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SIMULTANEOUS PRECESSION MANEUVER AND ACTIVE NUTATION
CONTROL

Sergei Tanygin*

Simultaneous precession maneuver and active nutation control is
proposed for axisymmetric spinners. Nominally, only certain ratios of
inertia moments facilitate nutation cancellation during precession
maneuver. Spacecraft with other ratios may be subjected to
significant residual nutation, which may need to be actively
controlled. The proposed method modifies start and stop times of
each pulse during the precession maneuver in order to reduce
residual nutation while maintaining precession accuracy. Parametric
studies indicate significant potential fuel and time savings as well as
overall accuracy improvements.

INTRODUCTION

Spin-stabilized spacecraft can be very simple and fuel efficient, which makes this
option particularly attractive for small spacecraft. A number of larger spacecraft are also
spinning at least during some phase of their lifetime'™. During spinning, the spacecraft
reorientation is accomplished using precession maneuver. This involves pulsing the offset
axial thruster at times when the applied torque can move the angular momentum vector in
the desired direction. This induces nutation of the axisymmetric spacecraft, which moves its
spin axis. With the appropriate choice of inertia moments, the nutation can be cancelled later
and spacecraft placed into a pure spin about its new inertial orientation.”* If inertia moments
do not have certain ratios, the nutation will not be fully cancelled and can actually grow quite
large. Rigid oblate spinners and prolate spinners may require active nutation control (ANC)
to cancel residual nutation.* The method proposed in this paper modifies precession
maneuver in such a way so as reduce residual nutation for a wide range inertia moments while
maintaining precession accuracy. If this is accomplished, it can lead to better pointing
accuracy as well as fuel and time savings.

EQUATIONS OF MOTION

The first step in developing of the proposed method consists of formulating
equations of motion, initially, for a single pulse and, then, for multiple pulses. The equations
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are derived under the assumptions that the spacecraft is an axisymmetric rigid body and that
pulses are represented by the ideal square wave. The effect caused by violations of these
assumptions is discussed in subsequent sections. The following notation is used throughout
this paper. The oblateness parameter indicates degree of asymmetry of the spacecraft:

o=1,/1, (1)

where I, and I, are the axial and the transverse moments of inertia, respectively. The

parameter is greater than 1 for an oblate spacecraft (e.g. disc shaped) and is less than 1 for a
prolate spacecraft (e.g. rod shaped). Values farther away from 1 in either direction indicate a
more asymmetric spacecraft. Oblateness of 1 corresponds to a symmetric spacecraft (e.g.
sphere). The body observed nutation frequency indicates how fast the angular velocity vector
is seen rotating about the angular momentum vector:

A=(c-1)Q, 2)

where Q is the spin rate about spacecraft’s axis of symmetry (or spin axis). That same
motion observed in the inertial frame has frequency 4+ Q =0Q . A thruster located on the
side of the spacecraft and firing along the spin axis passes through its desired precession
alignment every integer number of spin periods. Any multiplicity of spin periods can be used
as the pulse cycle period:

T=27k/Q, k=123,.., (3)

but the fastest and simplest strategy calls for pulsing during every revolution of the
spacecraft, i.e. kK =1. All pulses are assumed to have the same duration Af, which does not
need to be small in derivations below. However, given that the same thrust impulse

I, =FAt, (4)

where F' is the magnitude of the resultant force, is more effective if produced during shorter

pulses, a useful simplification can be obtained for |QAt| << 1. The derivations in this section

seek to decouple the motion of the spin axis from the spin itself. In doing so, a shorthand
notation for two-dimensional parameterization of the former is convenient. The two-

. . . . T
dimensional vector of transverse angular velocity components is denoted as ® = [a)1 a)z] .
Another two-dimensional vector contains angles, which define the spin axis direction. The

.. T
vector is introduced as 0 =[6, 6,]", where the angles are collected from the 6, —6, — 6,

Euler sequence. Finally, two-dimensional (planar) counterclockwise rotation is mechanized
via the following operator

cosa -—sina
Ria}=| . ’ (5)
sinaa  cosa

where « is the angle of rotation.



Another parameter is introduced:

-9 RplZ
o, = o i R{z}M, (6)

which represents the influence of two-dimensional vector of transverse torque components,
0 . . . .
M=[M, M,[', on the transverse angular acceleration @, where #, =1 is the axial

angular momentum.

The attitude motion during any given pulse cycle is broken into three phases. The

first phase precedes the pulse and the last phase succeeds it. The ith pulse cycle starts at time
t,_, with its pre-pulse phase nominally running untl #,_ . =¢_, +£ —At/2 and post-pulse

1

phase nominally starting at %, =¢,_, . + At. The next pulse starts at , =¢,_, + T . The nominal

mid-time of the pulse, £, is the same within each pulse cycle. Without loss of generality, the

pulse can be positioned in the middle of each cycle, ¢, =T/2, thus, introducing convenient

symmetry into the problem. This is possible because the start time of the first pulse can be
always adjusted so that the pulses initiate desired precession. The fundamental idea of the
proposed method consists of adding small time adjustments, o, to each pulse, such that the

adjustment simultaneously moves ith pulse start time, ¢, , 5=t _ .+, and its stop time,

ty; =t + 0, thus, preserving the pulse duration, At.

During each phase, the angular velocity can be integrated in closed-form. The
transverse torque only affects the transverse angular velocity components, which are found as
follows:>*

o) =R{A(t—1,_ Jo_, 1, <t<t 5, 0 =0 ,), 7)
o(t) = R{/l(t - tl._l’(g)}((oi_l,iB - (op)+ O, 1,5 <t<ts;, ®; =0(5,), (8)
o(t) = R{A(t — 15, foos,, 15, <11, @, =0(t;) . )

Their evolution spanning all three phases is a piecewise smooth function of time, which will
be further used to solve for attitude kinematics.

Ability to approximate attitude motion in closed-form depends greatly on the choice
of attitude parameterization. Judicious selection of non-symmetrical Euler angle sequence
“precession-deviation-spin” facilitates development of the closed-form attitude solution
during the precession maneuver. Without loss of generality, let the precession be defined

about the reference inertial 7, axis and the deviation be defined about the precessing (but not
spinning) @, axis. This way the deviation can be interpreted as the angle between the spin
axis and the precession plane. Finally, the spin angle is defined about the body e, axis, which

is consistent with the selection of the axial angular velocity component. This sequence of



Euler angles is not only convenient geometrically, but also permits linearization of the
attitude kinematics using only one small angle assumption."* Namely, the deviation is
assumed small, which is reasonable as the proposed method seeks to minimize it. Thus, the
linearized attitude kinematics become

0(r) = R{Qrlo(r), 6, << 1. (10)
The resulting approximate Euler angle derivatives are piecewise integrable in closed-form.

0,=0(),0,_,=0(_)

0,=0_, + iﬁl{Qt}m(r)dH TR{Qt}m(t)dH j R{Qto(f)dt (11)

i-1 i-1,6 8,

This formula along with the formula for the transverse angular velocity (Eqgs.6-8) can be
rewritten as functions of the adjustment, o,

0, =A, ()0, ,+B,()o,, (12)

0,=0,_, +A, ()0, +B,(&)o, (13)
and then further modified to isolate terms linear in & :

@, = A0, +(B, +B,dt o, +0(dt), (14)

0, =0, + Ay, +(By + Byt o, +0(3t). (15)

The resulting expressions can be interpreted as a single pulse cycle state transition equation

X, =AX,_, +(B, + B o, +0(t), (16)
. . i . E A,

where the state is defined as x; = , the matrices are constructed as A, = ,
('oi 0 Au)O

By, By, : . . . .
B, = , B, = and their exact form is shown in the appendix. Finally,
B

ot

straightforward repeated application of the single pulse cycle transition results in the
following N pulse cycle transition equation:

N-1 N-1
Xy = AgX, + D AIBio, + > AIBo &, +0(,d), kI=12,.,N,  (17)

Jj=0 Jj=0

where X, is the initial state.



MINIMUM-NORM SOLUTION

Transition equation developed in the previous section relates the initial state with the
state after N pulse cycles. This relationship can be explored to determine how to reach the
desired target state using N pulse time adjustments. A reasonable way to define this target
state is by first computing the state after N nominal pulses:

N-1
Xy =AgX, + ) AlBo, . (18)

J=0

Then this state is converted into the desired target state, Xy, by zeroing its transverse

angular velocity and deviation components:
=0 0, @ @] =%=/0 8 0 of. (19)

The target vector is defined as the difference between the target state and the nominal state:

N-l

Yy =%y —AJX, — D AlBo, . (20)

=0
The problem is re-formulated in the matrix-vector form such that the adjustment vector,
oty =[dt, Oty ... Oty ], is sought such that the target vector is reached:
2

Yn & @0ty +0(”6tN”2)a (21)
where

Dy = [(PlN DN o (DNN] (22)

is the regressor matrix with
P =B, (23)
Oux = AgPpians m=12,..,N-1. (24)

At this point, the assumption that the adjustments are small must be made. It may be
justified by the fact the target state and the nominal state both share the same precession
angle and the fact that the number of pulse cycles N is typically much larger than the
number of elements in the target vector, 4. However, the assumption may still be violated, if
the oblateness parameter approaches integer numbers, for which performing precession
maneuver and controlling nutation become directly opposing tasks. Parametric study
evaluating this assumption is presented in the subsequent sections. Solution to the non-
square problem for N >4 using singular value decomposition (SVD) method yields the
minimum-norm solution:’



Sty="@yy, (25)
where

®, =USV' (26)
is the SVD decomposition of @ with the pseudo-inverse defined as

‘o, =VS'U". (27)

In the thin SVD formulation, only non-zero singular values are included in the diagonal
matrix S.

TREATMENT OF RANK-DEFICIENCY

Inspection of the matrix @ shows that it may have at most three non-zero singular

values. Hence, the problem is underdetermined and rank-deficient at the same time. This
means that there exists a subspace in the four-dimensional target vector space, such that the

projection of the target vector into that subspace is not affected by the adjustments oty

(under linear assumption). The projection can be computed as follows
y=(E-UU")y, 20, (28)

where E #UU" because dimension of U is 4xr, where the rank r<4. The rank
deficiency is generally undesirable as it shows that, if part of the target vector lies in that
subspace, it is not reachable by any adjustments. However, with typical » =3, the chances
are favorable that the major part of the target vector can be reached. Also, the minimum-
norm solution is inherently robust with respect to rank-deficiencies as it simply does not
take into account any part of the target vector that lies in that subspace when determining
adjustments. In other words, the solution does not try to make adjustments based on the
unreachable part of the target vector.

Still, this situation is undesirable and the alternative is to reduce the dimension of the
target state (and, hence, the target vector). As it was stated, precession angle targeted by the
method is based on the nominal pulsing. It is possible to remove this angle from the state and
only seek to have zero nutation and deviation angles. In other words, it is possible to redefine
0 as 0 =0,. This essentially means that, instead of letting the unreachable subspace vary

from case to case, the subspace is fixed along the precession angle. The idea behind this
modification is that zeroing both nutation and deviation angles using small adjustments
should put the precession angle near its nominal desired value.



SENSITIVITY ANALYSIS

In practice, none of the assumptions introduced for this method are truly met.
Hence, it is important to analyze sensitivity of the results to violations of these assumptions.
This section describes analytic techniques for the analysis whereas the next section contains
results of the parametric studies.

One of the results can be obtained directly from the method formulation. Sensitivity
of the final state to the adjustments and to their additive imperfections is the same provided
that the adjustments are small:

OXy
0ot

=@, ~(o-1). (29)

The 2-norm of the regressor matrix can also be used as a single measure of that sensitivity:

OXy
oot

:||‘I’N||2 =5, ~ (0 -1), (30)

2

where s, is the largest singular value of @ .” These results indicate that near-symmetrical
bodies are less sensitive to pulse adjustments, i.e. they require larger adjustments for the same
final state change. The problem completely degenerates for symmetrical bodies (o =1). The
results also indicate that small relative timing imperfections cause proportionally small
relative state changes. Note that sensitivity of the minimum norm solution to changes in the
target vector is proportional to 1/(0‘—1), which makes this method ill-suited for near-
symmetrical bodies. Of course, the concept of precession maneuver itself degenerates for

such bodies.

Another result that can be obtained by inspection of the state transition matrices
shows that the near-symmetrical bodies are also less sensitive to variations in pulse duration:

OXy
Ao -1 31
A~ ) (31)
and
OXy
~ (o =1). 32
on, (o-1) (32)

Note that, while the transition matrices are generally formulated without small pulse
duration assumption, the assumption is practical for efficiency reasons: given the same thrust
impulse, shorter pulse is more effective. Hence, simplified transition matrices are also shown
in appendix.



Sensitivity to mass property imperfections is also important and has been studied
before. It has been shown that closed-form attitude dynamics derived for axisymmetric case
remains accurate in the first order of relative inertia errors.”® It has been also shown that the
adjustment of precession pulses that targets only nutation cancellation can successfully
achieve this even in the presence of significant inertia errors.’ These results are not extended
in this paper, but will be a subject of further review.

PARAMETRIC STUDIES

Parametric studies are presented in this section to supplement the practicality analysis
of this method. Measures studied in this section are separated in three categories: linearity
measures, accuracy measures and efficiency measures.

Linearity measures serve as indicators for when it is appropriate to utilize proposed
time adjustment method. They include maximum magnitude of the adjustment angle,

max |Q5tk
k=1,2,.,N

, and maximum magnitude of the deviation angle, max |91| . The former affects
IE[[O,IN]

validity of linearization for the minimum-norm solution, the latter affects validity of
linearization of Euler angles kinematics. When either one measures exceeds its threshold, the
method is no longer valid as it uses inaccurate state transition.

Accuracy measures reflect how close the final state is to the target state. They include

1 ”mN”z
oQ)

N a . . .
error angle, AG, =cos'(é, e e, )N , where e,,e; represent unit vectors along the desired spin

the post-maneuver nutation angle, ®, =tan” , and the post-maneuver precession

axis and the spin axis achieved after Vpulse cycles.

Finally, efficiency measures demonstrate usefulness of the method for saving fuel and
time. They include total impulse saved, I = ||M||2(AtN +At ), where Af,. is the

duration of thrusting during post-maneuver active nutation control (ANC), and maneuver

duration reduction, T, =TN +7T,,., where T,,. is the total duration of post-maneuver

tot
ANC.

The study is performed using normalized spacecraft model, 7, =1, spinning at the

rate Q=120"/s initially at pure spin. The target precession angle is selected as follows:

target angle of 20" is used in simplified analysis to determine torque magnitude required to
reach it, given the number of pulses and pulse duration. The torque is then applied without
time adjustments and the precession angle reached is used as the target. The pulse duration is

selected such that it spans 5° of spin angle and the pulse cycle is equal to spin period,
T =3s. Performance of the method is illustrated by the time histories of the accuracy
measures computed for o =1.35 and N =10, so that maneuver stops after 30 s (Figs.1,2).
Dotted line represents nominal performance and solid line represents adjusted performance.



There can be seen a significant reduction in nutation and overall improvement in precession
accuracy because of that. These and other measures are evaluated for the following ranges of
parameters: the oblateness parameter, o, from 0.25 to 2 (singularity near 1 is excluded), and
the number of pulses, V, from 10 to 100.

As expected, the linearity measures improve as more pulses are used (Figs.3,4). They
also improve away from integer values of the oblateness parameter. Note that adjustments
decrease rapidly near o =0.5,1.5, which is also as expected as those values are known to

provide nutation cancellation without adjustments. Similar behavior is exhibited by the
accuracy measures (Figs.5-8). Application of the method reduces the post-maneuver nutation
dramatically (Figs.5,6), whereas the post-maneuver precession error is typically maintained at
least as well (Figs.7,8). The most important results are obtained for the efficiency measures

(Figs.9,10). There can be fuel savings of up to 10% for each 20° maneuver (Fig.9). These
savings are correlated with the reduction of post maneuver nutation because ANC is
comparatively more fuel intensive than pulsing during precession. The maneuver duration
reduction is not significant because ANC phase is short compared to precession, which
includes relatively long coasting phases. However, note that using more pulse cycles to reach
the same precession angle means spending proportionally more time on this maneuver. In
other words, if the proposed method does not give much savings for 100 pulse cycle
maneuver, but can save 2% of fuel for 50 pulse cycle maneuver, the latter may be employed
and duration of the maneuver can be reduced in half.
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CONCLUSIONS

The proposed method achieves simultaneous precession maneuver and active
nutation control using small adjustments to thruster pulses for a wide range of axisymmetric
inertia moments. As a result there can be significant pointing accuracy improvements as well

as time and fuel savings.
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APPENDIX

General state transition matrices:

AmO = R{20'7Z'}, (33)
B, = (O' - I)QR{(O' + %jyz - %}
’ (35)
(o~ 1)QR{[G R lj,, . M}
2 2
Ay = R{(20—1/227;2}_R{_7,/2}, .
R{(G ' ljﬂ j (O-_I)QAZ} B R{(O' + ljﬂ + (O'_I)QAZ}
B,, = 2 2 5 :
00 — | .
R{ﬂ —QAt}_R{ﬁ +QAt}
~(o-1) 2 2



e
B, = (O- -1)

R{m_ (Z—;)QAt}_R{GﬂJF (a—l)QAt} '

t(o-1) 2

o)

State transition matrices simplified under the small pulse duration assumption:

|QAt| <<1:

B, ~(c- I)QAtR{(a + %}z} (39)
B, ~ (o -1 Q’AR{or}, (40)
B,, z(a—l)AtR{L}JFE, (41)
o
B, ~ (o -1} QA R{(a—ljﬂ}— (0 —1)QA R{Z}. “2)
lo} 2 o 2



