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TARGETING OF PRECESSION MANEUVER WITH ACTIVE NUTATION
CONTROL

Sergei Tanygin*

Simultaneous precession maneuver and active nutation control has
been proposed recently for axisymmetric spinners. The proposed
method modifies nominal start and stop times of each pulse during
the precession maneuver in order to reduce residual nutation while
maintaining precession accuracy. This paper examines several open-
and closed-loop approaches to refining the original solution via
targeting. Parametric studies indicate significant accuracy
improvements as well as potential fuel savings.

INTRODUCTION

Spin stabilization remains a preferred option for many small spacecraft. A number of
larger spacecraft are also spinning at least during some phase of their lifetime'*. During
spinning, the spacecraft reorientation is accomplished using precession maneuver. This
involves pulsing the offset axial thruster at times when the applied torque can move the
angular momentum vector in the desired direction. This induces nutation of the
axisymmetric spacecraft, which moves its spin axis. With the appropriate choice of inertia
moments, the nutation can be cancelled by the end of the maneuver and spacecraft placed
into a pure spin about its new inertial orientation.”* If inertia moments do not have certain
ratios, the nutation will not be fully cancelled and can actually increase significantly.>” Rigid
oblate spinners and prolate spinners may require active nutation control (ANC) to cancel
residual nutation.* One recently proposed method modifies start and stop times of each pulse
during the precession maneuver to reduce the residual nutation while maintaining precession
accuracy for a wide range of inertia moments.”” Accomplishing this can lead to a better
pointing accuracy as well as fuel and time savings. This paper seeks to improve the
performance of the original method by incorporating closed-loop corrections and differential
corrections for adjusting start and stop times. The next section closely follows treatment in
Ref.7, whereas subsequent sections describe the proposed improvements.

*Member AAS and ATIAA. Lead Engineer, Attitude Dynamics and Control, Analytical Graphics, Inc., 40 General Warren Blvd.,
Malvern, PA 19355, stanygin@stk.com



SIMULTANEOUS PRECESSION MANEUVER AND ACTIVE NUTATION
CONTROL

The method applies to ideally axisymmetric spin-stabilized spacecraft that is required
to undergo precession maneuver. The goal of this maneuver is to re-orient both the angular
momentum vector and the spin axis so that at the end of the maneuver the latter achieves the
desired new orientation and the spacecraft is placed in the pure spin. This can be
accomplished by pulsing the axial offset thruster during short intervals of time when
direction of the induced torque aligns closely with the desired change in the angular
momentum vector. However, for axisymmetric or asymmetric spacecraft, each pulse will also
induce nutation, which will generally pull the spacecraft out of the pure spin. For certain
ratios of inertia moments of axisymmetric spacecraft, it is possible to pulse every spin period
(or multiples of it) to achieve near cancellation of residual nutation at the end of the
maneuver. The method proposed in Ref.7 develops formula for small adjustments of start
and stop times of each pulse in order to achieve this near cancellation for a wider range of
inertia moment ratios. The formula is based on closed form transition for both angular
velocity vector and the direction of the spin axis after each pulse cycle. It is assumed that
thrust pulses are ideal square waves and the thruster is aligned perfectly with the spin axis. It
is also assumed that the spacecraft is axisymmetric, however, no special requirements are
imposed on its inertia moments. The notation in this section follows closely the notation
used in Ref.7. The oblateness parameter indicates degree of asymmetry of the spacecraft:

o=1,/1, (1)

where I, and [, are the axial and the transverse moments of inertia, respectively. The

parameter is greater than 1 for an oblate spacecraft (e.g. disc shaped) and is less than 1 for a
prolate spacecraft (e.g. rod shaped). Values farther away from 1 in either direction indicate a
more asymmetric spacecraft. Oblateness of 1 corresponds to a symmetric spacecraft (e.g.
sphere). The body observed nutation frequency indicates how fast the angular velocity vector
is seen rotating about the angular momentum vector:

A=(o-1)Q, 2)

where ) is the spin rate about spacecraft’s axis of symmetry (or spin axis). That same
motion observed in the inertial frame has frequency 4 +Q =0Q . A thruster located on the
side of the spacecraft and firing along the spin axis passes through its desired precession
alignment every integer number of spin periods. Any multiplicity of spin periods can be used
as the pulse cycle period:

T=21k/Q, k=123,..., (3)

but the fastest and simplest strategy calls for pulsing during every revolution of the
spacecraft, i.e. £ =1. All pulses are assumed to have the same duration Af, which does not
need to be small in derivations below. However, given that the same thrust impulse



1. =FAt, (4)

where F' is the magnitude of the resultant force, is more effective if produced during shorter

pulses, a useful simplification can be obtained for |QAt| << 1. The derivations in this section

seek to decouple the motion of the spin axis from the spin itself. In doing so, a shorthand
notation for two-dimensional parameterization of the former is convenient. The two-

. . . . T
dimensional vector of transverse angular velocity components is denoted as ® = [a)1 a)z] .
Another two-dimensional vector contains angles, which define the spin axis direction. The

. 0
vector is introduced as 0 = [0, 6,]", where the angles are collected from the 6, —6, — 6,

Euler sequence. Finally, two-dimensional (planar) counterclockwise rotation is mechanized
via the following operator

cosa —sina
Ria}=| | , (5)
sinad cosa

where « is the angle of rotation.

Another parameter is introduced:

-9 RplZ
o, = o _h R{z}M, (6)

which represents the influence of two-dimensional vector of transverse torque components,
0 . . . .
M=[M, M,[', on the transverse angular acceleration @, where s, =1 Q is the axial

angular momentum.

The attitude motion during any given pulse cycle is broken into three phases. The

first phase precedes the pulse and the last phase succeeds it. The ith pulse cycle starts at time
t,_, with its pre-pulse phase nominally running unul #,_ . =¢_, +£ —At/2 and post-pulse

1

phase nominally starting at %, =¢,_, . + At. The next pulse starts at , =¢,_, + T . The nominal

mid-time of the pulse, £, is the same within each pulse cycle. Without loss of generality, the

pulse can be positioned in the middle of each cycle, . =T7/2, thus, introducing convenient

symmetry into the problem. This is possible because the start time of the first pulse can be
always adjusted so that the pulses initiate desired precession. The fundamental idea of the
proposed method consists of adding small time adjustments, o, , to each pulse, such that the

adjustment simultaneously moves ith pulse start time, ¢, , 5=t _ .+, and its stop time,

ty; =t + 0, thus, preserving the pulse duration, At.

During each phase, the angular velocity can be integrated in closed-form. The
transverse torque only affects the transverse angular velocity components, which are found as
follows:>”



o) =R{A(t—1,_ N, <t<t 5, 0 ,=0(_,), 7)
o(t) = R{/l(t — tl._l’(g)}((oi_l,iB - (op)+ O, 1,5 <t<ts;, ®; =0(s,), (8)
o(t) = R{A(t — 15, foo,, 15, <11, @, =0(t;) . )

Their evolution spanning all three phases is a piecewise smooth function of time, which will
be further used to solve for attitude kinematics.

Ability to approximate attitude motion in closed-form depends greatly on the choice
of attitude parameterization. Judicious selection of non-symmetrical Euler angle sequence
“precession-deviation-spin” facilitates development of the closed-form attitude solution
during the precession maneuver. Without loss of generality, let the precession be defined
about the reference inertial 7, axis and the deviation be defined about the precessing (but not
spinning) @, axis. This way the deviation can be interpreted as the angle between the spin
axis and the precession plane. Finally, the spin angle is defined about the body e, axis, which
is consistent with the selection of the axial angular velocity component. This sequence of
Euler angles is not only convenient geometrically, but also permits linearization of the
attitude kinematics using only one small angle assumption."* Namely, the deviation is
assumed small, which is reasonable as the proposed method seeks to minimize it. Thus, the
linearized attitude kinematics become’

0(t) ~ R{Qr}o(1), 6, <<1. (10)
The resulting approximate Euler angle derivatives are piecewise integrable in closed-form.
0,=0(1),0,,=0(_)

0,=0_, + iﬁl{Qt}m(r)dH TR{Qt}m(t)dH j R{Qto(f)dt (11)

i lins s

This formula along with the formula for the transverse angular velocity (Eqs.6-8) can be
rewritten as functions of the adjustment, of,, and in this form will represent a single pulse

cycle state transition equation’

X, =AX,_, +(B, + B, o, +0(5), (12)
. . i . E A,
where the state is defined as x; = , the matrices are constructed as A, = ,
('oi 0 Au)O

B B
B, E{Beo} B, E{Bet} and their exact form can be found in Ref.7. Straightforward

ot



repeated application of the single pulse cycle transition results in the following N pulse cycle
transition equation:’

N-1 N-1
Xy = AJX, + Y AIBio, + Y AIB@ o, +o(odt), kI=12,.,N,  (13)

Jj=0 Jj=0

where X, is the initial state. This transition equation relates the initial state with the state

after N pulse cycles and serves as the basis for the solution developed in Ref.7. Given the
desired  target state after N pulse cycles, Xy, the adjustment vector

oty =[dt,, O,y ... Oty ] is sought such that Xy — X . The approximate minimum-

norm solution of Ref.7 is recalled below in the form representing initial iteration of a
differential corrector:

atN:Jr(I)NyN’ (14)

where yy =y (0t =0)=X, —x, (6t =0) is the target vector and “®, denotes a pseudo-

inverse of the Jacobian

OXy

O, =D, (6t=0)= . The pseudo-inverse is computed using a “thin” form of
5t=0

singular value decomposition (SVD), which permits inversion of rank-deficient matrices.””
The N pulse transition equation (Eq.(13)) also provides analytic formulae the state after N

nominal pulses’

N-1
X (3t=0)=Afx, + > AlIB,o, . (15)

j=0

and for the Jacobian evaluated with nominal pulses’

A (16)
where

P =B, (17)

P = AgPurins M=12,. N —1. (18)
DIFFERENTIAL CORRECTOR

The main goal of this study is to refine analytical solutions developed earlier” using
several targeting schemes. Refinement may be needed because of approximations used in the
development of the analytical solutions, e.g. linearization with respect to the time
adjustments o, and with respect to the deviation angle ,. In general, these approximations



will cause the actual target state not be reached precisely. However, formulations of the
previous section can be straightforwardly placed within the differential corrector framework.
A basic idea of the differential corrector is to pre-multiply target vector by the Jacobian
inverse to update the desired adjustment vector. The target vector and the Jacobian are then
recomputed using the updated adjustment vector and the procedure is repeated (Fig. 1). The
procedure is stopped if either the target vector or the updates to the adjustment vector reach
specified vicinity of zero. In addition, it can be stopped if the number of iterations exceeds a
pre-imposed limit.

State Transition | X,,0,
Xy (X,0t) < *
ot=0
. Adjustment <« -
4 Update <«
. ot = ot + ot'
Jacobian
. D (ot) Y Minimum Norm
Xy Solution
4>® > for ot'
¥~

Figure 1 Generic Differential Corrector

A variety of implementations for the differential corrector can be considered. They
differ based on the following criteria: how the state is transitioned through the precession
maneuver and how as well as how often the Jacobian is updated.

The state can be transitioned either analytically using Eq.(13), semi-analytically using
angular velocity transition from Eq.(13) with numerical integration of kinematics or
numerically using integration of both angular velocities and kinematics. While analytical
approach is generally the fastest, its accuracy suffers from using kinematics linearized with
respect to the deviation angle 6,. The full numerical approach is generally the slowest of the

three, but is more accurate then the analytical approach. Also, unlike the analytical or the
semi-analytical approaches, the full numerical integration permits accurate state transition
even for imperfect near-axisymmetric models. It is possible that even on-board computers
should be able to run such numerical integrations faster than real time, which is why this
approach was selected for this study.

Computation of the Jacobian can be done also either analytically using Egs.(16-18) or
numerically using perturbations and numerical differencing. However, unlike the state



transition, the analytical approach appears to be favorable for the Jacobian computation. The
reason is that, while the numerical approach still represents approximation, it can be also
prohibitively expensive computationally. Indeed, this approach would require perturbing
every time adjustment at least once (or twice for central differencing) and numerically
transitioning state from the corresponding pulse cycle to the end of the maneuver. As the
number of time adjustments equals to the number of pulses, the number of numerical runs
can be quite large (e.g. ~100 or at least ~10s). Thus, computational cost of the analytical
approach is generally much smaller. Another issue related to the computational efficiency of
the differential corrector is how often to re-compute the Jacobian. Two limiting cases are to
never re-compute the Jacobian, ie. to use the original Jacobian evaluated with no
adjustments, and to re-compute it as often as the adjustment vector is updated. Note that, in
practice, large adjustments are undesirable as they mean that the angular momentum vector
does not travel along the precession arc, which reduces the overall efficiency of pulses. This
means that only solutions with small time adjustments are practical, for which the Jacobian
evaluated without time adjustments should be a good approximation of the actual Jacobian.
In addition, the differential corrector is typically tolerant to imperfections of the Jacobian,
provided that the target vector is close to be linear with respect to the time adjustments,
which is the case. These arguments prompted the selection of the analytical approach for the
Jacobian computation in this study. Also, this computation is done only once and is based on
the nominal pulsing.

A particular implementation of the differential corrector used in this study is
depicted in Figure 2.
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Figure 2 Implemented Differential Corrector



KINEMATICS CORRECTOR

The differential corrector described in the previous section seeks to reduce the
residual nutation and the deviation angle after performing N pulses in the course of the
precession maneuver. The corrector produces the adjustment vector that contains start time
adjustments for each pulse. In the special case, when the maneuver is initiated from the pure
spin, it is possible to compute one additional correction, which can completely cancel the
deviation angle provided that the axisymmetric model is accurate. This correction is based on
using dihedral angle measured between the final orientation of the spin axis and the desired
precession plane about the initial spin axis direction. Starting the precession maneuver in the
desired plane, i.e. 6,, =0, and from pure spin, i.e. @, = ®,, =0, means that the overall start

time of the maneuver can be adjusted without affecting its nutation cancellation properties.
Changing the overall start time will effectively mean rotating the entire maneuver trajectory
about the initial spin axis direction. Given the dihedral angle and the spin rate it is possible to
compute the time correction that should place the final state exactly on the precession plane,
thus, reducing the final deviation angle to zero (Fig.3).

Initial Pure Spin

Direction
Final Spin
Direction oQ
06
0, :

Figure 3 Kinematics Corrector

Spherical geometry based on Figure 3 yields the following formula:

S¢ = tan”'(tan6,, /sin 66,), (19)

where 060, =0,, —0,,. The additional time adjustment " =S¢ /Q, applied to every pulse

will cause the desired rotation of the entire maneuver trajectory (Fig.4). This technique can
be used with any differential corrector approach.
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Figure 4 Open-Loop Predictor-Corrector

CLOSED-LOOP SOLVER

All computations employed in the previous sections rely on an a priori information,
i.e. no measurements of the state during the maneuver are used. This means that any
modeling errors in the state transition are not corrected and can directly affect the maneuver
accuracy. If measurements of the state are available during the maneuver, a conceptually
simple way to incorporate them is to re-solve the entire targeting problem after every pulse
cycle. This closed-loop solver will produce a new adjustment vector after every pulse. Out of
this vector only the first (the upcoming) adjustment will be applied and the process is
repeated after the pulse cycle is completed. It is likely that, as the number of remaining pulses
becomes smaller towards the end of the maneuver, re-solving the problem may produce
adjustments that are too large. In order to prevent this behavior, the closed-loop solver may
be switched to an open-loop solver some number of pulses before the end of the maneuver

(Fig.5).
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Figure 5 Closed-Loop Solver

PARAMETRIC STUDIES

All studies presented in this paper use the following specification: precession
maneuver arc of 20 deg; axial moment of inertia, /, =1; spin rate, Q=120 deg/s; pulse

duration Ar such that QAz =5 deg; spacecraft is initially in pure spin. A number of
oblateness parameter values are considered, which cover the interval from 0.5 to 2.0. Also the
number of pulses varies from 4 to 100. Closed-loop solver is examined for a near-
axisymmetric spacecraft with actual transverse moments of inertia different by 5 % from the

ones used in the solver, i.e. the actual inertia moments are 1.05/,, 0.95/, and [, . This study

is done for a 50 pulse maneuver with the switch from closed- to open-loop occurring after 40
pulses. Overall performance in every case agrees with the one seen in Ref.7, however, it
should be noted that the differential corrector is generally more successful at reducing
residual nutation and deviation angles for a wider range of oblateness parameters especially
for relatively small number of pulses. Examination of the closed-loop solver for a set of three
oblateness parameter values shows that it can improve precession accuracy even in the
presence of mass property imperfections. However, at least in one case, deviation angle
actually increased after application of the closed-loop adjustments. This indicates that a more
detailed study must be done to evaluate performance of the closed-loop solver.
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Figure 13 Residual Deviation with Diff. Corrector Adjusted Pulses (Details), deg
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TABLE 1. CLOSED-LOOP SOLVER PERFORMANCE IN THE PRESENCE OF MASS PROPERTY

IMPERFECTIONS
Oblateness Residual Nutation Angle, deg Residual Deviation Angle, deg
Parameter Nominal Adjusted Nominal Adjusted
0.8 0.6824 0.3299 0.5013 0.8001
1.2 0.4796 0.1686 0.4790 0.1705
1.7 0.0670 0.0390 0.0978 0.0179
CONCLUSIONS

Examination of several targeting approaches to precession maneuver with
simultaneous active nutation control demonstrated their usefulness and efficiency. The
approaches generally improve accuracy and have the potential for reducing amount of fuel
that would otherwise be needed for post-maneuver active nutation control. In particular, the
differential corrector with numerically integrated state and analytic Jacobian exhibits robust
behavior at the lowest computational cost. Additional kinematics correction can be applied in
some cases in order to further reduce residual deviation from the desired precession plane.
Finally, closed-loop solver is proposed, initial study of which indicates its usefulness and
robustness with respect to mass property imperfections. However, more investigation is
needed to fully evaluate this approach for a wider range of models and initial conditions.
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