 

development of dynamical time scales based on the theory of general relativity. Ephemeris Time 

was superseded by the relativistic dynamical times, Barycentric Coordinate Time (TCB), Geo-

centric Coordinate Time (TCG), and Terrestrial Time (TT).
13

 TT is a coordinate scale on the sur-

face of the Earth (practically realized by removing 32.184
s
 from International Atomic Time, TAI). 

Barycentric Dynamical Time (TDB) is a scaled version of TCB that tracks TT on average and is 

operationally synonymous with the independent argument of JPL developmental ephemerides. 

Astronomical Convention from 1984 to 1996 

By the 1980’s, traditional astrometry began to wane as technological advancements, such as 

Very Long Baseline Interferometry (VLBI) and Satellite / Lunar Laser Ranging (SLR, LLR), 

promised better accuracy in the measurement of Earth rotation. Two versions of Universal Time 

found widespread application: UT1 as the precise measure of rotation about Earth’s observed ro-

tational pole, and UTC as the atomic realization of Universal Time broadcast for precision work 

and civil-timekeeping. UT1 is made available to high accuracy by adding a correction to UTC: 

 UT1 = UTC + (UT1 − UTC) . (8) 

UT1 − UTC is tabulated by the International Earth Rotation and Reference Systems Service 

(IERS), a service chartered in 1988 by the IAU and IUGG to supplant the Bureau International 

de l'Heure (BIH) and coordinate the results of astro-geodetic observing programs. 
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Newcomb’s expression for R⊙(TU) remained in effect until the relationship between GMST 

and UT was slightly revised effective January 1, 1984, in response to an improved system of as-

tronomical constants adopted by the IAU in 1976 that included an update to the rate of preces-

sion. Upon adoption, it was recommended that the fundamental reference frame defined by the 

positions and rates of the fifth Fundamental Katalog (FK5) correspond as closely as possible to a 

dynamical reference frame derived from modern observations. This required a correction to the 

origin of right ascensions and the motion of the equinox of the former FK4. Changes to the posi-

tions and proper motions of the fundamental catalog would have affected the determination of 

sidereal time based on observations of cataloged stars, and consequently UT1, but the origin and 

rate of the relationship between GMST and UT was instead carefully redefined to maintain the 

same value of UT1 at the time of changeover.
14

 Therefore, the expression for GMST at 0
h
 UT1 

was slightly augmented to negate the effects of equinox adjustment, leaving:
15

 

 GMST0h UT = 6
h
41

m
50.54841

s
 + 86401848.12866

s
 TU + 9.3104

s
 TU

2
 + 6.210×10

−3s
 TU

3 
. (9) 

This action preserved numerical continuity within the UT1 time series, and this new expression 

effectively became a relationship that operationally defined Universal Time. Geocentric apparent 

coordinates of stars or planets, measured with respect to the earlier mean equator and mean equi-

nox of date of the former FK4-based system, could then be placed on the FK5-based system by 

adding an equinox correction to the right ascension of date:
16

 

 ∆α = 0.0775
s
 + 0.850

s
T = 1.1625" + 12.75"T , (10) 

where T is the date expressed in units of Julian millennia TDB from epoch J2000.0. 

Astronomical Convention from 1997 to 2002 

Historically, the conventional expression for nutation in right ascension, also known as the 

equation of the equinoxes, was approximate. This resulted in periodic inaccuracies of a few mas 

in the kinematical relationship between Greenwich (apparent) sidereal time (GST) and GMST 

(and thus, UT1). Such effects were completely negligible considering the accuracy of traditional 

astrometric methods, but technological improvements motivated the development of more accu-

rate expressions relating GST to GMST and UT1.
17

 Consequently, effective January 1, 1997, the 

traditional expression for the equation of the equinoxes was amended to account for the largest 

periodic inaccuracy by adding:
18

 

 dUT1(Ω) = 0.00264"sin(Ω) + 0.000063"sin(2Ω) , (11) 

where Ω is the mean longitude of the ascending note of the Moon’s orbit. 

Astronomical Convention from 2003 to Present 

Effective January 1, 2003, the International Astronomical Union (IAU) redefined UT1 as hav-

ing a linear relationship with the Earth rotation angle, θUT1, the angle between the Celestial In-

termediate Origin (CIO) and the Terrestrial Intermediate Origin (TIO) of the latest IAU Preces-

sion-Nutation Theory:
19

 

 θUT1 = 2π (0.7790572732640 + 1.00273781191135448) TUT1 (12) 

where TUT1 is the UT1 date measured in Julian days minus 2451545.0. An advantage of the CIO 

formulation is that the CIO is an origin with no precessional motion along the instantaneous plane 

of the equator; therefore, UT1 has a linear relationship with respect to the CIO. The values within 

Eq. (12) were carefully prescribed to maintain continuity with earlier definitions for Universal 
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Time insofar as possible, and to ensure that the time derivative of UT1 remained proportional to 

Earth rotation rate.
20

 

GREENWICH MEAN SOLAR TIME TODAY 

The constant of proportionality in the current definition of UT1 has traceability back to New-

comb’s expression for the right ascension of the mean Sun. Consequently, UT1 is considered to 

be nominally equivalent to mean solar time reckoned from Greenwich.
21

 However, from time to 

time the question arises as to how well the present realization of Universal Time represents mean 

solar time on the prime meridian. For example, Guinot (2011) suggests that all decisions thus far 

have preserved the role of UT1 as a representation of mean solar time at the Greenwich meridian 

“with a departure which may reach one or two seconds.”
22

 Proposed reasons for this estimated 

level of discrepancy include the following. 

• The timing of solar transits cannot be precisely measured with respect to the background 

stars, such that historical determinations may be biased on the order of 0.1
s
. 

• The BIH did not define 0° longitude with the Royal Observatory at Greenwich, but referred 

its estimate of Universal Time to the reference meridian of a “mean observatory”. This esti-

mate was determined through a weighted average of Universal Times from radio signals of 

contributing observatories relative to their adopted longitudes. Changes to the averaging algo-

rithms over the years may have preserved continuity at the order tens of milliseconds. 

• The effects of polar motion cause declination-dependent non-uniformities in the time ob-

served (on the order of 30 milliseconds at Greenwich latitude), requiring the IAU to place the 

terrestrial fiducial direction for Universal Time at zero latitude. 

• Plate tectonics cause the relative longitudes of stations to change on the order of centimeters 

(microseconds) per annum. 

• To keep the UT1 time series continuous, the BIH effectively altered the origin of global lon-

gitude when introducing systemic changes into its terrestrial system.
23

 Adjustments and 

changes to conventions over time perturbed the International Reference Meridian 0.089' 

(5.34") to the east from the Airy transit circle room, or, advanced it by 0.356
s
 in time.

24, 25
 A 

shift of approximately 100 meters is easily noticed today by a visitor at Greenwich equipped 

with a handheld GNSS receiver. 

An error budget of these combined effects does not sum effortlessly into “one or two sec-

onds,” and indeed, there may be some debate as to what the phrase “mean solar time at Green-

wich” implies in any analysis of the question. Nevertheless, this situation does not prevent com-

parison of the IERS Universal Time series with a specific mathematical model for the motion of a 

“mean sun”. Toward this end, Newcomb’s expression for mean solar time has the advantage of 

being the only convention globally adopted for such purposes; therefore, it seems justifiable to 

give strong preference to Eq. (5) as “a representation of mean time at the Greenwich meridian.” 

Comparison with an expression based on more modern solar-system theory presents a further op-

portunity to assess both Newcomb’s expression and the UT1 series from the IERS. 

TRANSIT ANALYSIS OF THE SATELLITE MODEL 

Systems Tool Kit (STK) is commercial software which specializes in the dynamical analysis 

and visualization of vehicle- and sensor-behaviors in terrestrial and extra-terrestrial environs. 

New analysis capabilities in the most recent version can trigger the times of when special values 

occur within custom calculations. This allows for a relatively expedient assessment of when 



 7

simulated events happen that was inconvenient or impossible with previous software versions. 

These features are known under the STK option of Analysis Workbench, which is available to 

educational instructors without cost from Analytical Graphics, Inc. (AGI). 

Newcomb imagined the fictitious mean sun as a point on the celestial sphere having uniform 

sidereal motion (µ) in the plane of the Earth’s equator. A circular two-body orbit also has con-

stant angular velocity, such that the mean anomaly increases in a theoretically uniform way. 

Therefore, the approach of this research is to model the fictitious mean sun as an artificial Earth 

satellite, and employ the new analysis features of STK to calculate and report the times of transit 

at the prime meridian relative to the UT1 time scale. If the UT1 scale represents the model of the 

fictitious mean sun, then the transits at the prime meridian will occur precisely at noon UT1; oth-

erwise, transit times will indicate the difference in right ascension between the model of the ficti-

tious mean sun and that implied by UT1 from the IERS. 

(a) Sunrise at Greenwich (6:52 UT) (b) Greenwich Mean Noon 

  

Figure 3. Dihedral Angle Between the Mean-Sun Satellite Direction and the Prime Meridian Plane, 

February 29, 2000. Mean solar transit is reached when this angle is zero. 

Terrestrial Frame of Reference 

For this analysis, each transit is modeled as the time at which the dihedral angle becomes zero 

between the “mean-sun” satellite position (measured from the geocenter) and a meridian plane 

that includes the ITRF Z-axis as the pole and ITRF X-axis as the longitude origin (Figure 3).
*
 

Celestial Frame of Reference 

One constraint for a mean sun is that the motion always resides within the plane of the mean 

equator. If the proposed two-body orbit is defined with zero inclination, then the out-of-plane (Z) 

positions and velocities are exactly zero and the motion is equatorial. Only two non-zero orbital 

                                                      

* The Celestial Intermediate Pole (CIP), which approximates the spin axis of the Earth (known in STK as the pseudo-

fixed Z axis), could have been used as well, but the choice of pole does not materially affect the results, because the 

effects of polar motion are proportional to the tangent of latitude and transits are modeled at the equator. 
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elements are then required: the origin of right ascension at some initial epoch, and the orbital pe-

riod. However, an inertial two-body orbit will not remain aligned with the plane of the Earth’s 

equator, because the Earth’s pole and equator will precess over time. 

The requirement for equatorial motion is met in STK by exporting the modeled two-body mo-

tion to an ephemeris, changing the reference frame to a precessing MeanOfDate frame, and then 

importing the altered ephemeris as the basis of modeled motion (Figure 4). After this keyword 

edit, the software presumes that the ephemeris represents motion relative to the precessing equi-

nox and celestial pole of the IAU 1976 Theory of Precession. Indeed, Newcomb’s expression for 

right ascension of the fictitious mean sun, Eq. (5), is with respect to the mean equinox of date. 

However, declaring the mean-solar ephemeris to be relative to a precessing frame introduces sub-

tle complications. 

(a) before (b) after 

 

Figure 4. Editing the STK Ephemeris to Declare a Precessing Mean-of-Date Frame. 

The orbital period specifies the duration through which the mean anomaly returns to its direc-

tional origin. The precessional rate of the mean equinox, to which the mean anomaly is refer-

enced, is not strictly constant; thus, strictly uniform equatorial motion cannot be specified using a 

purely linear expression relative to a mean equinox of date.
*
 However, the simulated two-body 

satellite motion, declared to be with respect to a mean-of-date equinox per Figure 4, can only be 

expressed linearly using two terms: mean anomaly and mean motion. Thus, the non-uniform pre-

cessional motion introduced by the moving frame of reference cannot be completely represented 

through the proposed two-body orbit model. A simple way to mitigate the non-linear effects of 

precession is to limit consideration only to times when the argument of precession theory, T, is 

relatively small, such that precession terms of order T
2
 and higher have a negligible contribution. 

Another way is to remove these effects after the fact, because general precession of the conven-

tional equinox is well known and simply modeled as a polynomial in right ascension. This ap-

proach is employed in the sequel. 

Finally, there is a choice of methods in determining the equinox from numerical integrated 

ephemerides.
26

 Newcomb considered the equatorial plane to be moving uniformly, or “rotating”, 

which was the standard method of definition until 1998. Before him, LeVerrier took an instanta-

neous, or “inertial”, plane for the equator.
27

 This is the method used now for the definitions in the 

International Celestial Reference System (ICRS). When deducing the equinoctial direction dy-

namically, the difference between the two conventions creates an offset of approximately a tenth 

of an arcsecond. This discrepancy needs to be accounted for when comparing results across dif-

ferent conventions. 

                                                      

* This is why Eq. (5) includes a non-linear term of 9.29sT2. 
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THE TROPICAL YEAR 

Long before the development of gravitational theories, the average duration of the Earth’s or-

bital period was determined by observing the annual progression of the Sun over a large number 

of orbital cycles. Each year was historically measured from the solstices, when the latitude of the 

Sun approached the tropics (meaning “turn”) and thus changed direction.
28

 Yet, the term tropical 

year has also traditionally described the duration between successive solar passages of the vernal-

equinox.
29

 This vernal-equinox year has been critical to establishing the Gregorian calendar for 

determining the date of Easter.
30

 

Unfortunately, successive passages of the solstices or equinoxes are not strictly uniform, be-

cause the orbital motion of the Earth’s line of apses relative to the equinox introduces tiny rate 

differences, which differ depending on the starting location within the orbit.
31

 Also, the intersec-

tion of the planes of the equator and ecliptic, which traditionally defines the equinox direction, 

has secular motion relative to inertial space due to precession. This motion is further subject to 

periodic nutation of the orientation of the Earth’s spin axis and equator, primarily caused by grav-

itational torqueing of the Earth’s figure by the Moon. Finally, the direction of the Earth-Moon 

barycenter relative to the Sun, which is located about 4700 km from the Earth’s center of mass, 

differs from that of the Earth’s center, depending on the location of the Moon. Thus, the time be-

tween successive annual passages of the Sun can vary on the order of several minutes, because of 

natural perturbations to the Earth’s orbit, and depending on the points of reference used (Table 1). 

Table 1. Estimated Duration Between Vernal Equinoxes (TDB Seconds) 

Interval 
Meeus & Savoie

31
 

(1992) 

*
Earth 

 w.r.t. True Equinox 

*
Earth 

w.r.t. Mean Equinox 

*
E.-M. Barycenter 

w.r.t. Mean Equinox 

1985-86 365
d
  5

h
 48

m
 58

s
 365

d
  5

h
 48

m
 58

s
 365

d
  5

h
 50

m
 42

s
 365

d
  5

h
 53

m
 33

s
 

1986-87 365
d
  5

h
 49

m
 15

s
 365

d
  5

h
 49

m
 17

s
 365

d
  5

h
 51

m
 16

s
 365

d
  5

h
 46

m
 29

s
 

1987-88 365
d
  5

h
 46

m
 38

s
 365

d
  5

h
 46

m
 39

s
 365

d
  5

h
 48

m
 57

s
 365

d
  5

h
 52

m
 39

s
 

1988-89 365
d
  5

h
 49

m
 42

s
 365

d
  5

h
 49

m
 39

s
 365

d
  5

h
 51

m
 59

s
 365

d
  5

h
 51

m
 37

s
 

1989-90 365
d
  5

h
 51

m
 06

s
 365

d
  5

h
 51

m
 01

s
 365

d
  5

h
 52

m
 50

s
 365

d
  5

h
 49

m
 19

s
 

Interval 

Average 

365
d
  5

h
 49

m
 08

s
 

365.2425
d
 

365
d
  5

h
 49

m
 06

s
 

365.2424
d
 

365
d
  5

h
 51

m
 09

s
 

365.2439
d
 

365
d
  5

h
 50

m
 43

s
 

365.2436
d
 

*as modeled by STK using IAU 1976 Precession, 1980 Nutation, and JPL DE421 Earth ephemeris 

Today, the duration known as a tropical year is most accurately defined as the period by 

which it takes the mean orbital longitude of Earth, measured with respect to a precessing equinox, 

to advance 360º (one revolution or cycle). This modern definition results from the practice of re-

lating the non-uniform motion of the Earth to the independent argument of a solar-system theory. 

Thus, the period of the Earth’s orbit is still determined, in some average sense, from a finite num-

ber of orbital cycles, but in terms of the independent variable of celestial mechanics. 

Since the 19
th
 century it has become customary to express the duration of the tropical year as 

the inverse of the mean motion of the Earth-Moon barycenter from a precise solar-system theory. 

Specifically, if the mean longitude of the Sun (relative to a precessing mean equinox of date) can 

be generally expressed in the time-polynomial form: 

 L = L0 + L1t + L2t
2
 + L3t

3
 + … , (13) 
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then the (precessing) mean motion can be expressed as the time rate of change of L: 

 dL/dt = L1 + 2L2t + 3L3t
2
 + … . (14) 

To express the duration of the tropical year Y in units of TDB seconds, one takes the reciprocal of 

Eq. (14) and applies appropriate scale factors to convert from units of arcseconds and Julian mil-

lennia:
32

 

 
( )

...  32

864003252506060360
2

321 +++

××××
=

tLtLL
Y  . (15) 

Borkowski (1991) reminds that if L1 >> L2, L3, …, then Eq. (15) can be conveniently expressed 

as:
33

 

 
( )









−−−

××××
= ...321

864003652506060360 2

1

3

1

2

1

T
L

L
T

L

L

L
Y . (16) 

Using Eq. (5) as an example, Newcomb’s tropical year is 31556925.9747
s
 − 5.3032

s
T, or 

365.242198782
d
 at epoch 1900 and decreasing one-half second (TDB) per century. 

RIGHT ASCENSION OF THE FICTITIOUS MEAN SUN 

The mean longitude of the apparent Sun, referred to a precessing mean equinox of date, and 

displaced by aberration, may be expressed more precisely in the time-polynomial form:
34

 

 L = (λ0 + λ1t + λ2t
2
 + …) + (h1t + h2t

2
 + …) − κ . (17) 

Here, terms of λi represent ecliptic mean motion, terms of hi represent general precession in longi-

tude (along the ecliptic), and κ represents the constant of aberration. Comparing Eq. (17) with 

Eq. (13), one notices that L0 = (λ0 − κ) and Li = (λi + hi); i > 0. 

Table 2. Terms Contributing to the Parameterization of the Fictitious Mean Sun 

Degree Coefficient. Components Description 

t
0
 α0    λ0 

−κ 

origin of mean longitude of true Sun 

annual aberration 

t
1
 α1   λ1 

+h1 

mean motion of true Sun in the ecliptic 

precession rate of equinox in longitude 

    µ  

+m1 

uniform sidereal motion along the celestial equator 

precession rate of equinox in right ascension 

t
2
 α2  m2 higher-order precession of equinox in right ascension 

 

To create a uniform scale from solar time, Newcomb defined his fictitious mean sun to have 

strict uniform motion µ along the celestial equator in the reference frame defined by precessional 

constants of the early 1890's, with a right ascension α as nearly as possible to the Sun’s mean 

longitude L. Thus:
35

 

 L ≈ α = α0 + µt + (m1t + m2t
2
 + …) . (18) 
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Here, terms of mi express the motion of general precession of the equinox in right ascension 

(along the equator) as the reference point of right ascension. Equating the coefficients of like 

terms between Eq. (13) and Eq. (18), one notices that α0 = L0 = (λ0 − κ), and L1 = (λ1 + h1) = (µ + 

m1). Therefore, the right ascension of the mean sun is expressible as: 

 α = L0 + L1t + (m2t
2
 + …) = (λ0 − κ) + (λ1+ h1)t + (m2t

2
 + …) . (19) 

The various terms contributing to the parameterization of the fictitious mean sun are summa-

rized in Table 2. When modeling the right ascension of the mean sun as a two-body orbit in STK, 

the origin α0 specifies the mean anomaly at t = 0, and the rate coefficient α1 defines the mean mo-

tion or period. The higher-order terms of precession mi cannot be specified using a two-body orbit 

model, which are negligible only near the time origin, when t is relatively small. 

SIMULATION USING NEWCOMB’S EXPRESSION 

Restating Newcomb’s expression, Eq. (5), in units of arcseconds and Julian millennia yields: 

 R⊙ = 1006887.54" + 1296027681.3"T + 139.4"T
2
 [epoch 1900] . (20) 

Updating the epoch from 1900 to 2000 (by substituting T + 0.1 for T) yields: 

 R⊙ = 1009657.0635" + 1296027709.18"T + 139.4"T
2
 [epoch 2000] . (21) 

Applying the FK4 equinox adjustment of Eq. (10) further updates Newcomb’s right ascension to 

be with respect to the dynamical equinox at J2000: 

 R⊙ = 1009658.2260" + 1296027721.93"T + 139.4"T
2
 [epoch 2000] . (22) 

STK models the motion of the mean equinox according to the IAU 1976 Precession theory. A 

mean sun, whose equinox is affected by general precession in right ascension of IAU 1976 Pre-

cession, would have its right ascension expressed as:
36, 37, 38

 

 αIAU1976 = α0 + µT + (46124.362"T + 139.656"T
2
 − 0.0927"T

3
) [epoch 2000] , (23) 

where T is in units of Julian millennia TDB from epoch J2000.0. Subtracting Eq. (22) from 

Eq. (23) suggests Newcomb’s α0 = 1009658.2260" and µ = 1295981597.568". However, because 

the rate term of the mean sun (L1) is already explicitly determined by (λ1 + h1), the exact values of 

µ and m1 contributing to Eq. (5) are not critical, so long as their combination provides the desired 

rate (in this case, Newcomb’s expression updated to the dynamical equinox at J2000). 
 

Table 3. Orbital Elements for Artificial Satellite Model of Newcomb’s Fictitious Mean Sun 

Frame: 
Mean Equator & 

Equinox of Date 
Period: 31556924.98544332

s
 

Arg. of 

Perigee: 
0° Eccentricity: 0° 

Epoch: 
1 Jan 2000 12

h
 

(TDB) 

Mean 

Anomaly: 
1009658.2260" 

R.A. 

Asc. Node: 
0° Inclination: 0° 

 

Results of the Simulated Transits 

STK simulated and reported the UTC times of 14,975 meridional crossings from January 1, 

1972 to December 31, 2012 using the origin and rate of Eq. (22) as the updated expression for 

Newcomb’s mean sun, where the rate term corresponds to a period of 31556924.98544332
s
 

(Table 3). At each transit time, STK interpolated the daily (UT1−UTC) time series available from 
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the IERS C04 Earth-orientation parameter solution and reported the interpolated result. STK does 

not natively output time on the UT1 time scale, so the interpolated value of (UT1−UTC) was 

added to UTC per Eq. (8) to determine the UT1 time of meridional transit. It is most convenient 

to consider the resultant times of transit relative to noon UT1, for if UT1 is represented by the 

modeled fictitious mean sun, then the mean sun would transit at exactly noon UT1. If the transit 

time of the mean-sun model occurs after noon UT1, then its right ascension is increased (east) of 

UT1. Conversely, if the transit time of our mean-sun model occurs before noon UT1, then its 

right ascension is decreased (west) of UT1. 

 

Figure 5. Times of simulated transits since noon UT1 for Newcomb’s mean sun 

updated to epoch J2000, and also adjusted for non-linear motion of the equinox. 

Two results of the simulation are illustrated with Figure 5. One curve indicates the “raw” un-

adjusted transit timings from the simulation, which are affected by the slight non-uniform preces-

sional motion of the mean equinox of date previously described. Because there is no mechanism 

to explicitly account for non-uniform precessional motion when modeling two-body motion with 

respect to the mean equinox of date, a posterior adjustment of 139.656"T
2
 − 0.0927"T

3
, per 

Eq. (23), was applied to the transit timings. Both curves in Figure 5 show that an object, moving 

according to Newcomb’s expression for right ascension in the equator, transits the prime meridian 

at 12
h
00

m
00.156

s
 UT1 on average over the previous four decades, with some noticeable trending 

and decadal variation relative to UT1. Or, said another way, the right ascension of Newcomb’s 

mean sun is 0.156
s
 ahead of a right-ascension point implied by 12

h
 UT1. It is also apparent that 

the non-linear precessional motion is negligibly small near the epoch of J2000. 

The varying difference between simulated transits and UT1 indicate that the rate of separation 

between UT1 and simulated mean-time is not constant. Eq. (7) predicts that the difference in right 

ascension implied by UT1 versus Newcomb’s mean sun is proportional to ∆T, which explains the 

discordance. Plotting Eq. (7) against the adjusted simulation affirms an almost perfect correlation 

(Figure 6). 
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Figure 6. Adjusted simulated transits times for Newcomb’s mean sun 

compared to the theoretical expression for the difference in R.A. of UT1 and ET. 

 

Figure 7. Timing residuals of theoretical expression for R.A. differences minus Newcomb’s simulated 

mean sun, along with the post-1996 adjustment to the equation of the equinox. 
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Subtracting Eq. (7) from the adjusted simulated transit times reveals a familiar pattern affect-

ing the residuals (Figure 7), illustrated per Figure 2 of Capitaine & Gontier (1993).
39

 Such a pat-

tern seems consistent with the latest UT1 time series having been retroactively corrected by 

Eq. (11) prior to 1997. Removing this periodic signature
*
 results in residual noise, uniformly dis-

tributed between ±0.5 ms. This noise is an artifact of numerical round-off in the simulation pro-

cess as implemented, which did not seek to preserve precision below 0.5 ms (as Newcomb’s orig-

inal expression was only precise to 1 ms). The sample mean of the residual noise was +13.5 µs 

over the time period analyzed—a value which could have been made arbitrarily close to zero by 

adding significant digits to the proportionality constant 0.002738 of Eq. (7). Thus, to better than a 

millisecond, the simulation of Newcomb’s mean-solar-time is represented by: 

 GMT(Newcomb) ≈ UT1 + 0.002738 ∆T − dUT1(Ω) (24) 

A “CONTEMPORARY” MEAN-SOLAR LONGITUDE 

Any measure of time based on an average of apparent solar time is essentially dependent upon 

the particular theory adopted for the Sun.
40

 Newcomb’s convention for the fictitious mean sun 

was based on a pre-relativistic solar-system theory fitted to telescopic observations of the 18
th
 and 

19
th
 centuries. In principle, a more modern convention for mean-solar origin and rate should 

match the true Sun more accurately. 

As late as 1974, in a proposed update of mean planetary elements to take advantage of the 

most recent observational analyses, Seidelmann et al. continued to prefer Newcomb’s expression 

for the mean longitude of the Earth-Moon barycenter without alteration.
41

 Since then, the most 

contemporary expressions for mean elements of the Earth, of which the authors are aware, are 

those of Simon et al. (1994).
42

 These elements were developed from an analytical theory adjusted 

to the Jet Propulsion Laboratory (JPL) Development Ephemerides. Simon et al. expressed the 

mean longitude of the Earth as: 

 L⊕ = 361679.244588" + 1296027711.03429"T + 109.15809"T
2
 

 + 0.07207"T
3
 − 0.23530"T

4
 − 0.00180"T

5
 + 0.00020"T

6
 [epoch 2000], 

(25) 

where T is in units of Julian millennia TDB. 

Table 4. Orbital Elements for Artificial Satellite Model of 

Simon et al. Fictitious Mean Sun w.r.t. a “Rotating” Equinox 

Frame: 
Mean Equator & 

Equinox of Date 
Period: 31556925.1888328

s
 

Arg. of 

Perigee: 
0 Eccentricity: 0 

Epoch: 
1 Jan 2000 12

h
 

(TDB) 

Mean 

Anomaly: 
1009658.6554" 

R.A. 

Asc. Node: 
0 Inclination: 0 

 

To define the origin of right ascension for a fictitious mean sun, one must add 180 degrees 

(648000") to the mean longitude of the Earth L⊕ and then adjust for annual aberration to reflect a 

geocentric frame of reference. A modern value for κ at epoch J2000 is 20.49551" or 1.36637
s
.
43

 

                                                      

* STK is able to remove this sinusoidal pattern directly by setting the parameter UseUpdatedEquationOfEquinox to 

No in the file …\STKData\CentralBodies\Earth\Earth.cb, a file which defines certain geophysical constants and astro-

dynamical calculation options used for the Earth. 
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Additionally, the dynamical ecliptic and equinox of Simon et al. (1994) is “inertial” in the sense 

defined by Standish (1981);
44

 an additional adjustment should be applied to compare with New-

comb’s “rotating” equinox convention, which Standish estimated to be at epoch J2000: 

 αrotating = αinertial − 0.09366". (26) 

Thus, 361679.244588" + 648000" − 20.49551" − 0.09366" updates α0 to 1009658.65542". 

Simon et al. also used a precession theory that improved upon that of IAU 1976. Their accu-

mulated general precession in right ascension can be deduced by summing their expressions for 

the traditional precession angles ζA and zA:
*
 

 αSimon = α0 + µT + (46121.8194"T + 139.7496"T
2 
+ 36.2850"T

3
 

  − 0.3404"T
4
 − 0.0586"T

5
 − 0.0003"T

6
) [epoch 2000], 

(27) 

where T is in units of Julian millennia TDB. Understanding that the rate coefficient of Eq. (25), 

L1, equals (µ + m1) of Eq. (27), the Simon et al. coefficient for µ equals 1295981589.2149". To be 

compatible with the IAU 1976 precession theory used for this analysis, the expression for right 

ascension of the mean sun should account for the precession difference to first order. This is done 

by updating Eq. (23) to include the Simon et al. values of α0 and µ. Thus, the expression based on 

Simon et al., compatible with IAU 1976 precession, becomes: 

 αSimon = 1009658.65542" + 1296027713.5769"T + … [epoch 2000]. (28) 

This expression has a corresponding annual period of 31556925.1888328
s
 (365.24218969

d
) at 

epoch J2000. The difference between the expression of Simon et al., and Newcomb’s expression 

at J2000, is then: 

 αSimon = αNewcomb + 0.42942" − 8.35311"T + … [epoch 2000]. (29) 

Thus, to a fair degree of approximation, an expression for mean solar time based the conventions 

of Simon et al. may be represented as: 

 GMT(Simon et. al) ≈ UT1 + 0.002738 ∆T + (∆α0 + ∆µ T) [epoch 2000] (30) 

where ∆α0 ≈ 0.0286
s
 and ∆µ ≈ −0.55687

s
. 

The general result is illustrated in Figure 8, with Newcomb’s expression and UTC included for 

scale. Both expressions for the mean sun differ from Universal Time by an amount which is much 

less than the variation between UTC and UT1. The discontinuities in the graph of UTC versus 

UT1 result from the introduction of leap seconds which maintain UTC’s proximity to UT1.
45

 Of 

the three realizations illustrated, Newcomb’s mean sun is closest to UT1 currently, but the mean 

sun of Simon et al. is expected to be closest after the year 2051. 

                                                      

* ζA = 23060.9097"T +   30.2226"T2 + 18.0183"T3 − 0.0583"T4 − 0.0285"T5 − 0.0002"T6  

  zA = 23060.9097"T + 109.5270"T2 + 18.2667"T3 − 0.2821"T4 − 0.0301"T5 − 0.0001"T6  
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Figure 8. Times of simulated transit after noon UT1 for different mean-solar-time conventions. 

CONCLUDING SUMMARY 

The authors have expressed the right ascension of Newcomb’s fictitious mean sun with respect 

to the dynamical equinox of epoch J2000, and compared its behavior with UT1. To make the 

comparison, commercial software was used to simulate the supposed motion of the mean sun as 

an artificial satellite, moving uniformly in the plane of the mean equator, with a period of one 

tropical year. The transit times at the prime meridian were then reported relative to noon UT1 

over four decades. Restricting the motion to the equatorial plane required the satellite motion to 

be expressed with respect to the mean equinox of date. This origin has some non-uniform preces-

sional motion in right ascension which could not be explicitly modeled by the right ascension of a 

uniformly moving two-body satellite model; therefore, a small (mostly quadratic) adjustment 

from the IAU 1976 precession theory was applied to the simulated transit results retroactively. 

The simulation results affirmed that the difference between Newcomb’s mean solar time at the 

prime meridian and UT1 is approximated by: 

 GMT(Newcomb) − UT1 ≈ 0.002738 ∆T (31) 

where ∆T = Terrestrial Time minus UT1. The expectation that the right ascension of Newcomb’s 

mean sun diverges from the Universal Time by approximately (
1
/365) × ∆T was already expressed 

numerically in the mid-20
th
 century, when ephemeris time was recognized as its own separate 

scale. An additional periodic correction, Eq. (11), may be further subtracted to eliminate a spuri-

ous sub-millisecond signature; this correction was introduced after 1996 when the traditional rela-
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tionship between Greenwich sidereal time and UT1 was refined. The present separation between 

Newcomb’s mean solar time and Universal Time is about 0.18
s
. 

Generally, expressions for Greenwich mean time that are different from Newcomb’s may be 

approximated as: 

 GMT − UT1 ≈ 0.002738 ∆T + (∆α0 + ∆µ T) [epoch 2000]. (32) 

where ∆α0 and ∆µ represent offsets from the origin and rate of the right ascension of Newcomb’s 

mean sun, and T being in Julian millennia TDB. To compare Newcomb’s expression and the UT1 

series with a more modern solar-system theory, the mean solar longitude of Simon et al. (1994) 

was analyzed.
40

 This expression differs from Newcomb’s by (0.0286
s
 − 0.55687

s
T) after account-

ing for some differences between their conventional reference-frames. The difference of 0.0286
s
 

in origin is small relative to the currently estimated divergence of 0.18
s
 from Universal Time, and 

the rate difference of 0.55687
s
 is practically negligible relative to the variable duration of the 

tropical year (which decreases by one-half second per century). Either expression for the mean 

sun differs from Universal Time by an amount which is far less than the allowable difference be-

tween UTC and UT1. 

Accordingly, UT1 still appears synonymous with “mean solar time at the prime meridian” to 

within a fraction of a second, despite the definition and maintenance of UT1 having evolved sig-

nificantly over the past century. The “prime meridian” in this case implies the International Ref-

erence Meridian that includes the terrestrial origin from which Universal Time is measured, and 

which has advanced approximately 0.36
s
 to the east of the internationally recommended origin of 

longitude—the Airy transit instrument at Greenwich. This translation resulted from the changing 

conventions and methods by which the relationship between Universal Time and the terrestrial 

reference were maintained over time by the Bureau International de l'Heure. Evolution of the 

terrestrial reference frame is a subject perhaps unto itself. 
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