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OPTIMAL FUSION OF VECTOR OBSERVATIONS WITH ANGLE 
OR GPS PHASE DIFFERENCE OBSERVATIONS FOR THREE-

AXIS ATTITUDE DETERMINATION 

Sergei Tanygin*  

The general problem of determining the three-axis attitude from a combination 
of vector and angle or GPS phase difference observations is examined. Two cost 
functions, one for vector observations and one for angle or GPS phase difference 
observations, are combined into a single maximum likelihood cost function. The 
initial attitude estimate is found and then updated using the Newton estimation 
sequence until it converges to the optimal estimate. The numerical examples are 
presented that demonstrate effectiveness of the new approach. 

INTRODUCTION 

The three-axis attitude determination for most modern spacecraft is performed using complete 
vector data. The two types of algorithms employed for this task are deterministic algorithms 
which solve for attitude using a minimal set of data and optimal algorithms which find the opti-
mal attitude estimate by using additional measurements to minimize appropriate cost functions. 
The earliest of these algorithms have been introduced several decades ago and many of them have 
been successfully used on numerous spacecraft but the three-axis attitude determination remains 
the subject of active research.1,2,3,4,5 In particular, the emergence of new and improved sensors, 
and continuous and rapid advancement of computing power provide opportunities for develop-
ment and application of more sophisticated and capable estimation techniques. One of the rela-
tively recent innovations is the use of GPS phase difference measurements for attitude determina-
tion.6 Unlike vector observations, the GPS phase difference measurements are effectively angle 
measurements between the direction to a GPS satellite and the antenna baseline formed by two 
on-board GPS receivers. Since each receiver is typically capable of simultaneously processing 
signals from multiple GPS satellites, even a single pair of receivers can provide several angle 
measurements – one for each accessible GPS satellite. Nevertheless, without additional baselines 
or other types of observations, these measurements are insufficient for a complete three-axis atti-
tude determination. The minimum number and types of observations needed to fully determine 
attitude are carefully examined by Shuster in Reference 7. In particular, it is shown that the three-
axis attitude determination solely from angle observations is especially difficult.7 Given the suffi-
cient number of angle measurements, it is possible to construct the optimal cost function that 
should be minimized by the optimal attitude estimate. However, unlike the well-known Wahba 
cost function for vector observations that is quadratic in quaternions and can be elegantly mini-
mized in closed form,1-5 the cost function for angle observations is quartic in quaternions and af-
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fords no such closed form solution. Instead various iterative or approximate solutions have been 
proposed. Cohen proposes to iteratively refine the initial attitude estimate by adopting a small 
angle linearization.8 This local linearization approach may fail to converge or require many itera-
tions if the initial estimate is poor. Crassidis and Markley9 as well as Bar-Itzhak et al.10 propose to 
solve this problem by constructing a derived set of vector observations and transforming the angle 
cost function into the Wahba form. This approach works well only when the antenna baselines or 
the sightlines to GPS satellites are proportional to an orthonormal basis. Otherwise, significant 
errors may arise culminating in the case when the baselines are coplanar. In Reference 12, Cras-
sidis et al. propose ALLEGRO – an algorithm based on a predictive filtering approach11 – which 
converges to the optimal estimate and the corresponding optimal error covariance provided that 
the observation sampling is fairly frequent.12 Recently, another approach based on homotopy con-
tinuation rather than on local linearization or filtering has been introduced.13 Given any initial 
attitude estimate a new set of pseudo-observations is created such that together with the initial 
estimate they minimize the angle cost function. Then as the pseudo-observations evolve toward 
the actual observations so do the cost function and its minimizing estimate. In the end, the esti-
mate arrives at the optimal solution just as the pseudo-observations match the actual observations. 
This method is shown to have excellent convergence properties: faster than gradient based meth-
ods and more robust than local linearization techniques. This work focuses on finding the optimal 
estimate in cases when both vector and angle observations are available. Given at least a single 
vector observation and a sufficient number of angle observations, the initial estimate can be com-
puted using methods described in Reference 7. The optimal estimate is obtained by minimizing a 
combined cost function that includes both the classical Wahba form for vector observations and 
additional terms for angle observations. The algorithm involves updating the initial quaternion 
estimate via Newton iterations while carefully considering quaternion norm constraint. This paper 
uses the Small Satellite Technology Initiative (SSTI) Lewis spacecraft also used in several other 
references to test performance of the proposed algorithm with GPS phase difference measure-
ments. It should be noted however that many other types of angle measurements can be formu-
lated using the same measurement model14 and therefore be handled by the proposed approach. 

MEASUREMENT MODELS 
The three-axis attitude determination algorithm proposed in this paper operates using both 

vector and angle observations. Thus, the measurement models for both types of observations are 
introduced first. For brevity, the models in this paper are derived assuming uncorrelated meas-
urements, however, correlations between angle measurements can be easily added as shown in 
Reference 13.   

QUEST Measurement Model for Vector Observations 

The QUEST measurement model1 is adopted for vector observations. Let A  denote the rota-
tion (or attitude) matrix which is a 3 3×  direction cosine matrix mapping vector components 
from the reference frame to the body-fixed frame and let â  and b̂  be 3 1×  column-vectors repre-
senting the same unit vector known in components in the reference frame and measured in com-
ponents in the body-fixed frame, respectively. Then according to the QUEST measurement model 
â  and b̂  are related via 

 ˆ ˆ= +b a wA  with ( , )Νw 0∼ R  and ( )-1 2 Tˆ ˆσ −−= bbR I , (1) 

where R  is the measurement error covariance of the white Gaussian noise w .  
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Measurement Model for Angle Observations 

The measurement model for angle observations uses a dot product of two vectors: one is 
known in the reference frame and the other is known in the body-fixed frame. The reference vec-
tors may represent directions to known celestial bodies, GPS satellites or magnetic field lines. 
The body-fixed vectors may represent various sensing directions of various sensors, or antenna 
baselines between GPS receivers. For details see, for example, References 9, 13 and 14. Let r  
and s  be 3 1×  (not necessarily unit) column-vectors representing the reference and body-fixed 
directions, respectively. The effective angle measurement is obtained via the dot product of r  
and s  which, since they are known in different frames, involves the attitude matrix A : 

 Td w= +s rA  with 2(0, )w Ν σ∼ , (2) 

where 2σ  is the variance of the measurement error due to the white Gaussian noise w . Let q̂  
denote the quaternion equivalent of A  then the effective measurement in terms of q̂  becomes 

 Tˆ ˆ( , )d w= +q r s qK , (3) 

where ( , )r sK  denotes the 4 4×  symmetric matrix function which for any 3 1×  column-vectors 
of r  and s  is defined as follows 

 
( ) ( )

( )

T T T

T T
( , )

 + − − ×
 =
 − × 

sr rs r s r s
r s

r s r s
K

I
. (4) 

Here and throughout the paper I  denotes the identity matrix. 

 

QUATERNION COST FUNCTION 

The three-axis attitude determination algorithm produces the optimal maximum-likelihood es-
timate if it minimizes the appropriate cost function. The data-dependent part of the negative-log-
likelihood function must add statistically weighted squares of residuals from all measurements. It 
is instructive to examine vector and angle observations separately and then combine them into a 
single cost function. 

Cost Function for Vector Observations 
The problem of determining the three-axis attitude from vector observations has a long and 

storied history. The cost function stemming from the Wahba attitude determination problem15 is 
presented below: 

 

( ) ( ) ( )T T T T

1 1

1 ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) 1 1
2

M M

m m m m m m m m v v
m m

a aψ
= =

= − − = − = − = −∑ ∑q b a b a b a q q q q% %A A A K KI  (5) 

Here the weights ma  add up to 1 by construction because of the way they are determined from 

the individual measurement variances 2
mσ  
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Note that the famed “K-matrix” discovered by Paul Davenport in his celebrated q-Method and 
denoted here as v

%K  is simply a weighted sum of the individual observation “K-matrices” com-
puted according to Eq. (4):  

 
1

M

v m m
m

a
=

= ∑%K K  with ˆˆ( , )m m m= a bK K  (7) 

In the q-Method, the optimal estimate is determined by maximizing Tˆ ˆvq q%K  instead of minimiz-

ing ˆ( )ψ q . Subject to the unit norm quaternion constraint the two approaches are clearly equiva-

lent. In either case, the optimal quaternion is parallel to the eigenvector of v
%K  associated with its 

largest positive eigenvalue. This eigenvalue is equal to 1 if observations are perfect but is reduced 
otherwise by the amount correlated with measurement errors. In practice, it remains very close to 
1 for typical errors. It is clear that, when using the last form of the cost function ˆ( )ψ q  from 

Eq.(5), minimizing ( )Tˆ ˆv−q q%KI  is equivalent to maximizing Tˆ ˆvq q%K  subject to the unit norm 

quaternion constraint. Note that v− %KI  is symmetric and positive semi-definite (positive definite 
when observations are imperfect). Its smallest eigenvalue is equal to 1 minus the largest eigen-
value of v

%K  and it has the same associated eigenvector. Also, note that the cost function ˆ( )ψ q  is 
not the actual data-dependent part of the negative-log-likelihood function but the two functions 
are related via a simple constant scaling:  

 2

ˆ( )ˆ( )v
v

J ψ
σ

=
qq . (8) 

Here ˆ( )vJ q  is the data-dependent part of the negative-log-likelihood function that incorporates 
all vector observations. 

Cost Function for Angle Observations 

The three-axis attitude determination from angle observations is a more intricate problem then 
its vector observations counterpart because each effective angle measurement provides less in-
formation about the attitude then each vector measurement and because the cost function related 
to the data-dependent part of the negative-log-likelihood function becomes quartic in the quater-
nion representation of attitude. Consider the cost function ˆ( )φ q  that adds statistically weighted 
squares of measurement residuals from Eq. (3): 

 ( )2T

1

1ˆ ˆ ˆ( )
2

N

n n n
n

a dφ
=

= −∑q q qK , (9) 
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Here, similar to the vector observation cost function in Eq. (5), the weights na  add up to 1 by 
construction because of the way they are determined from the individual measurement variances 

2
nσ  

 
2

2
a

n
n

a σ
σ

=  and 2 2
1

1 1N

na nσ σ=

= ∑ . (10) 

Here, similar to vector observations, nK  are the “K-matrices” defined for individual observations 
using corresponding reference and body-fixed unit vectors: 

 ( , )n n n= r sK K  (11) 

but, unlike in the cost function for vector observations, in this cost function these matrices cannot 
be simply combined into one. On the other hand, like the cost function for vector observations, 
this cost function is not the actual data-dependent part of the negative-log-likelihood function but 
is related to it via a simple constant scaling: 

 2

ˆ( )ˆ( )a
a

J φ
σ

=
qq . (12) 

Here ˆ( )aJ q  is the data-dependent part of the negative-log-likelihood function that incorporates 
all angle observations. 

Combined Cost Function 
The combined cost function that incorporates all observations is then simply a weighted com-

bination of the two cost functions listed in Eqs. (5) and (9). Consider 

 ˆ ˆ ˆ( ) ( ) ( )v aη ρ ψ ρ φ= +q q q , (13) 

where the weights vρ  and aρ  are derived from the overall variances of the vector and angle ob-

servations, 2
vσ  and 2

aσ : 

 
2

2v
v

σ
ρ

σ
= , 

2

2a
a

σ
ρ

σ
=  and 2 2 2

1 1 1

a vσ σ σ
= +  (14) 

Then the combined cost function is related to the data-dependent part of the negative-log-
likelihood function via 

 2

ˆ( )ˆ ˆ ˆ( ) ( ) ( )v aJ J Jη
σ

= = +
qq q q , (15) 

where ˆ( )J q  incorporates all vector and angle observations. The attitude error covariance associ-
ated with the optimal estimate that minimizes ˆ( )J q  can be obtained from the inverse of the 
Fisher information matrix16 which itself is straightforward to obtain as a sum of the Fisher infor-
mation matrices known for ˆ( )vJ q  and ˆ( )aJ q  (see References 16 and 9 for the corresponding 
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derivations). The resulting expression for the Fisher information matrix and equivalently for the 
inverse of the optimal attitude error covariance becomes: 

 ( ) ( ) T1 T
( ) ( ) ( ) ( )2 2

1 1

1 1ˆ ˆ
M N

m true m true n true n n true n
m nm nσ σ

∗ −

= =

     = − + × ×    ∑ ∑ξξ b b s r s rP I A A  (16) 

 

COST FUNCTION MINIMIZATION 

In order to avoid dealing with the unit norm quaternion constraint during minimization of 
ˆ( )η q , the modified Rodrigues parameters p  are introduced as intermediate variables. Relation-

ships between p  and q̂  are well known and computationally inexpensive:17  

 
41 q

=
+
qp  and 22

21ˆ
11 pp

 
=  −+  

p
q , (17ab) 

where 2 Tp = p p , q  is the vector part of the quaternion and 4q  is the scalar part. 

Let 0q̂  be the initial quaternion estimate and 0p  be derived from 0q̂  using Eq.(17a). Updating 
estimates for p  using the Newton estimation sequence requires the gradient η ′p  and the Hessian 

η ′′pp . The gradient of η  with respect to q̂  is obtained by direct differentiation of Eq.(13) using 
expressions from Eqs.(5) and (9): 

 ( ) ( )T T T
ˆ

1

ˆ ˆ ˆ ˆ2
N

v v a n n n n
n

a dη ρ ρ
=

 ′ = − + − 
 

∑q q q q q%I K K K . (18) 

The gradient of η  with respect to p  is obtained via the chain rule 

 ( ) ( )T T T
ˆ

1

ˆ ˆ ˆ ˆ ˆ ˆ2
N

v v a n n n n
n

a dη η ρ ρ
=

 ′ ′ ′ ′= = − + − 
 

∑p p pqq q q q q q%I K K K , (19) 

where from differentiating Eq.(17b) 

 
( ) T4

T

1ˆ ˆq + 
′ = − − 
pq qq

q
I

. (20) 

The Hessian of η  with respect to q̂  is obtained by additional differentiation of Eq.(18)  

 ( ) ( )T T
ˆ ˆ

1

ˆ ˆ ˆ ˆ2 2
N

v v a n n n n n n
n

a dη ρ ρ
=

  ′′ = − + − +   
∑qq q q qq%I K K K K K  (21) 

and the Hessian with respect to p  is obtained via another application of the chain rule: 
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Here 
iqη ′  is simply the ith element of the gradient row-vector ˆη ′q  from Eq.(18) and iq′′pp  are the 

Hessians of individual quaternion elements derived by additional differentiation from Eq.(20): 

 ( )
1 2 3

T
1 1 4 2 1

3 1

3
2 1 0

0

q q q
q q q q q

q q

 
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 ( ) ( )( )T
4 4 41 2 1q q q′′ = + − +pp qq I . (26) 

The Newton estimation sequence for p  is given by 

 
1 T

1 ( ) ( )k k k kη η
−

+ ′′ ′ = −  pp pp p p p , 0,1, 2,...k =  (27) 

where at every step ˆ kq  is obtained from kp  using Eq.(17a). Assuming that the initial estimate 0q̂  

is sufficiently accurate, the Hessian inverse 
1

η
−

′′  pp  can be approximated by using only the 

dominant terms, i.e. by using 
1 -1η

−
′′  ≈ pp H  where 

 ( )T T

1

ˆ ˆ ˆ ˆ2 2
N

v v a n n n
n

aρ ρ
=

 ′ ′= − + 
 

∑p pq qq q%H I K K K . (28) 

This matrix is positive definite (assuming that the attitude is observable). 
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The error covariance of the optimal estimate lim kk

∗

→∞
=p p  is given by the inverse of the Fisher 

information matrix ( )trueJ ′′pp  and can be obtained from Eq.(15) as 

 
1 12

( ) ( )true trueJ σ η
− −∗ ′′ ′′   = =   pp pp ppP . (29) 

Then the attitude error covariance matrix is given by 

 
1T 2 T

( ) ( ) ( ) ( ) ( )true true true true trueσ η
−∗ ∗′ ′ ′ ′′ ′ = =  ξξ p pp p p pp pξ ξ ξ ξP P , (30) 

where 

 ( ) ( ) § ¨
( ) § ¨

4
4

4

1
2 1

1
q

q
q

+ +
′ = +

+ −p

q
ξ

q
I
I

. (31) 

Here and throughout the paper § ¨  denotes a skew-symmetric matrix defined for any vector v  as 

 § ¨
3 2

3 1

2 1

0
0

0

v v
v v

v v

− 
 = − 
 − 

v . (32) 

This attitude error covariance is equivalent to the one defined by Eq.(16). 

 

INITIAL ESTIMATE 
The method by which the initial estimate can be obtained depends on the types and number of 

available observations.  

Multiple Vector Observations 
If at least two non-collinear vector observations are available then the initial estimate can be 

obtained by solving the Wahba problem using all vector observations. In this case the initial qua-
ternion estimate 0q̂  is the unit eigenvector of v

%K  associated with the largest eigenvalue.  

Single Vector Observation 

If only a single non-collinear vector observation is available then there need to be at least two 
independent angle observations. In this case the initial estimate can be obtained following the ap-
proach advocated by Shuster in Reference 7. Let 1â  and 1b̂  be the reference unit vector and its 

body-fixed observation. Then a candidate quaternion 0q̂%  and the corresponding matrix 0
%A  can be 

found as  
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1 1
0

T
1 1

ˆˆ1ˆ
0ˆˆ2 1
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=  

 +

a bq
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%  (33) 

and  

 
( )( )T

1 1 1 1
0 T

1 1

ˆ ˆˆ ˆ
ˆˆ1+

+ +
= −

a b a b

a b
%A I . (34) 

These represent a different solution from the one found in Reference 7 but this solution is equally 
valid and is simpler to compute. If 1â  and 1b̂  are antipodal then any spin-axis direction can be 
chosen as long as the rotation angle is set to π . Let 1̂r  and 1ŝ  define the most accurate angle ob-

servation 1d . Then there exists some rotation angle θ  about 1b̂  such that7 

 T
1 1 1 0 1

ˆˆ ˆ( , )d θ∆= s b r% %A A , (35) 

where 1
ˆ( , )β∆ b%A  denotes the additional rotation matrix defined as 

 
2 2

1 1 12 2

2 2ˆ ˆ ˆ( , )
1 1

u u
u u

β∆ = + +
+ +

b b b© ¬ © ¬% ª ­ ª ­« ® « ®A I  with tan
2

u θ
= . (36) 

Substituting Eq.(36) into Eq.(35) and performing some algebra yields the following scalar equa-
tion which is quadratic in u : 

 ( ) ( )( )TT T T 2 T
1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 2 0d u u d− − + × + − =s b b r s r b s r s r% % % %A A A A .  (37) 

Its solution can be reduced to 
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1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1

1,2 T T T
1 1 1 0 1 1 1 0 1

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ1 2
2

ˆ ˆˆ ˆ ˆ ˆ2

d d
u

d
∆

± − − − + − ×
=

− −

s b b r s b b r b s r

s b b r s r

% % %

% %
A A A

A A
  (38) 

which is equivalent to but somewhat more efficient than methods proposed in Reference 7. The 
two possible solutions 1u∆  and 2u∆  can be used to create the corresponding quaternions  

 1
2

ˆ1ˆ
11

i
i

i

u
u

∆
∆

∆

 
=  

+  

bq , 1, 2i = , (39) 

which in turn can be combined with 0q̂%  from Eq.(33) to create the two possible initial quaternion 

estimates 0ˆ iq . Of the two the one resulting in the smaller angle cost function 0ˆ( )iφ q  should be 
selected as the actual initial estimate. 
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No Vector Observations 

If no vector observations are available then obviously the problem of combining vector and 
angle observations reduces to simply using all available angle observations. This problem lies 
outside of the scope of this paper but there exist various methods for solving this problem in gen-
eral8-10,12,13 and for obtaining the initial estimate specifically7.  

 

CONVERGENCE 

It is instructive to examine convergence properties of the Newton sequence in Eq.(27). In gen-
eral, within the sufficiently small neighborhood its convergence should be quadratic. However, 
because the original quaternion formulation is constrained and it is projected into a subspace to 
make it unconstrained, it is important to ensure that this projection does not introduce extraneous 
critical points that may interfere with convergence. The potential problem is easy to see if the 
gradient vector T

ˆη ′q  becomes collinear with the estimate q̂ . If this were to occur then the pro-

jected gradient vector Tη ′p  would be reduced to zero and the Newton sequence would cease to 

update (to verify this, examine Eq.(19) and note that T Tˆ ˆ ′ =pq q 0 ). Let λ  be the alignment pa-
rameter defined as 

 
1

ˆ ˆ ˆcosλ δ η η
−

′ ′= = q qq  (40) 

which is the absolute value of the cosine of the angle between the gradient vector T
ˆη ′q  and the 

estimate q̂ . Then the alignment occurs when 1λ = . As 1λ → , its increment becomes 

 
1 1 T T

ˆ ˆ ˆˆ ˆλ η η η η
− −

′ ′ ′ ′′ ′ ′ ∆ = −  p pp pq q qq q . (41) 

As long as the Hessian η ′′pp  is positive definite, which should be expected in the vicinity of the 
minimum, this increment λ∆  will be negative. This means that 1λ =  is an unstable condition 
which should not interfere with the convergence of the Newton sequence. The same is true when 
the actual Hessian is replaced by its approximation H  from Eq.(29) because H  is positive defi-
nite by construction. 

NUMERICAL EXAMPLES 
Consider the simulated orbit and attitude profile of the Small Satellite Technology Initiative 

(SSTI) Lewis satellite. It was launched on August 22, 1997 with the mission to carry out a GPS 
attitude determination experiment. The spacecraft was lost due to a malfunction not related to the 
GPS experiment but its orbit and attitude profile as well as its hardware characteristics remain 
representative of missions that may employ this type of attitude determination. The orbit parame-
ters are given in Table 1. The attitude is assumed to be nadir pointing (z-axis) and constrained 
along the ground track (x-axis).  
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Table 1. SSTI Lewis Orbit Parameters. 

Parameter Value 

Semimajor axis a  6901.137 km 

Inclination i  97.45 deg 

Right ascension of ascending node 
(RAAN) -157.1 deg 

Eccentricity e  0.0001 

Pointing profile Earth pointed 

Launch date Aug. 22, 1997 

There are four GPS antennas that form three baselines, directions of which are listed below as 
unit vectors in components in the body-fixed frame in Table 2. 

Table 2. SSTI Lewis Normalized Antenna Baselines. 

Baseline Body-Fixed, 1s  Body-Fixed, 2s  Body-Fixed, 3s  

1 0.858265169 0.511838137 -0.037451571 

2 0.000000 0.999633807 -0.027060151 

3 -0.690401856 0. 690401856 -0.216079970 

The directional accuracies of various measurement types are defined by the standard deviations 
listed in Table 3. 

Table 3. Directional Accuracies of Various Measurement Types. 

Measurement Type Standard Deviation, σ  

Star Tracker 0.00001 

Sun Sensor 0.0001 

Magnetometer 0.0005 

GPS 0.005 

During the simulation there are 15 GPS satellites available on 5 Feb 2011 10:00:00.000 UTCG 
but only 4 are considered in this study. The lines-of-sight to these satellites as unit vectors in 
components in ICRF reference frame are listed in Table 4. 

Table 4. SSTI Lewis – GPS Satellites Lines-of-Sight on 5 Feb 2011 10:00:00.000 UTCG. 

GPS PRN Number ICRF, 1r  ICRF, 2r  ICRF, 3r  

2 -0.811593908 0.385889079 -0.438639883 

3 0.579466523 -0.784621653 0.220425522 
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4 -0.992306080 0.061787935 -0.107288836 

5 -0.386180120 0.794366097 -0.468878896 

At that moment, there are also several reference directions available for vector observations. They 
are listed in Table 5 again as unit vectors in components in ICRF reference frame. 

Table 5. SSTI Lewis –Vector Reference Directions on 5 Feb 2011 10:00:00.000 UTCG. 

Type ICRF, 1a  ICRF, 2a  ICRF, 3a  

Sun 0.720354063 -0.636395902 -0.275844667 

IGRF Magnetic Field 0.172838128 -0.370115932 -0.912765676 

Star HP-100751 -0.055793181 -0.130315629 0.989901489 

Star HP-109268 -0.482668111 -0.632151510 -0.606148466 

Finally, the true attitude of the Lewis spacecraft is listed in Table 6 as quaternion components 
relating ICRF and body-fixed frames. 

Table 6. SSTI Lewis True Attitude on 5 Feb 2011 10:00:00.000 UTCG. 

ICRF to Body, 1q  ICRF to Body, 2q  ICRF to Body, 3q  ICRF to Body, 4q  

0.084752986 -0.049301463 -0.973427007 0.206944822 

Covariance Analysis 

First the efficacy of adding angle observations is examined by comparing the attitude error 
covariance matrices in different cases.  

Case 1: All Vector Observations + (4 GPS Lines-of-sight x 3 baselines). Consider the case 
when the Sun, the magnetic field and the two stars are available for vector observations. In addi-
tion, assume that signals from 4 GPS satellites are detected by all receivers producing a total of 
12 angle observations – 4 observations for each of the 3 baselines. The attitude error covariance 
based solely on the vector observations is 

 12
( )

91.1821 9.6425 54.3778
9.6425 54.9010  2.1866 10
54.3778 2.1866 163.3128

vector
∗ −

− 
 = − × 
 − − 

ξξP . (42) 

The attitude error covariance after the inclusion of all of the angle observations is only insignifi-
cantly smaller: 

 12
( )

91.1813 9.6423 54.3759
9.6423 54.9009  2.1863 10
54.3759 2.1863 163.3073

vector angle
∗ −

+

− 
 = − × 
 − − 

ξξP . (43) 

The marginal improvement after addition of the angle observations is expected because the accu-
racy of the vector observations is significantly higher.  
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Case 2: (1 Magnetometer + 1 Sun) Vector Observations + (4 GPS Lines-of-sight x 3 base-
lines). The improvement is more significant when only two (relatively poor) vector observations 
are included: the Sun and the magnetic field. The attitude error covariance when using only these 
vector observations is about three orders of magnitude larger than when using all vector observa-
tions (including the high accuracy star observations):   

 9
( )

54.9692 110.0467 61.4764
110.0467 276.7700 149.4247 10
61.4764 149.4247 93.4317

vector
∗ −

− 
 = − − × 
 − 

ξξP . (44) 

When the angle observations are added to the two vector observations, the attitude error covari-
ance improvement is still small but not insignificant (~3 %): 

 9
( )

53.7336 107.0480 59.6645
107.0480 269.4744 145.0175 10
59.6645 145.0175 90.7662

vector angle
∗ −

+

− 
 = − − × 
 − 

ξξP . (45) 

Case 3: 1 Magnetometer Vector Observation + (4 GPS Lines-of-sight x 3 baselines). The 
situation is qualitatively different when only a single vector observation is available: the magnetic 
field. In this case, the complete attitude is not observable without including at least some of the 
angle observations. The attitude error covariance grows significantly and unevenly compared to 
the case when two vector observations are included. The largest increases related to rotation 
about the observed vector which is only detectable via relatively poor angle observations:* 

 9
( )

335.8214 189.5209 613.4230
189.5209 661.4807 1329.7823 10
613.4230 1329.7823 4534.8546

vector angle
∗ −

+

− 
 = − × 
 − − 

ξξP  (46) 

Case 4: 1 Magnetometer Vector Observation + (2 GPS Lines-of-sight x 3 baselines). The di-
minishing accuracy in measuring angle about the single observed vector becomes even more ap-
parent if the number of angle observations is reduced. Consider the case when only 2 GPS satel-
lites are available generating 6 additional angle observations. The attitude error covariance gener-
ally doubles in size with the largest increases still related to the rotation about the observed vec-
tor. 

 9
( )

431.1612 393.1257 1292.1765
393.1257 1100.4411 2792.7159 10
1292.1765 2792.7159 9415.2490

vector angle
∗ −

+

− 
 = − × 
 − − 

ξξP  (47) 

                                                   
* At the selected moment in time, the simulated spacecraft position happens to be close to the North pole making the z-
axis nearly opposite to the direction of the magnetic field. 
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Convergence Analysis 

The Newton estimation sequence can be stopped when either the change in the estimate is suf-
ficiently small or when the value of the cost function is not significantly reduced. By either meas-
ure in all simulated cases, a single iteration was sufficient to converge to the optimal estimate 
within essentially machine precision. A typical plot of the relative change in the cost function is 
shown in Figure 1. The initial value is the normalized unit value of the cost function. Its actual 
value is based on the initial attitude estimate obtained by the methods described in this paper. The 
subsequent relative changes in the cost function are due to the Newton iterations. For the first two 
simulated cases the change is too insignificant to be noticeable on the plot. For the other two 
cases, the relative change is only noticeable after the first Newton iteration after which the con-
vergence is effectively achieved and the optimal estimate is found. 

In all cases no appreciable difference is found between using the actual Hessian from Eq.(22) 
and its approximation from Eq.(28). The relative difference between the two matrices is on the 
order of 410− .  
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Figure 1. Typical Convergence as Indicated by Relative Change in Cost Function. 

Statistical Consistency 

The final numerical test involves running multiple trials for each case and verifying that the 
sampled attitude covariance agrees with the predicted analytical covariance and that the sampled 
attitude error agrees with the predicted covariance bounds. The sampled attitude error covariance 
is computed as 

 T
( )

1

1 N

sampled n n
nN

∗ ∗ ∗

=

= ∆ ∆∑ξξ ξ ξP  (48) 
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where N  is the number of trials and where n
∗∆ξ  denotes the attitude error vector for the n-th trial 

computed using the optimal estimate found once the Newton estimation sequence is converged. 
For a large number of trials, the difference ( )ij

∗∆ ξξP  between the corresponding elements of the 
sampled and predicted covariances should fall within the Gaussian zero-mean distribution with 
variance given by 

 { } ( )( ) ( )2

( ) ( ) ( ) ( )
1var ij ii jj ijN

∗ ∗ ∗ ∗ ∆ = +  ξξ ξξ ξξ ξξP P P P . (49) 

The statistical consistency of the attitude error can be examined by computing 

 
1Tˆ( )µ

−∗ ∗ ∗ ∗ = ∆ ∆ ξξq ξ ξP  (50) 

which should fall approximately within 2χ -distribution with the mean value of 3 and the vari-
ance of 6. Consider all cases using 100N =  for each. 

Case 1: All Vector Observations + (4 GPS Lines-of-sight x 3 baselines). The sampled covari-
ance shown below along with its element-by-element 1σ  bounds  

 

12
( )

12

90.3440 19.9220 56.1536
19.9220 54.9010  21.4624 10
56.1536 21.4624 169.0648

12.8948 7.1406 13.3593
7.1406 7.7642 9.4713 10

13.3593 9.4713 23.0953

sampled
∗ −

−

− 
 = − × 
 − − 
 
 ± × 
  

ξξP

 (51) 

should be compared with the predicted covariance from Eq.(43) with which it agrees within less 
than 3σ . The mean and variance of ˆ( )µ ∗q  in this case are 2.9051 and 4.5154, respectively, not 
far from the expected 2χ  values. The plot of ˆ( )µ ∗q  in this case is shown in Figure 2.  

Case 2: (1 Magnetometer + 1 Sun) Vector Observations + (4 GPS Lines-of-sight x 3 base-
lines). In this case, the sampled covariance shown below along with its element-by-element 1σ  
bounds  

 

9
( )

9

66.7093 125.2200 70.5638
125.2200 292.6994 154.1668 10
70.5638 154.1668 95.9636

7.5991 16.1056 9.1853
16.1056 38.1094 21.3282 10
9.1853 21.3282 12.8363

sampled
∗ −

−

− 
 = − − × 
 − 
 
 ± × 
  

ξξP

 (52) 
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should be compared with the predicted covariance from Eq.(45) with which it agrees within less 
than 3σ . The mean and variance of ˆ( )µ ∗q  in this case are 3.3841 and 6.3890, respectively, 
again not far from the expected 2χ  values. The plot of ˆ( )µ ∗q  in this case is shown in Figure 3.  

Case 3: 1 Magnetometer Vector Observation + (4 GPS Lines-of-sight x 3 baselines).  The 
sampled covariance shown below along with its element-by-element 1σ  bounds  

 

9
( )

9

268.2019 76.0540 338.3961
76.0540 466.4378 885.1999 10
338.3961 885.1999 3302.2010

47.4923 50.7994 137.8111
50.7994 93.5475 218.3584 10
137.8111 218.3584 641.3253

sampled
∗ −

−

− 
 = − × 
 − − 
 
 ± × 
  

ξξP

 (53) 

should be compared with the predicted covariance from Eq.(46) with which it once again agrees 
within less than 3σ . The mean and variance of ˆ( )µ ∗q  in this case are 2.5232 and 3.9944, respec-
tively, still not far from the expected 2χ  values. In this case there are two plots shown in Figure 
4: one is for 0ˆ( )µ q  which is based on the initial (deterministic) estimate computed using a single 

vector and a single angle observation, the other is for ˆ( )µ ∗q  which, as in previous cases, is based 
on the optimal estimate. The two plots confirm that the optimal estimate is significantly more ac-
curate. 

Case 4: 1 Magnetometer Vector Observation + (2 GPS Lines-of-sight x 3 baselines). For the 
final case, the sampled covariance shown below along with its element-by-element 1σ  bounds  

 

9
( )

9

492.5848 474.0954 1561.8465
474.0954 1039.4064 2837.9679 10
1561.8465 2837.9679 10200.0530

60.9754 79.3105 239.3577
79.3105 155.6259 426.1477 10

239.3577 426.1477 1331.5172

sampled
∗ −

−

− 
 = − × 
 − − 
 
 ± × 
  

ξξP

 (54) 

should be compared with the predicted covariance from Eq.(47) with which it agrees within less 
than 3σ . The mean and variance of ˆ( )µ ∗q  in this case are 3.0150 and 7.8637, respectively, 
again not far from the expected 2χ  values. As in the previous case, there are two plots shown 
(Figure 5): one is for 0ˆ( )µ q  and the other is for ˆ( )µ ∗q . The plots again confirm that the optimal 
estimate is more accurate than the initial estimate, although in this case by a smaller margin be-
cause it includes fewer angle observations (6) compared to the previous case (12). 
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Figure 2. 2χ  Test of Attitude Error for Case 1. 
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Figure 3. 2χ  Test of Attitude Error for Case 2. 
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Figure 4. 2χ  Test of Attitude Error for Case 3. 
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Figure 5. 2χ  Test of Attitude Error for Case 4. 
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CONCLUSION 

The three-axis attitude determination can be performed using either vector or angle observa-
tions, or both. This paper demonstrates how the two types of observations can be effectively 
combined in order to generate the optimal attitude estimate. When there are multiple vector ob-
servations, addition of angle observations, such as GPS phase difference observations, which are 
typically less accurate, provides only marginal improvement to the estimate. The improvement is 
more noticeable when the accuracies of the two types of observations are comparable. In the spe-
cial case when only a single vector observation is available, additional angle observations become 
indispensable because without them the complete three-axis attitude is unobservable. In this case, 
the initial attitude estimate can be significantly improved by employing the Newton estimation 
sequence that converges to the optimal attitude estimate which incorporates information from all 
available observations. 
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