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LS GEO IOD

James R Wright�

Abstract

I have constructed and demonstrated a new fast-running algorithm to perform re�ned orbit
determination for any spacecraft in GEO (geosynchronous earth orbit), without user requirement
for an a priori orbit estimate. We now have a re�ned method for GEO initial orbit determination
(IOD). This is enabled by the use of equinoctial orbit elements, by a one-dimensional search in
the equinoctial orbit element mean argument of orbit longitude, by the use of sensor locations
to reduce the one-dimensional search, and by convergence boundaries of the nonlinear least
squares (LS) algorithm. I shall refer herein to the new algorithm as LS_GEO_IOD. Algorithm
LS_GEO_IOD employs any desired perturbative acceleration model for numerical trajectory
integration, and it�s success appears to be independent of input measurement type.

BACKGROUND

Initial orbit determination, also called preliminary orbit determination (Herrick[10]), refers to a class
of orbit determination methods that derive initial orbit estimates from sensor measurements and
sensor locations, without user requirement for an a priori orbit estimate. But the use of two-body orbit
mechanics, and the existence of signi�cant white noise1 on minimal sets of measurements in geocentric
applications, has always created IOD estimates with very large estimation error magnitudes. Existing
IOD algorithms are unlike each other, distinguished by distinct measurement types and by distinct
methods to address nonlinearity. They are disparate. And some IOD algorithms produce multiple
distinct solutions (e.g., see Gooding[8]). Historically, the two-body IOD algorithms are associated
with the names of Laplace (1780), Lagrange(1778,1783), Gauss(1809), Gibbs(1889), Herrick(1940),
Gooding(1993), and others (see Herrick[10] and Gooding[8]).
Two-body IOD estimates have been used to seed iterative batch least squares (LS) algorithms

so as to calculate re�ned LS orbit estimates. LS algorithms use complete acceleration models and
overdetermined sets of measurements to accomplish the re�nement and to provide the unique orbit
estimate. Existing nonlinear LS algorithms, also known as Gauss-Newton algorithms, have always
required an a priori orbit estimate for initialization.

ALGORITHM SUMMARY

Algorithm LS_GEO_IOD is uni�ed for distinct measurement types with a nonlinear least squares
algorithm, with a one-dimensional search in mean argument of longitude (an element in the set of
six equinoctial orbit elements2), a user interface in Kepler orbit elements, LS di¤erential corrections
in ECI position and velocity components, and with LS iterative convergence de�ned by Cauchy.
Six-dimensional nonlinear transformations between equinoctial orbit elements, Kepler orbit elements,
and ECI position and velocity components are employed. When the GEO is observable from an

�ODTK Architect, Analytical Graphics, Inc., 220 Valley Creek Blvd, Exton, PA, 19341
1Laplace�s method for angles measurements fails for most applications to geocentric orbits due to white noise

embedded in the angles measurements combined with the second-order Taylor�s series approximation that requires
measurement time-tags to be close together and from the same sensor.

2A short history of development of the equinoctial orbit elements is presented in Appendix A.



overdetermined measurement set, LS_GEO_IOD calculates a unique and re�ned orbit estimate
without user requirement for an a priori GEO estimate.

WHY LS_GEO_IOD SUCCEEDS

Denote Greenwich sidereal time with � = �G (t), and denote spacecraft earth-�xed longitude with
� = � (t). Right ascension � = � (t) of the spacecraft has the representation

� = � + � (1)

so that

� = �� � (2)

Now � = �G (t) is a function only of the date and time t. So given the spacecraft right ascension
� = � (t), one can know the spacecraft earth-�xed longitude � = � (t) according to Equation 2.
Denote the spacecraft position vector with r, and the position unit vector with U = r=r, where
r =

p
r � r, to visualize the relations between r, �, �, and � in Figure 1.

u

U = r/r

Figure 1: Orbit Unit Sphere for Lambda

Figure 2 relates the true argument of latitude u and inclination i to � and � geometrically. Let 

denote spacecraft right ascension of ascending node (the node), and de�ne � with

� = �� 
 (3)

The right spherical triangle de�ned by angle i, and sides � and u, provides this relation.
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U = r/r

Figure 2: Orbit Unit Sphere for Beta

Spacecraft Longitude

Equation 2 de�nes the spacecraft earth-�xed longitude �. Now let l denote the spacecraft true
argument of orbit longitude de�ned by

l = u+
 (4)

(see Herrick[10] page 63) in terms of true argument of orbit latitude u in the orbit plane and node 

in the equatorial plane. The true argument of longitude l has the vernal equinox as inertial origin.

Equatorial GEO

Notice when inclination i! 0 that u and 
 share the same orbit-equatorial plane (Figure 2). Thus

(i = 0) =) (� = l) (5)

Insert Equations 1 and 4 into Equation 5 to see that

�G + � = u+


or

� = u+
� �G = l � �G (6)

If i = 0, then � is indeed an Earth-�xed spacecraft longitude.

Ideal Fictitious GEO

By ideal �ctitious GEO I assume the value for semi-major axis a to be perfectly known, and that
i = 0 and e = 0. It is useful to examine the Kepler orbit elements for such a GEO
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Equation 7 presents the resulting unde�ned GEO: Kepler elementsM , 
, and ! are unde�ned. De�ne
the equinoctial orbit element mean longitude L with

L = 
+ ! +M (8)

The mean longitude L is a scalar angular sum de�ned in two planes, and has the vernal equinox
as inertial origin. The node 
 is de�ned in the earth�s equator, and the sum ! + M is de�ned
in the orbit plane. The six equinoctial orbit elements, presented and de�ned in Appendix A with
Equation 33, were �rst de�ned by Arsenault and Koskela[13] (1967). Write "L = l if e = 0" to mean
lime!0 L = lime!0 l, where e is the osculating eccentricity. Then Equation 6 can be written3

� =M + ! +
� �G = L� �G (9)

If one knew a priori that an orbit in question is an "ideal �ctitious" GEO with i = 0 , e = 0, and
a = 6:610571137 er, then use of Equation 33 provides26666664

af
ag
n
L
�
 

37777775 =
26666664

0
0

known
unknown

0
0

37777775 (10)

where the orbit is well-de�ned and the only unknown is L. Compare Equations 10 and 7 to appreciate
the advantage to using equinoctial orbit elements for GEO. Given an appropriate simulated measure-
ment set for which a GEO is observable, perform a one-dimensional search on L, using the minimum
measurement residual RMS to identify the orbit.

Operational GEO

For an operational GEO to be geosynchronous, one must have a = 6:610571137 er approximately.
And when i � 0 for 0 � i � �, and e � 0 for 0 � e < 1, then the LS (Gauss-Newton) convergence
boundaries are su¢ ciently large to capture all operational GEO with a one-dimensional search on L.
See the TDOA EMPIRICAL RESULTS below.

REDUCE THE ONE-DIMENSIONAL SEARCH

Denote an earth-centered sensor position vector with s, and de�ne the instantaneous range vector �

� = r� s (11)

De�ne the instantaneous one-way range scalar � with

� =
p
� � � (12)

Vectors r and s de�ne a plane in R3; e.g., the plane of Figure 3. Extrema for visability limits of point
r from point s, for a spherical earth model, are found from

3See Kaula[12] page 51 Equation 3.125 for his de�nition of �A.



s � �T = 0 (13)

where range vector �T is tangent to the earth sphere, and s is held �xed. Let r = rT denote a
spacecraft position vector for which � = �T ; that is

�T = rT � s (14)

Then

s � �T = s � (rT � s) = 0

and

rT � s = s � s

or

r̂T � ŝ = s=rT (15)

for unit vectors r̂T and ŝ and lengths rT and s of vectors rT and s. De�ne �rs as the angle between
r̂ and ŝ

�rs = (r̂T ; ŝ) (16)

r

s

ρ

Figure 3: Range Vector Triangle

Then

cos �rs = cos (r̂T ; ŝ) =
s

rT
(17)

Let 's and �s denote the known geocentric earth-�xed ground station sensor geocentric latitude and
East longitude, and let ' denote declination of the spacecraft. Particularize the oblique spherical
triangle of Figure 4 to unit vectors of spacecraft and sensor positions. Invoke the identity (e.g.,
Todhunter[19] page 18)



cos a = cos b cos c+ sin b sin c cosA (18)

Assign

A = �� (19)

a = �rs (20)

b = �=2� 's (21)

c = �=2� ' (22)

Figure 4: Oblique Spherical Triangle

Then

cos (��) =
cos �rs � sin's sin'

cos's cos'
(23)

We know the station geocentric latitude 's and we have a useful approximation for the maximum
value of �rs. We do not have an exact value for the spacecraft declination ', but we are given that
the orbit is a GEO. Then adopt the useful approximation

i � 0:0 (24)

to write

' � 0 (25)

Equation 23 becomes

cos (��) � cos �rs
cos's

(26)



De�ne angle � ('s)

� ('s) = max j�s � �j (27)

Insert Equation 17 into Equation 26 to get

cos (max j�s � �j) �
s

rT cos's
(28)

where all GEO radii r (inclusive of rT ) are in the neighborhood of 6:610571137 er. Then

� ('s) � cos�1
�

s

rT cos's

�
(29)

Angle j�s � �j is maximal due to Equation 13. Then approximately

�s � � ('s) < � < �s + � ('s) (30)

Search Bounds for Mean Longitude L

Insert Equation 9 into Equation 30 and rearrange to get

�G (t) + [�s � � ('s)] < L (t) < �G (t) + [�s + � ('s)] (31)

Values for the station latitude 's and longitude �s are given, and �G (t) can be evaluated from t
with an existing software routine (or looked up in an almanac table). The search for GEO mean
longitude L (t) = M (t) + ! + 
 = L (t0) + n [t� t0] at any time t is bounded by Inequality 31.
For measurements from multiple ground stations the search for GEO mean longitude L (t) is further
reduced by averaging the centers of station intervals on L to obtain an initial candidate for LS.

LS CONVERGENCE CRITERION

The operator selects a threshold NMAX for maximum number of least squares iterations without
convergence, with default NMAX = 15. Iterative least squares RMS convergence is de�ned for scalar
measurements after iteration k if the root-mean-square RMS(k) on scalar measurement residuals
�y

(k)
j , j 2 f1; 2; : : :g, is reduced to less than a small prede�ned positive constant �RMS

RMS(k) =

vuut 1

n

nX
j=1

�
�y2j

�(k)
< �RMS (32)

Otherwise RMS divergence is de�ned. If multiple measurements are to be processed at each mea-
surement time-tag, then the scalar RMS(k) is replaced with the scalar weighted root-mean-square
WRMS(k), where each squared measurement residual �y2j of type i is replaced by W

i�y2j in Ex-
pression 53, such that

P
iW

i = 1.

Cauchy Convergence

A necessary and su¢ cient condition4 for the sequence
�
RMS(k)

	
, for k 2 f1; 2; 3; : : :g, to have

a limit is that the absolute di¤erence
��RMS(k) �RMS(j)

�� approach 0 as j and k ! 1, where
j 2 fk � 1; k � 2; : : :g. That is, for each positive �RMS there is some positive integer N such that��RMS(k) �RMS(j)

�� < �RMS if N � k and N � j. We can approximate use of the rigorous Cauchy
convergence criterion using a sequence RMS(k) on the measurement residual RMS.

4Cauchy convergence is presented in many books on calculus; e.g., see Taylor[18] page 453.



TDOA EMPIRICAL RESULTS

By time-of-arrival (TOA) measurement I refer to measurement of one-way propagation time of a
radio wave-front from the spacecraft transmitter to sensor receiver. By time-di¤erence-of-arrival
(TDOA) I refer to the di¤erence between two TOA measurements made at two distinct sensors from
a common radio wave-front. Numerically integrated spacecraft accelerations were simulated5 from
a (degree,order) = (6,6) geopotential and a spherical spacecraft body for solar photon pressure to
create simulated position and velocity ephemerides.

Sensor Name Height Latitude E Longitude
COOK 271:51 m 34:82260940 deg 239:4981480 deg
HULA 428:42 m 21:56228000 deg 201:7578910 deg
GUAM 217:00 m 13:61519420 deg 144:8560742 deg

Table 1: Ground Station Locations

Three AFSCN ground station sensors COOK, HULA, and GUAM were used to simulate TDOA
measurements. With three ground stations, and two ground stations per TDOA measurement, we
have three sets of TDOA measurements: COOK-HULA, COOK-GUAM, and HULA-GUAM. A time
granularity of 10 minutes was selected for each set of TDOA measurements. The least squares �t span
selected was 1440 minutes. So each of the three sets has 145 scalar simulated TDOA measurements.
The three ground station locations are presented in Table 1.
Simulated truth values for Kepler elements e, i, and 
 were selected to satisfy optimal GEO control

according to George Chao[7]. Without stationkeeping maneuvers, the inclination i of a GEO will vary
between 0 degrees and 15 degrees in about 26 years due to luni-solar gravitational perturbations. Thus
our required search interval bounds for unknown inclination i is: 0 deg � i � 15 deg. GEO station-
keeping maneuvers to maintain stationary inclination is achieved with i � 7:3 degrees and 
 � 0:0
degrees. Physical long-term variations in GEO eccentricity are driven by solar photon radiation
pressure. GEO eccentricity variations can be minimized with control maneuvers that keep perigee
pointed toward the Sun and keep the eccentricity value near to the so-called forced eccentricity ef .
For a typical GEO spacecraft (Chao page 109) ef � 0:0005.

Single Element Variation Bounds

Kepler Element Symbol Sim Truth Extreme Estimates LS Conv Bounds
semi-major axis a 42163 km [46163 km, 39163 km] [�4000 km, +3000 km]
eccentricity e 0:0005 [0:1505, 0:0000] [�0:1500, +0:0005]
true arg latitude u 295:4 deg N/A not bounded
inclination i 7:3 deg [32:3 deg, 0:0 deg] [�25 deg, +7:3 deg]
node 
 0 deg N/A not bounded
argument perigee ! 0 deg N/A not bounded

Table 2: Single Element LS Bounds for GEO

Table 2 presents approximate least squares convergence bounds (LS Conv Bounds) in Kepler
orbit elements for simulated TDOA measurements6 . The LS convergence bounds for a, e, and i of
Table 2 were derived empirically, one at a time; i.e., by input variation of one orbit element with

5ODTK (AGI) was extended to derive these results.
6Similar results were obtained for two-way range measurements.



no variation in the other �ve orbit elements. Each of the two values in the 5th column (LS Conv
Bounds) was derived by subtracting each of the two values in the 4th column (Extreme Estimates)
from the value in the 3th column (Sim Truth). The "not bounded" entry for u in column 5 appears
because the one-dimensional search in mean argument of longitude L is also a one-dimensional search
in true argument of latitude u.

Successful Multiple Element Variations

Kepler Element Symbol Sim Truth Initial Estimate Initial LS Error
semi-major axis a 42163 km [47163 km, 38163 km] [�5000 km, +4000 km]
eccentricity e 0:0005 0:1005 �0:10
true arg latitude u 295:4 deg 115:4 deg +180 deg
inclination i 7:3 deg 27:3 deg �20 deg
node 
 0 deg 180 deg �180 deg
argument perigee ! 0 deg 180 deg �180 deg

Table 3: Multiple Element LS Bounds for GEO

LS convergence was demonstrated for many multiple element cases. Two multiple element cases
are presented in Table 3, with extreme initial errors in a of �5000 km and +4000 km. Extreme initial
condition errors were tested in the six Kepler orbit elements a, e, u, i, 
, ! simultaneously. GEO LS
convergence boundaries are coupled in a, e, u, and i.

Absence of Applicable Theory

The TDOA results presented were obtained by simulation experiments, without a rigorous theory
to quantify least squares convergence boundaries as a function of initial condition orbit errors. The
successful single element convergence bound magnitudes of Table 2, for the three ground station
sensors used, are surprisingly large. And the successful multiple element cases of Table 3 have
initial least squares error magnitudes that are surprisingly large. I have run many other multiple
element cases and have found none that would seem to prohibit general application of algorithm
LS_GEO_IOD to GEO.

It # RMS (ns)
1 4:94� 106
2 2:23� 106
3 2:50� 106
4 2:69� 105
5 8:17� 105
6 1:03� 106
7 2:16� 104
8 4:76� 103
9 1:14
10 0:78

Table 4: LS Convergence Pattern

These simulation experiments have frequently demonstrated during the search on mean orbit lon-
gitude L that the iterative root-mean-square (RMS) on measurement residuals does not converge



monotonically when it does converge. That is, the RMS frequently increases before decreasing and
achieving convergence. Initially the RMS values may be very large. Table 4 presents the TDOA
measurement residual RMS convergence sequence associated with the LS bounds of Table 3. Simu-
lated white noise variates of the TDOA measurements were derived from root variance �WN = 1 ns
(nano-second) and mean zero, and the convergence threshold �WN was set at �WN = 1 ns.
LS divergence, de�ned by an RMS sequence that increases without bound, is quickly identi�ed

when the LS GEO estimate goes hyperbolic. I have been unable to �nd a rigorous Gauss-Newton
convergence theory for use in explanation of the LS orbit convergence patterns experienced with these
simulations.

Transitive Partial Derivatives

The reader is referred to Appendix B for a discussion on the critical requirement for appropriate
transitive partial derivatives to obtain maximal LS convergence boundaries.
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A. EQUINOCTIAL ORBIT ELEMENT HISTORY

Sputnik I was launched on 4 October 1957. Three months later Dr Lou Walters[20] hired six of Profes-
sor Samuel Herrick�s graduate students from UCLA, and Samuel Herrick, into Aeronutronic Systems,
Inc. of Newport-Beach CA, a fully owned subsidiary of the Ford Motor Company7 . Lou thereby
became the astrodynamics manager of what would become one of the most in�uential and close-knit
groups of US astrodynamicists at that time, particularly with respect to US military programs. Jean-
nine Arsenault and Paul Koskela were members of Lou Walter�s group. The naming, de�nition, and
analysis of the equinoctial orbit elements would emerge from this group, and be documented and
presented by Paul Koskela[13] in 1967. Jeannine Arsenault played a key role in equinoctial orbit
element analysis, and she derived their rigorous perturbative time-derivatives (presented on pages 86
and 87 of Koskela[13]).
When the orbit eccentricity or orbit inclination of any space object is in the neighborhood of

zero, then there are small divisors in the perturbative expressions with Kepler orbit elements. But
for these classes of orbits there are no small divisors in perturbative expressions with the equinoctial
orbit elements. Thus equinoctial orbit elements are preferred for near-circular or near-equatorial8

orbits. My �rst experience (1968) with equinoctial orbit elements was obtained during development
and deployment of the USAF Advanced Orbit Ephemeris Subsystem (AOES) while I was employed
with System Development Corporation in Santa Monica between 1968 and 1973. The well-written
AOES math-spec (1967) by Koskela[13] was used extensively.
But there is confusion as to who named the equinoctial orbit elements, when they were named,

how they were de�ned, and how they were developed. Richard Battin said (see Battin[4] page 492)
in 1987 that they were named by Roger Broucke in 1972 , Broucke said (see Broucke[5] page 303)
they were named by Jeannine Arsenault9 in 1970, and Jeannine has recently said[3] that Herrick may
have �rst suggested the name prior to 1967.

7When Ford bought Philco in 1963, Aeronutronic Systems, Inc. became known as the Aeronutronic Division of
Philco-Ford[3].

8When inclination i is in the neighborhood of �, the equinoctial elements are rede�ned to shift the singularity to
i = 0.

9Broucke cited the 1970 paper[1] by Arsenault, Ford, and Koskela.



Jeannine Arsenault and Paul Koskela

AOES was used operationally between 1969 and 1992 in the USAF Satellite Test Center (STC) in
Sunnyvale for the USAF Satellite Control Facility (SCF). The mathematics speci�cation[13] for the
AOES was prepared by Paul Koskela, with signi�cant contributions by J. L. Arsenault (Jeannine), L.
G. Walters (Lou), C. G. Hilton (Je¤), R. G. Schinnerer (Ralph), P.E. Koskela (Paul), R. F. Olmsted
(Richard), K. C. Ford (Ken), and G. A. Mahon (George). Samuel Herrick was acknowledged therein
for "primacy" of his "pioneering mathematical investigations". The six equinoctial orbit elements
of the set faf ; ag; n; L; �;  g, presented here with Equation 33, were �rst de�ned by Arsenault and
Koskela on page 68 of the AOES10 math-spec[13] (1967)26666664
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Let P denote the unit vector pointing to perigee. The de�nition11 for vector a = eP in Equation
33 follows12 Koskela[13] (page 44). ECI components WX , WY , and WZ are those of the unit vector
W = h=h, where h = r � _r, h =

p
h � h, r is the Earth centered spacecraft position vector, and the

vector time derivative _r = dr=dt for velocity is referred to an inertial frame. ECI components of
the right-handed orthonormal vector triad (F;G;W) were de�ned by Herrick[11] page 108. The unit
vector F points to the vernal equinox when the orbit plane coincides with the equator, and for this case
is equinoctial. Notice that when the equinoctial set is employed with the rigorous theory of variation
of parameters (VOP), then n is the osculating time-derivative of L, because L = L0+n [t� t0]. Thus
n is preferred to a or P , and this was the choice by Arsenault and Koskela. This set was selected for
AOES orbit determination, in preference to all other possible sets of orbit elements.
From the fourth paragraph of Acknowledgements in Koskela[13](1967) page iii: "The details for

the equinoctial (F,G) set of orbit parameters were developed by Mrs. Arsenault ...". The reference to
FG elements refers obviously to use of the orthonormal vector triad (F;G;W). The equinoctial orbit
elements were referred to as FG elements thereafter in the AOES speci�cation, and were known as
FG elements by personnel working with the AOES. Arsenault�s choices for symbols af and ag from
de�nitions af = a� F and ag = a� G are descriptive and easy to remember, and her symbols for mean
longitude L and mean motion n were used by Herrick and other professors. Theses same equinoctial
orbit element de�nitions were given in the Nomenclature Section of the 1970 paper[1] by Arsenault,
Ford, and Koskela.

Samuel Herrick

From Volume I[10], the unit vectorW is de�ned on pages 49 and 50, and unit vectors F and G are
de�ned on page 55, to de�ne the right-handed orthonormal vector triad (F;G;W). Mean longitude
L = L0 + n [t� t0] =M + ! +
 is presented on page 494.
10This document is available from AGI as a PDF �le.
11Koskela (1967) departs from Herrick�s de�nition of a. Herrick de�nes vector a with a =

p
� eP (Herrick[10] (4E18)

page 65), and refers to a as a Laplacian integral. So the Laplacian integral vector a points to perigee and has lengthp
� e.
12Battin[4] (1987, page 116) calls the Koskela vector a the eccentricity vector e because it has length e.



From Volume II[11], Equations

aF = e cos ~!

aG = e sin ~!

are presented on page 110, with

~! = ! +


on page 105. Thus the descriptive names aF and aG appear to have been introduced by Herrick13 .
Also see page 141 for use of e cos ~! and e sin ~!. On page 141 Herrick suggests replacing i and 
 with
sin i cos
 and sin i sin
 for Kepler element expressions with denominator sin i.
The complete selection of the equinoctial elements of Equation 33 had to wait for Arsenault, but

they were anticipated in part by Herrick.

Di¤erent Names

The equinoctial orbit elements were renamed by Roger Broucke and Paul Cefola[5] in 197226666664
a
h
k
�0
p
q

37777775 =
26666664

a
e sin (! +
)
e cos (! +
)
M0 + ! +

[tan (i=2)] sin

[tan (i=2)] cos


37777775 (35)

where:

tan (i=2) = sin i= (1 + cos i) (36)

Broucke and Cefola say that the elements given by Equation 35 "are the same as those used by
Arsenault"; i.e., the elements of Equation 33. Notation k = e cos ~! and h = e sin ~! adopted by
Broucke and Cefola is the same as that found in Brouwer and Clemence[6] (page 287, 1961). Forest
Ray Moulton (1902) presented h = e sin� and l = e cos� (� = !+
?) on page 421[17] in his discussion
of secular terms in �nite expansions of certain functions, and Moulton refers to Lagrange[15](1766) as
source for these expressions. Perhaps this prompts the Broucke and Cefola claim that "These orbit
elements were used more than a century ago (by Lagrange) ..."
Relative to Arsenault and Koskela[13] (1967), Broucke and Cefola[5] (1972) replaced the mean

motion n with the semi-major axis a, they used the half-angle tangent function identity of Equation
36 (presented by Arsenault[1], Ford and Koskela in 1970) for the last two equinoctial elements, and
they assigned di¤erent symbols to the last �ve elements of the right-hand column of Equation 35.
Broucke and Cefola presented partial derivatives of position and velocity components with respect

to equinoctial elements, and they derived and presented the Poisson and Lagrange brackets for the
equinoctial elements.

B. NONLINEAR LEAST SQUARES

Algorithms for solution to iterative nonlinear least squares (LS) problems are frequently referred to
as Gauss-Newton algorithms. But the papers on Gauss-Newton algorithms I have reviewed com-
pletely conceal the role of the LS transition function �j;0 de�ned by Equation 40 below. Size of
six-dimensional LS orbit convergence boundaries depends in a critical manner on the LS transition
function �j;0. For GEO, transitive partial derivatives for a (degree,order) = (6,6) geopotential are

13Herrick�s two volumes of Astrodynamics were in possession of his students long before they were published in 1971
and 1972.



required, transitive partial derivatives for Sun and Moon gravitational perturbations are required,
and transitive partial derivatives for solar photon pressure are required. The size of six-dimensional
LS orbit convergence boundaries is much larger with the use of these transitive partial derivatives
than without them. The reader is referred to Chapter 3 of Montenbruck and Gill[14] for details on
modeling these partial derivatives.

Normal Equation

Let n denote the size of state, and let m denote the number of distinct scalar measurements to be
processed at each time tj , j 2 f1; 2; : : : ;mg. Matrices Aj , �y, Wj , �X0, have dimensions m � n,
m� 1, m�m, n� 1 respectively. The summed form of the matrix LS Normal Equation

mX
j=1

ATj WjAj �X0 =
mX
j=1

ATj Wj �yj (37)

is algebraically identical14 to the unsummed form of the matrix LS Normal Equation

ATWA �X0 = ATW �y (38)

where the m� n matrix Aj of Equation 37 is de�ned with

Aj =
@yj
@Xj

@Xj

@X0
(39)

The n�n jacobian matrix of partial derivatives @Xj=@X0 is formally known as a linear state transition
matrix �j;0

�j;0 =
@Xj

@X0
(40)

and the m� n jacobian matrix of partial derivatives @yj=@Xj is frequently abreviated with Hj

Hj =
@yj
@Xj

(41)

Thus

Aj = Hj�j;0 (42)

The measurement residual �yj is de�ned by

�yj = yj � y
�
X̂jj0

�
(43)

where yj is the measurement value and y
�
X̂jj0

�
is the nonlinear measurement representation from

the orbit estimate X̂jj0. The weighting matrix Wj has the inverse measurement residual covariance
m�m matrix

Cj =W�1
j (44)

and is usually treated as a constant diagonal m�m matrix. Refering to Equation 38, then

A =

26664
A1
A2
...
Am

37775 (45)

14But the two are not operationally equivalent.



�y =

26664
�y1
�y2
...

�ym

37775 (46)

W =

26664
W1 0 � � � 0
0 W2 � � � 0
...

...
. . .

...
0 0 � � � Wm

37775 (47)

The measurement residual RMS is de�ned by

RMS =

vuut 1

m

mX
j=1

�y2j =
q
�yT�y=m (48)

The Least Squares Equation

De�ne

~A =W 1=2A (49)

�~y =W 1=2�y (50)

where W =W 1=2W 1=2 is an m�m positive-de�nite diagonal matrix, �~y is an m� 1 matrix, and ~A
is an m� n matrix with m � n. Then Equation 38 becomes

~AT ~A �X0 = ~AT�~y (51)

Equation 51 is derived trivially from the equivalent equation

~A �X0 = �~y (52)

with left multiplication by ~AT . Equation 52 is referred to as the least squares equation by several
authors.

Determinant and Eigenvalues

Given the m� n matrix ~A of rank r � n where m � n, and given a consistent m� 1 column matrix
�~y, search success depends on rank r = n for each iterative solution to Equation 52 for �X0. The LS
solution to Equation 52 is accomplished with ~A = QR decomposition15 . For the QR decomposition
of ~A we have QTQ = In�n, and the m�n matrix R has an n�n upper triangular submatrix �R with
the N eigenvalues16 of �R presented on the diagonal of �R. After QR decomposition, Equation 52 is
solved for �X0 with backward divisions and substitutions beginning with the bottom-right element
of �R. If any of the diagonal elements of �R is zero, then a divide-by-zero problem is encountered. This
process is similar to Gaussian elimination, and is equivalent to inversion of matrix �R.
The solution to Equation 38 requires inversion of the LS normal matrix ATWA (the information

matrix). This is most e¢ ciently and economically accomplished with Choleski decomposition17 . Use
of the normal equation solution is twice as fast as QR decomposition of ~A, but su¤ers from accuracy
loss18 . But for either technique the LS solution fails when rank r < n.

15See Lawson and Hanson[16] Chapter 18 and Appendix B. Singular value decomposition (SVD) is useful for analysis
here but not for speed.
16The eigenvalues of �R are also the eigenvalues of ATWA.
17See Wilkinson[21] Sections 42 and 44, and Lawson and Hanson[16] Chapter 19
18With double precision calculations this is due to the squaring operations to form ATWA.



With an in�nite computer word mantissa, each of the N eigenvalues of the LS information matrix
ATWA would be either positive or zero, and solution of Equation 52 would be equivalent to solution
of Equation 38. Since the determinant � of ATWA is the product of it�s n eigenvalues, then � would
be either positive or zero. The determinant � globally captures the information content of ATWA.
Now � > 0 if and only if r = n. If � = 0, then there exists no information on which to perform
initial orbit determination.
But in practice, using double precision calculations on a computer (mantissa with 15+ decimals),

one never sees a zero eigenvalue or a zero determinant. In practice it is di¢ cult to distinguish � = 0
from � > 0 when � is very small. And � is very small for LS orbit determination.

LS Convergence Criteria

The operator selects a threshold NMAX for maximum number of least squares iterations without
convergence, with default NMAX = 15. Iterative least squares RMS convergence is de�ned for scalar
measurements after iteration k if the root-mean-square RMS(k) on scalar measurement residuals
�y

(k)
j , j 2 f1; 2; : : :g, is reduced to less than a small prede�ned positive constant �RMS

RMS(k) =

vuut 1

n

nX
j=1

�
�y2j

�(k)
< �RMS (53)

Otherwise RMS divergence is de�ned. But divergence is quickly identi�ed when the GEO LS estimate
goes hyperbolic.
Iterative least squares relative-RMS RRMS "convergence" is de�ned for scalar measurements

after iteration k if the relative-root-mean-square RRMS(k) is reduced to less than a small prede�ned
positive constant �RRMS

RRMS(k) =

��RMS(k) �RMS(k�1)
��

RMS(k�1)
< �RRMS (54)

Otherwise RRMS divergence is de�ned. Operators usually selects one or both of these convergence
criteria. We have discovered scalar examples where iterative "convergence" is achieved with the
relative residual RMS RRMS(k) < �RRMS , and yet the residual RMS RMS(k) is very large; i.e., the
orbit estimate is far from the true orbit (RMS(k) >> �RMS). And we have discovered scalar examples
where the iterative "convergence" is not achieved with the relative residual RMS RRMS(k), and yet
the residual RMS RMS(k) < �RMS indicates convergence. Thus we recommend use only of the scalar
measurement RMS(k) < �RMS convergence criterion.
If multiple measurements are to be processed at each measurement time-tag, then the scalar

RMS(k) is replaced with the scalar weighted root-mean-square WRMS(k), where each squared mea-
surement residual �y2j of type i is replaced by W

i�y2j in Expression 53, such that
P

iW
i = 1.

Notation RRMS(k) is replaced with scalar relative-weighted-root-mean-square RWRMS(k).

Cauchy Convergence

A necessary and su¢ cient condition19 for the sequence
�
RMS(k)

	
, for k 2 f1; 2; 3; : : :g, to have

a limit is that the absolute di¤erence
��RMS(k) �RMS(j)

�� approach 0 as j and k ! 1, where
j 2 fk � 1; k � 2; : : :g. That is, for each positive �RMS there is some positive integer N such that��RMS(k) �RMS(j)

�� < �RMS if N � k and N � j. We can approximate the rigorous Cauchy
convergence criterion using the residual RMS, but not using the residual relative-RMS.

19Cauchy convergence is presented in many books on calculus; e.g., see Taylor[18] page 453.


