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ABSTRACT 

The integration of orbit trajectories requires a 
combination of force modeling, a formulation of the 
equations of motion and a numerical integration 
technique to be specified.  While it is common to 
separate these components of the problem conceptually, 
certain cross dependencies must be considered in the 
implementation process.  The inclusion of solar 
radiation pressure in the force model introduces such a 
cross dependency with the integration procedure when 
the satellite crosses boundaries between lighting 
domains.  The formulation of the equations of motion 
influences this through the integration step size.  The 
effects of shadow boundary crossing for a variety of 
combinations of shadow models, integration methods 
and equations of motion are seen to vary greatly 
between Low Earth Orbits (LEO) and Highly Eccentric 
Orbits (HEO).  These effects have somewhat 
predictable trends for LEOs but these trends disappear 
and the magnitude of the errors increase significantly 
for HEOs.  It is also shown that integration closure 
testing can mask errors introduced during the crossing 
of shadow boundaries in certain circumstances. 

INTRODUCTION 

The use of special perturbation methods is widely 
regarded as the most accurate means for computing 
orbit trajectories.  A special perturbations method is 
comprised of three separate, but related parts: a model 
for the forces acting on the satellite, a formulation of 
the equations of motion and a numerical integration 
procedure.  Each part may be fundamentally sound on 
its own, but the impact of the assumptions made in each 
part must be considered when the parts are combined to 
solve a particular problem.  

One area where the interaction between the components 
of the special perturbations method is especially 
important is in the modeling of effects of solar radiation 
pressure.  The important assumptions in this case are 
made in the modeling of the Earth’s shadow.  The most 
common models for the shadow of the Earth are the 
conical model and the dual cone model.  Each of these 
models has hard boundaries across which the model 
changes in form.  These changes result in a 
discontinuity in the second order derivative of the 
position in the case of a cylindrical model and in a 
discontinuity or near discontinuity in the third 
derivative of the position in the case of a dual cone 
model. The existence of these discontinuities due to the 
shadow models violates the assumption, made in the 
formulation of many numerical integration methods, 
that the accelerations are smooth and continuous.  It 
should be noted that the true transition between sunlight 
and darkness does not have hard boundaries but is 
actually a very complicated phenomenon.  Absorption 
and refraction of the radiation by the atmosphere as 
well as the apparent deformation of the solar disk as 
seen through the Earth’s atmosphere influence the level 
of illumination1. While detailed models of these 
phenomena exist, the complexity and computational 
burden imposed by such sophisticated shadow models 
has inhibited their widespread application2.  

The effect of discontinuities in the simpler shadow 
models on the accuracy of the integrated trajectory is 
dependent upon how the integration method a steps 
across the boundary[2,3].  The variables in this case are 
the location of the discontinuity within the step and the 
number and location of force model evaluations 
performed during the step.  In some sense, the errors 
resulting from the crossing of shadow boundaries may 
have a self-correcting effect due to the variation in the 
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geometry of the crossings.  The fact that the dynamics 
of the orbit prediction problem are highly non-linear, 
however, makes the possibility of relying on such an 
occurrence seem risky. 

Lundberg et al. have devised an algorithm for 
correcting the errors resulting from the crossing of 
shadow boundaries for multi-step integrators3.   This 
algorithm is an improvement of an algorithm originally 
devised by Hubbard and documented in the open 
literature by Anderle4.  Lundberg also derived  a 
method for determining the step size for a multi-step 
integrator using a fixed step size to minimize the errors 
due to crossing shadow boundaries5.  The optimal step 
size is computed to avoid situations where the time 
between the closest integration node and the shadow 
remains fairly constant.  In this situation, the numerical 
integration is in a form of resonance with the eclipsing 
of the satellite and the errors incurred during the 
crossings of the shadow boundaries are less likely to 
cancel out over time. 

The formulation of the equations of motion can also 
have a significant effect on the errors incurred during 
the crossing of shadow boundaries.  This is due to the 
influence of the equations of motion on the step size of 
the integrator.   

 

DESCRIPTION OF INVESTIGATION 

An investigation of the errors introduced into the 
numerical integration of orbit trajectories was 
performed by sampling the trajectory errors from 
combinations of three integration methods in 
conjunction with two formulations of the equations of 
motion for both cylindrical and dual cone shadow 
models.  The reader should be aware that this 
investigation is only looking at the effects of integrating 
across shadow boundaries on the solution produced by 
a set of modeling options.  There is no measure made 
against truth orbits nor are the models being evaluated 
for their effectiveness as part of an orbit determination 
algorithm. 

 

Shadow Models 

The two types of shadow models used in this 
investigation were the cylindrical model and the dual 
cone model.  The cylindrical model, illustrated in 

Figure 1, assumes that the Sun is infinitely far away 
such that all light is coming from a direction parallel to 
the direction to the Sun.  The shadow cast by the Earth 
may then be represented as a cylinder of infinite length. 
The acceleration due to solar radiation pressure is 
simply set to zero when the satellite crosses the 
boundary from sunlight to shadow. This model is 
seemingly simple to implement since the only piece of 
information required is the component of the satellite 
position vector orthogonal to the Sun direction.  The 
term seemingly  is used since this model actually 
presents some computational difficulties that will be 
discussed later.   

Figure 1.  Cylindrical Shadow Model 

The dual cone model establishes a region of partial 
illumination known as the penumbra region as shown in 
Figure 2.  There are several common methods for 
computing the magnitude of the acceleration due to 
solar radiation pressure when the satellite is in the 
penumbra region. The method most consistent with the 
geometry of the model is to scale the acceleration of the 
satellite if it were in direct sunlight by the fractional 
area of the visible solar disk.  Other methods include 
scaling the acceleration of the satellite if it were in 
direct sunlight based on a linear transition to full 
shadow and scaling the acceleration in full sunlight by 

one half.  In this study, we scale the acceleration in full 
Sun by the fractional area of the solar disk. 

 

Figure 2. Dual Cone Shadow Model 
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Integration Methods 

The integration methods investigated include two single 
step formulations and one multi-step formulation, as 
shown in Table 1.   The Runge-Kutta-Fehlberg method 
is of order 7 and includes automatic step size control6. 
A new step size is computed for each step based on 
specified tolerance levels and error estimates from the 
prior step.  The Bulirsch-Stoer single step method is 
investigated due to its increasing popularity and the fact 
the sampling of the force model across a step is very 
different from Runge-Kutta methods7.  The Bulirsch-
Stoer method also includes automatic step size control 
but can operate at varying order depending on the step 
size and error estimates.  The step size is adjusted at 
each step based on specified error tolerances, error 
estimates from the prior step and an algorithm for 
maximizing the efficiency of the integration.  The 
Stormer (predictor) Cowell (corrector) multi-step 
method is also a very widely used integrator and is 
sometimes referred to as the Gauss-Jackson method[8,9]. 
Stormer-Cowell is a Class II integrator for second order 
systems.  The Stormer-Cowell formulation also requires 
either a fixed step size or a restart of the integrator 
when the step size is changed.  For the purposes of this 
study, the step size was held constant when the 
Stormer-Cowell formulation was used. Each integration 
method is tested with both a dual cone and a cylindrical 
shadow model. 

Table 1.   Integration Methods 

Method Order Type 

Runge-Kutta-Fehlberg 7-8 7 Single step 

Bulirsch-Stoer N/A Single step 

Stormer-Cowell 12 Multi-step 

 

Equations of Motion 

Two formulations of the equations of motion were 
investigated. A Cowell formulation was used with all 
three integration methods. I will follow the distinction 
given by Vallado for referring to the second order 
equations describing the full accelerations on the 
satellite in cartesian coordinates as Cowell’s 
formulation and the use of a finite differences based 

integration technique with Cowell’s formulation as 
Cowell’s method9.   

The second formulation of the equations of motion is 
the variation of parameters formulation (VOP) in 
universal variables as described by Herrick10. The VOP 
formulation contains first order differential equations 
and is therefore not suitable for use with the Stormer-
Cowell integrator. The integration state was rectified at 
the completion of each integration step in the VOP 
formulation.  A possible extension to the current test 
suite would be to use an Adams-Bashforth (predictor) 
Adams-Moulton (corrector) method with the VOP 
formulation.  The step-wise rectification of the orbit 
would not be used in this case. 

 

Initial Conditions 

Two classes of orbits were studied, Low Earth Orbits 
(LEO) and Highly Eccentric Orbits (HEO). A set of 
initial conditions was selected for study from each class 
of orbit. Only the location of the ascending node was 
varied between elements of a set.  The ascending node 
values are at five degree increments centered on the 
direction opposite to the direction to the Sun. The orbit 
elements selected for the study are given in Table 2. 
The LEO trajectories were integrated for one day and 
the HEO trajectories were integrated for one week so 
that both experience approximately the same number of 
shadow boundary crossings.  The HEO trajectories 
were run with both a fixed time step and using time 
regularization with the Stormer-Cowell integrator.  The 
fixed time steps for the Stormer-Cowell integrator were 
chosen based on accurate integration of the benchmark 
trajectories in the absence of shadow effects. 

Table 2. Initial conditions 

 LEO HEO 

Epoch 1 Jun 2000 00:00:00 1 Jun 2000 00:00:00 

a  (km) 7000.0 26561.743831 

e 0.0 0.72 

i  (deg) 55.0 63.4 

Ω  (deg) 220.0->280.0 220.0->280.0 



 

4 
American Institute of Aeronautics and Astronautics 

 
 

 LEO HEO 

ω  (deg) 0.0 270.0 

ν  (deg) 0.0 90.0 

Cp 2..0 2.0 

A/M (m2/kg) 0.02 0.02 

SC Step Size 
(sec) 

30.0 20.0 

 

Benchmarks 

To help identify that the differences in the results of  
numerical integration runs were caused by the crossing 
of shadow boundaries, each combination of initial 
conditions, integration method and formulation of 
equations of motion were run without a shadow model.  
In all cases the maximum difference between the 
trajectories for each initial condition set was less than 
one millimeter for the LEO cases.  The maximum 
difference between the trajectories for each initial 
condition set was less than two centimeters for the HEO 
cases with one exception. The combination of the 
Runge-Kutta-Fehlberg integrator and the VOP 
formulation of the equations of motion produced 
trajectories which differed form the others by up to half 
a meter. It is believed that these differences are the 
result of inadequate error control during the adaptive 
step size selection. Differences between trajectories 
computed using shadow models can be considered to be 
due to the crossing of shadow boundaries if those 
differences are  significantly larger than the differences 
in the benchmark trajectories. 

Reference trajectories were also produced using each 
shadow model using the Runge-Kutta-Fehlberg and 
Bulirsch-Stoer integration methods.  The integration in 
these cases was stopped and restarted at the boundaries 
of the shadow model to mitigate the effect of crossing 
the shadow boundary during an integration step.  The 
validity of the results of these runs was verified by 
running the same trajectories at very small step sizes.  
A step size of 10 seconds was selected for the dual cone 
shadow model since the penumbra duration was 
approximately 9 seconds for the LEOs and between 8 
and 18 seconds for the HEOs. Both integration methods 
sample the force model a number of times during an 

integration step which insures that the penumbra region 
will be sampled during a crossing.  A step size of 1 
second was used for the cylindrical shadow model since 
without stopping on the boundaries it is impossible to 
step across the boundary without having a significant 
discontinuity in the acceleration. 

At this point, it is educational to refer back to the earlier 
comment about the simplicity of the cylindrical shadow 
model.  While the shadow model is very simple to 
implement for the purpose of determining if the satellite 
is in shadow or not, it is deceptively difficult to stop 
and restart on the boundary.  This difficulty arises from 
the fact that even when the time of the boundary 
crossing is solved for, numerical convergence and 
precision issues dictate that the spacecraft will be on 
one side or the other of the boundary.  Since the goal of 
stopping and restarting is to prevent crossing the 
boundary during the step, it is necessary to supply 
additional logic to the force modeling to make sure that 
the correct lighting condition is used for the entire step 
approaching and the entire step away from the 
boundary.  If this consistency is not enforced, the errors 
introduced into the numerical integration can actually 
be amplified.  

 

TESTS 

Prediction Tests 

Sets of LEO and HEO trajectories were integrated 
forward for each combination of shadow model, 
integration method and formulation of the equations of 
motion without any mitigation of the effects of crossing 
the shadow boundaries.  These trajectories were then  
compared with the reference solutions and the 
maximum positional error for each trajectory was 
recorded.  The minimum, maximum and average of 
these positional errors was then determined across the 
set of trajectories for each combination.  The results of 
these comparisons are given in Tables 3 and 4.  When 
referring to Tables 3 and 4, it is important to note that 
the errors listed in the tables are those due to the 
numerical integration process, not relative to a truth 
orbit based on real data. The reference trajectories are 
computed using the same shadow model as the test 
where the integration was stopped and restarted at the 
shadow boundaries. 
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Table 3. LEO Prediction Errors 

Combination Minimum 
Error (m) 

Maximum 
Error (m) 

Average 
Error (m) 

BS/COW/CYL 0.241 1.346 0.690 

BS/COW/DC 0.124 1.213 0.480 

BS/VOP/CYL 0.189 2.865 0.740 

BS/VOP/DC 0.188 3.142 1.159 

RK/COW/CYL 0.058 1.510 0.557 

RK/COW/DC 0.055 0.591 0.237 

RK/VOP/CYL 0.333 3.335 1.762 

RK/VOP/DC 0.322 2.948 1.393 

SC/COW/CYL 0.740 3.944 1.989 

SC/COW/DC 0.319 2.045 1.151 

 

Table 4. HEO Prediction Errors 

Combination Minimum 
Error (m) 

Maximum 
Error (m) 

Average 
Error (m) 

BS/COW/CYL 1.605 46.292 14.069 

BS/COW/DC 2.193 109.416 14.068 

BS/VOP/CYL 3.786 33.601 12.043 

BS/VOP/DC 3.316 55.676 16.219 

RK/COW/CYL 1.513 33.441 10.880 

RK/COW/DC 0.326 8.169 4.492 

RK/VOP/CYL 11.910 118.365 55.493 

RK/VOP/DC 6.509 83.263 45.542 

SC/COW/CYL 4.152 54.926 19.780 

Combination Minimum 
Error (m) 

Maximum 
Error (m) 

Average 
Error (m) 

SC/COW/DC 0.308 48.752 15.073 

SC/COWR/CYL 1.359 33.814 8.610 

SC/COWR/DC 1.293 25.584 5.641 

The results for the LEO orbits shown in Table 3 show 
the general trends that might be expected based on a 
moderate understanding of the integration methods.  
Cases using the VOP formulation show larger errors 
than the corresponding cases using the Cowell 
formulation.  This is to be expected since the VOP 
formulation allows for larger step sizes.  The cylindrical 
shadow model usually introduces more error than the 
dual cone model.  This seems reasonable due to the fact 
that the acceleration changes more drastically while 
crossing the boundary in the cylindrical model.  Any 
sampling that occurs in the penumbra region of the dual 
cone model should serve to yield a more accurate step 
between shadow and sunlight. The exception to the 
trend for the shadow models occurs when the Bulirsch-
Stoer method is used.  Although a complete analysis of 
this behavior has not been performed, it may be related 
to the fact that the Bulirsch-Stoer method does not have 
a fixed number of force model evaluations per 
integration step.  Instead, a sequence of possible sub-
step samplings are performed until a suitable step is 
either produced or the step size is reduced and the 
process starts again.  A more detailed study will be 
required to fully understand this interaction.  The cases 
using the Stormer-Cowell integration method are also 
seen to be susceptible to the introduction of errors at 
shadow boundary crossings.  This is expected since, as 
Lundberg points out, there is no information from 
within the predictor corrector step to indicate where 
within the step the crossing of the shadow boundary 
occurred5. 

The results for the HEO cases shown in Table 4 are 
much more difficult to understand.  The trends based on 
the formulation of the equations of motion and the type 
of shadow model used are no longer apparent. Two 
additional cases have been added to the combinations 
used in the LEO tests.  These cases use the Stormer-
Cowell integration method with a time regularized 
Cowell formulation (COWR) for the equations of 
motion.  The only really identifiable trends are that the 
Runge-Kutta-Fehlberg and time regularized Stormer-
Cowell cases appear to accumulate the least amount of 
error.  The lack of predictability in the information 
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contained in Table 4 may be due to the fact that high 
eccentricity orbits are very sensitive to small 
perturbations.   

Integration Closure Tests 

A commonly used technique for evaluating the validity 
of a numerically integrated trajectory is the integration 
closure test. In this test, the trajectory is integrated 
forward and then the direction of the integration is 
reversed to return to the initial time.  The final 
conditions are then compared to the initial conditions.  
The proper closure of the trajectory is a necessary 
condition for the integration to be considered accurate.  
The set of trajectories used in the prediction tests was 
subjected to closure testing with the exception of the 
time regularized cases.  These tests were run in an 
attempt to determine the usefulness of the closure test 
for detecting the errors caused by crossing shadow 
boundaries.  The results of these closure tests are shown 
in Tables 5 and 6. 

Table 5. LEO Closure Errors 

Combination Minimum 
Error (m) 

Maximum 
Error (m) 

Average 
Error (m) 

BS/COW/CYL 0.160 3.739 1.341 

BS/COW/DC 0.165 1.775 1.121 

BS/VOP/CYL 0.077 5.260 1.970 

BS/VOP/DC 0.012 3.983 1.529 

RK/COW/CYL 0.068 2.600 0.639 

RK/COW/DC 0.025 0.968 0.406 

RK/VOP/CYL 0.376 6.570 2.522 

RK/VOP/DC 0.045 6.479 1.910 

SC/COW/CYL 0.000 0.058 0.004 

SC/COW/DC 0.000 0.219 0.017 

 

Table 6. HEO Closure Errors 

Combination Minimum 
Error (m) 

Maximum 
Error (m) 

Average 
Error (m) 

BS/COW/CYL 0.221 89.172 35.200 

BS/COW/DC 0.521 129.504 35.270 

BS/VOP/CYL 4.820 135.880 39.353 

BS/VOP/DC 2.736 258.509 49.962 

RK/COW/CYL 0.952 69.347 19.216 

RK/COW/DC 0.876 32.592 9.652 

RK/VOP/CYL 4.937 207.591 88.331 

RK/VOP/DC 30.462 162.694 78.381 

SC/COW/CYL 0.000 0.002 0.001 

SC/COW/DC 0.000 0.001 0.001 

The results in Tables 5 and 6 demonstrate clearly that 
while closure is a necessary condition for accurate 
numerical integration, it is not a sufficient condition.  In 
almost all combinations, particular sets of initial 
conditions are integrated to closure levels which can be 
misleading in terms of the accuracy of the prediction. 
Especially relevant are the Stormer-Cowell results for 
the HEO orbits.  The prediction errors in Tables 3 and 4 
indicate that there are actually quite sizeable errors in 
the trajectory integration, but these errors are 
effectively masked by the integration closure test. 

 

CONCLUSIONS 

A preliminary investigation has shown that the 
unchecked crossing of shadow boundaries of both the 
cylindrical and the dual cone shadow models during the 
numerical integration process has been seen to 
introduce sizeable errors into the resulting trajectory.  
These errors were not measured against real data, but 
only against an implementation where the crossing of 
the boundaries during an integration step was avoided.  
The magnitude of the errors varies with the type of 
shadow model used and the numerical integration 
scheme and is influenced by the formulation of the 
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equations of motion via the integration step-size.  While 
identifiable trends existed for the LEO cases, the HEO 
cases exhibited much more complicated behavior.  In 
any case, it is apparent that for an orbit integration 
scheme to produce precise ephemeris, some means of 
mitigating these errors must be introduced.  The 
simplest, but most computationally expensive, method 
is to reduce the maximum step size of the integration.  
A more effective means of mitigating the errors is to 
stop and restart the integrator on the boundaries.  This 
can be computationally expensive in the case of multi-
step integrators and non-trivial to program for single 
step integrators.  A method, similar to that proposed by 
Hubbard and extended by Lundberg, but modified to 
work with other integration methods would probably be 
the best solution. 

The possibility that errors in the integration of 
trajectories can go undetected by integration closure 
tests has also been demonstrated.  More study is 
required to understand this behavior, but it is felt that 
this is an important point since many requirement 
specifications include such measures. 
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