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The paper introduces a method for generating identical 
attitude error trajectories for a rigid-body with respect 
to different inertial and non-inertial frames. The method 
is formalized via the application of the trajectory 
dependent operator that acts on the input torque and 
maps it into a new torque such that the attitude error 
trajectory is preserved but with respect to a new 
reference frame. Consequently, this result establishes 
duality of attitude stabilization and tracking control and 
provides a unified framework for their analysis and 
design. Within this framework, control laws 
dependency on the inertia matrix is investigated, which 
leads to the introduction of a minimum order adaptive 
re-design methodology. All the development in this 
paper is done independently from any specific attitude 
representation. 

INTRODUCTION 
Attitude dynamics and control of a rigid body have 
been studied by many authors from both theoretical and 
practical standpoint.1-8 Rigid-body dynamics represent 
one of the classical examples of passive nonlinear 
systems linear in control, which can be stabilized by a 
very simple linear or almost linear feedback control 
laws.3-5 Rigid-body kinematics is also a passive 
nonlinear system driven by the dynamics. For this 
reason, the attitude itself can also be stabilized by a 
simple linear feedback control laws. 3-5 What is more, 
passive nature of both dynamics and kinematics permits 
angular velocity measurements to be replaced by the 
outputs of the stable linear system driven by the time 
rate of change of the chosen attitude representation.3,5  
While attitude tracking appears intuitively to be a 
natural extension of the stabilization problem, the 
nonlinear nature of attitude kinematics and dynamics 
obscured the exact mechanism of such extension. This 
paper seeks to clarify this issue and, in doing so, to 
point out duality between attitude motions with respect 
to different reference frames. The approach proposed in 
this paper is parallel to that of the structured dynamic 
model inversion8 in the sense that both seek to 
reconstruct the input that produces desired dynamics. 
The goal of the approach presented in this paper is not 
to produce any selected dynamics, but rather to 
preserve the attitude error dynamics with respect to 
arbitrary moving frames. This can be accomplished by 

a linear operation on the input torque. This original 
input torque can itself be a result of the control law 
execution designed to ensure desired error dynamics 
with respect to a certain reference trajectory. 
Application of the proposed linear operation will ensure 
that this control law can be extended to tracking other 
types of trajectories subject to obvious practical 
limitations (e.g. sufficient authority, bandwidth, etc.). 
This becomes possible because both the operation itself 
is linear and the attitude dynamics are input-linear. The 
definition of the operation is nonlinear in reference 
angular velocity and acceleration and linear in the 
inertia matrix. The latter fact is exploited in the 
development of straightforward model reference 
adaptive control (MRAC) extension of the original 
operation. This way the original inertia matrix 
independent stabilizing control law can be used for 
tracking without certain knowledge of inertia matrix. 
Different forms of adaptation are presented that require 
different number of additional variables to be integrated 
depending on the type of the original control law. 

Nomenclature: 

A cross-product of two three-dimensional vectors 
a b¥  can be represented as the matrix-vector product 

a b¥ , where a¥ ¥=
-
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skew-symmetric matrix constructed from the elements 

of vector a e e e1 2 3= + +a a a1 2 3$ $ $ , where a b, Œ¬3  

and both are expressed in the frame $eil q , which 
denotes a triad of mutually orthogonal unit vectors. 

There are three types of frames used in this paper. One 

is the body frame  $b in s  attached to a rotating rigid 

body. Another is the reference or desired frame  $ril q , 
which is always a frame with respect to which attitude 
errors are found. Different reference frames used in this 
paper are denoted with subscripts r  or R  (e.g. $ril qr

) 

in general and with subscript O (e.g. $ril qO
) if the 
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frame is inertial. All the variables referred to this frame 
are similarly denoted with the subscript. Finally, the 

inertial frame  $iin s  provides a common inertial 

reference for all of other frames. Unless stated 
otherwise, it is assumed that all variables referring to 
the motion of the reference frame with respect to the 
inertial frame are denoted with a "bar" (e.g. ω ), all 
variables referring to the body motion with respect to 
the inertial frame use capital letters (e.g. Ω ) and all 
variables referring to the motion of the body frame with 
respect to the reference frame are also called attitude 
error variables and do not have a special designation 
(e.g. ω ). The variables commonly found in any of 
these categories are some attitude representation s 
belonging to a group isomorphic to SO( )3 9,10 and 

angular velocity ω ∈ℜ3, which is always expressed in 
the frame, motion of which it describes. Note that 
differentiation of the angular velocity with respect to 

time &ω ∈ℜ3 is also carried out in this frame. 
Additional notation includes transformation to a 
rotation matrix C(s) ∈SO( )3 , the exact form of 
which depends on the attitude representation s. Also, 
depending on this representation are the identity 
attitude 1s  and the inverse attitude s 1− , such that 

s s s s 11 1
s

− −= =o o , where o denotes this group’s 
composition operation. The symmetric positive definite 
and constant inertia matrix I I IT∈ℜ = >×3 3 0:  is 
defined in the body frame. The identity operator is 
denoted by E . Attitude trajectories and torque are 
assumed to be functions of time t t≥ 0  unless stated 
otherwise. Their initial values specified at time t0  are 
denoted with subscript "0". The attitude trajectory of 
the body with respect to a reference frame $ril qr

 is 

denoted by a pair s,ωb g . The attitude trajectory 

S, Ωb g  with respect to the inertial frame $iin s  is 

equivalently denoted by another pair s,
r

ωb g , which 

implies that  

 S s sr= o , (1) 

 Ω ω ω= + C(s) r . (2) 
Rigid body rotational kinematics and dynamics are 
described by  

 
&S h(S, )= Ω , (3) 

 I I g(S, )&Ω Ω Ω Ω= − +×
, (4) 

where the exact form of kinematics h(s, )ω  depends 
on the particular attitude representation, s, and 
g(S, )Ω ∈ℜ3  is the net applied torque expressed in 

the body frame. All contributions to the net applied 
torque are always expressed in the body frame. The 
rotational kinematics and dynamics can equivalently be 
re-written in terms of s,ωb g  and s ,r rωb g  with respect 

to some reference frame $ril qr
:7 

 &s h(s, )= ω , (5) 

 I I I g(s, )B r r& &ω Ω Ω ω ω= − − +×
, (6) 

where & &ω ω Ω ωB r r rC(s) C(s)= − ×
∆

. These 

equations are said to describe error kinematics and 
dynamics (or simply error dynamics, for brevity) and 
trajectories s,ωb g  generated by them are called error 
trajectories. 

Additional nomenclature is introduced as needed 
throughout this paper. 

DUALITY OF ATTITUDE MOTIONS IN 
INERTIAL AND MOVING FRAMES 

This section establishes that the attitude motion of a 
rigid body with respect to an inertial frame can be 
mapped one-to-one onto the attitude motion with 
respect to an arbitrary moving frame. This mapping is 
mechanized via the appropriate re-formulation of the 
net applied torque. The operator that defines this 
mapping is presented in the following theorem.  

Theorem 1: 

Let the attitude error trajectory s,ωb g  defined with 

respect to the inertial reference frame $ri Ol q  be driven 

by the net applied torque g(s, )Oω . Then reference 
trajectory dependent linear shift operator 

L ¬ ¥ ¬ ¬ Æ ¬3 3 3 3m r:  

 
L L Er = = +

- + " Œ¬

¥

¥

D D
ω ω Ω Ω

ω ω ω ω ω

r r

B r 0r r

I

I I

, &

& , , &

n s
3
 (7) 

 
acting on the net applied torque g(s, )Oω  results in a 

new applied torque g (s, ) g(s, )r O Oω ω=
∆

Lr , such 
that the error trajectory s,ωb g  is preserved but with 

respect to the moving reference frame  $ril qr
 provided 

the same initial attitude error conditions s ,0 0ωb g. The 
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short-hand notation "Lr " used above and later in this 

paper should be read as follows: "the operator L  
defined by the angular velocity trajectory of the  

reference frame $ril qr
, ω ωr r, &d i ." Another short-hand 

notation "g (s, )r Oω " should be read as follows: "net 

applied torque generated via operator Lr  from the 
torque g(s, )Oω  originally applied to the body so as to 
drive it along the attitude trajectory s,

O
ωb g .  

Proof: 

Since the original reference frame $ri Ol q  is inertial, 

ω ω ω= = ≡& &
B 0 , ω Ω≡ , Eqs.(5,6) can be re-

written as 

 &s h(s, )= ω , (8) 

 I I g(s, )O
&ω ω ω ω= - +¥

. (9) 
Then applying the new net torque g (s, )N Oω  drives 
the attitude error with respect to the moving reference 

frame $ril qr
 according to 

 I I I g (s, )B r r O& &ω Ω Ω ω ω= - - +¥
, (10) 

which reduces to the form identical to Eq.(9) by 
inspection. Thus, it is shown that the attitude error 
kinematics and dynamics are governed by the same 
differential equations with respect to both reference 
frames, $ri Ol q  and $ri rl q . Provided the same initial 

conditions s ,0 0ωb g, attitude error trajectories s,ωb g  
will also be identical with respect to both reference 
frames based on the existence and uniqueness theorem 
for solutions of ordinary differential equations.11 This 
result was achieved via the application of the operator 
Lr  as described in Theorem 1 . Q.E.D. 

Corollary 1 : 

The mapping defined by the operator Lr  introduced in 
the previous theorem (Eq.(7)) is invertible and the 
inverse is defined by Lr

-1 : 

 L Er
- ¥ ¥= - + -1

D
Ω Ω ω ω ωI I I B r

&
. (11) 

Proof: 

The existence of the inverse mapping follows from the 

existence of the identity mapping E L=
D

0,0l q  

obtained by inspection of Eq.(7). Also, by inspection, it 
can be shown that  

 L L L L E rr r r r
- -= = "1 1 , . (12) 

Q.E.D. 

  
Corollary 2 : 

The operator Lr  reduces to identity when defined by 
any inertial reference frame. Consequently, the operator 
is invariable with respect to any inertial reference 
frame. 

The results of Theorem 1  can be extended to the case of 
two non-inertial reference frames with the help of 
Corollary 1 . 

Theorem 2: 

Let the attitude error trajectory s,ωb g  defined with 

respect to the non-inertial reference frame $ril qR
 be 

driven by the net applied torque g(s, )Rω . Then 
reference trajectories dependent linear shift operator 

L ¬ ¥ ¬ ¥ ¬ ¥ ¬ ¬ Æ ¬3 3 3 3 3 3m r:  

 L L LR
r

r R= -
D

1
 (13) 

acting on the net applied torque g(s, )Rω  will result in 

a new applied torque g (s, ) g(s, )r R Rω ω=
D

LR
r , such 

that the attitude error trajectory s,ωb g  is preserved but 

with respect to another moving reference frame $ril qr
 

provided the same initial error conditions s ,0 0ωb g. 
Proof: 

The result follows immediately from the successive 
application of Theorem 1 and Corollary 1 to map from 
the non-inertial reference frame $ril qR

 to the inertial 

frame and, using Theorem 1 again, from the inertial 
frame to the non-inertial frame $ril qr

. 

 Remark 1 : 

It follows from Theorem 2 that, using the mapping 
Eq.(13), it is always possible to generate identical 
attitude error trajectories s,ωb g , provided that the 
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initial conditions s ,0 0ωb g match. The latter 
requirement is not needed if the entire families of 
solutions of corresponding differential equations are 
compared. In this case, matching of two families of 
trajectories amounts to matching of the generating 
differential equations. It will be said that the attitude 
error dynamics are identical in this case. 

Remark 2 : 

It should be emphasized that the function g(s, )Rω  
itself is not transformed by the operators. In other 
words, it is still evaluated along the original attitude 
trajectory as if the body attitude motions were described 
by the error trajectories s,ωb g  with respect to the 

frame $ril qR
 and not $ril qr

.  

Both remarks will be explored in the next section that 
studies the problems of attitude stabilization and 
tracking. 

DUALITY OF ATTITUDE 
STABILIZATION AND TRACKING 

The problem of stabilizing the attitude of a rigid body is 
an example of a problem known as a regulator problem 
in the general control literature. The control law solving 
this problem seeks to drive the error trajectory to the 
origin. Note that another type of control problem, 
known as a set point control, is easily converted to a 
regulator problem for the attitude motion.3 Indeed, 
given any attitude representation ′s  and its desired 
constant value sd , the set point control problem is 
converted to a regulator problem via change of 
variables, for example:  

 s s sd= ′ −
∆

o 1
. (14) 

Thus, both attitude stabilization and attitude set point 
control are treated within the framework of the 
regulator problem.  

The attitude regulator problem is solved by a control 
law that drives the attitude error trajectory s,ωb g  to 

1 0s ,b g. If this objective is achieved for any initial 

conditions s0 0,ωb g  then the control law is globally 
stabilizing.  

The attitude tracking problem can also be viewed as the 
problem of driving s,ωb g  to 1 0s ,b g, however, the 
attitude error trajectories are no longer defined with 

respect to an inertial frame, but with respect to some 
desired non-inertial frame $ril qr

. 

The following theorem describes relationship between 
these two types of control laws. 

Theorem 3: 

In the absence of disturbances, any control law 
stabilizing attitude in the error domain P , i.e. 
" Œs0 0,ωb g P with s, ωb g defined with respect to 

some inertial reference frame $ri Ol q , can be used to 

generate tracking control law via the application of the 
operator Lr . The resulting control law preserves the 
error dynamics and domain P , but with respect to the 
desired non-inertial reference frame $ril qr

. 

Proof: 

The proof follows directly form the Theorem 1, since 
Eq.(8) is shared by both definitions of attitude error and 
Eq.(9) and Eqs.(10)  were shown to be identical with 

the use of the operator Lr . Q.E.D. 

Entirely similar approach based on Theorem 2 leads to 
the following theorem given without proof. 

Theorem 4: 

In the absence of disturbances, any control law tracking 
a reference frame $ril qR

 in the attitude error domain 

P , i.e. " Œs0 0,ωb g P, can be used to generate 
tracking control law via the application of the operator 
LR

r . The resulting control law will preserve the error 
dynamics and domain P , but with respect to the 
desired non-inertial reference frame $ril qr

. 

Corollary 3 : 

Theorems 3 and 4 can also be re-formulated for the 
cases of globally stabilizing and tracking control laws, 
respectively. The re-formulation is straightforward and 
is omitted for brevity. 

Remark 3 : 

In this paper, a disturbance is defined as an unknown 
attitude dependent torque. The absence of disturbances 
is needed in order to make control generation via 
proposed operators realizable. The reason becomes 
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clear from Remark 2, which states that the net applied 
torque must be evaluated along the original attitude 
trajectory. This is realizable only if all contributors of 
torque are either known or do not depend on the 
attitude. To this end, the net applied torque is presented 
in the following form: 

 
g(s, ) u(s, ) (s, )

p d(s, )
R R R

R

ω ω τ ω
ω

= +
+ + . (15) 

where u Œ¬3 is the torque contribution from the 
active control, τ Œ¬3  is the known attitude dependent 
uncontrolled torque, p ∈ℜ3  is the attitude independent 

uncontrolled torque, d Œ¬3  is the disturbance or the 
unknown attitude dependent uncontrolled torque. The 
goal is to preserve all of these contributions while the 
actual reference trajectory is changed from s,

R
ωb g  to 

s,
r

ωb g . The active control u can be preserved by 

construction. The known attitude dependent 
uncontrolled torque τ  can be compensated via the 
following augmented active control  

 
u(s, ) u(s, )

(s, ) (s, )
R
r

R

R r

ω ω
τ ω τ ω

=
+ -

D

. (16) 

Of course, the attitude independent uncontrolled torque 
p  is preserved by definition. Thus, it is cleat that, if 
d 0∫ , the net applied torque is preserved along the 
new trajectory: 

 g(s, ) u(s, ) (s, ) pR R
r

rω ω τ ω= + + . (17) 
However, in the presence of disturbances, the 
difference between the net torque g(s, )R

rω  achievable 
along the new trajectory, i.e. the argument for the 

operator LR
r

, and the net torque driving the original 
trajectory, g(s, )Rω ,  

 δg(s, ) d(s, ) d(s, )R
r

r Rω ω ω= -  (18) 
cannot be eliminated. 

In practice, the disturbances are always present, so the 
control performance is now re-evaluated using the 
concept of Bounded-Input-Bounded-Output (BIBO) 
stability.  

Theorem 5: 

Any attitude stabilizing control law that guarantees 
exponential stability12 of the error dynamics in the 

domain P , i.e. " Œs0 0,ωb g P with s, ωb g defined 

with respect to some inertial reference frame $ri Ol q , 

can be used to generate tracking control law that 
guarantees BIBO stability in the same error domain P  

for any desired non-inertial reference frame $ril qr
 via 

the application of the operator Lr .  

This theorem can be viewed as a special case of the 
next theorem that deals with the case of two tracking 
control laws. Hence the proof is deferred until Theorem 
6. 

Theorem 6: 

Any attitude tracking control that guarantees 
exponential stability of the error dynamics in the 
absence of disturbances in the domain P , i.e. 
" Œs0 0,ωb g P with s, ωb g defined with respect to 

the non-inertial reference frame $ril qR
, can be used to 

generate tracking control law that guarantees BIBO 
stability in the same error domain P  for any desired 

non-inertial reference frame $ril qr
 via the application of 

the operator LR
r

.  

Proof: 

The preceding results indicate that the equations 
generated for the error dynamics with respect to $ril qr

 

with the use of the operator LR
r

 and the augmented 

active control u(s, )R
rω  will match the original 

equations but with the additional input δg(s, )R
rω . 

Hence, the problem can be viewed as driving the 
exponentially stable system with this input δg(s, )R

rω . 
This implies that the new system is BIBO stable.12 
Q.E.D. 

Remark 4 : 

The additional input δg(s, )R
rω  is bounded if both 

disturbances, d(s, )rω  and d(s, )Rω , are bounded in 
the attitude domains mapped from P  by their 
respective trajectories.  

Remark 5 : 

Similar BIBO stability can be shown even without the 
use of the augmented control (Eq.(16)) for 
compensation of the known uncontrolled torque. Then, 
exponential stability in the absence of any uncontrolled 
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torque demonstrated with respect to the reference frame 
$ril qR

 under the active control u(s, )Rω  implies BIBO 

stability with respect to any other reference frame $ril qr
 

with the use of the new active control LR
r u(s, )Rω . 

The results are also easily extended for global stability. 

Corollary 4 : 

Theorems 5 and 6 can also be re-formulated for the 
cases of global exponentially and BIBO stable control 
laws. As in Corollary 3, the re-formulation is 
straightforward and is omitted for brevity. 

The last result of this section concerns the dependency 
of an attitude control law on the inertia matrix.  

Theorem 7: 

Any attitude tracking control law that globally 
guarantees the identical error dynamics in the absence 
of disturbances with respect to any arbitrary non-
inertial frame must necessarily depend at least linearly 
on the inertia matrix I . 

Proof: 

Suppose there exists such control law ¢ Œ¬g 3  that 

does not depend on the inertia matrix I . Let $ril qR
 and 

$ril qr
 be the arbitrary non-inertial reference frames. 

According to the conditions of this theorem, the control 
law must globally guarantee the identical error 
dynamics in the absence of disturbances with respect to 
both of these frames. The results of Theorem 4 and 
Corollary 4 suggest the existence of control laws 

generated via LR
r ¢g  and Lr

R ¢g , which also achieve this 
objective. Thus, it appears that there exist several 
torque, which, when applied to the same set of 
differential equations of the form Eqs.(5,6), produce 
identical error dynamics. Under the assumption that the 
error dynamics are controllable at least some time for 
some reference frames, it is inferred that different 
torque will produce different error trajectories s, ωb g 
starting with the same initial conditions s0 0,ωb g . 
Consequently, all torque must be identical in these 
cases, which, in turn, requires the operator LR

r  to 

become the identity operator E . Note that, as ¢g  is said 
to be independent from the inertia matrix I , the 
dependency on I  must be eliminated using only the 
definition of the operator LR

r  itself.  It can be seen by 

inspection of Eqs.(7,13) that this is not generally 
possible for arbitrary reference frames $ril qR

 and 

$ril qr
. Hence, the contradiction is reached and ¢g  must 

necessarily depend on the inertia matrix I . The fact that 
the dependency is at least linear is easily established by 
considering such ¢g  that it is independent from I  for 

some reference frame $ril qR
 and inspecting the form of 

LR
r ¢g . Q.E.D. 

Remark 6 : 

The result of the last theorem provides an interesting 
insight into a so-called reduction property of certain 
control laws. Such control laws do not require 
knowledge of the inertia matrix for the special case of 
attitude stabilization.7 The results presented in this 
paper indicate that each stabilizing control law, which 
is independent from the inertia matrix I , establishes a 

corresponding tracking control law via the operator Lr  
that incorporates the inertia matrix linearly and 
possesses the reduction property.  

The results of this section provide a basis for 
introduction of adaptive control as they show that 
unavoidable uncertainties in the inertia matrix and 
presence of disturbances will corrupt attitude tracking 
performance. 

MINIMUM ORDER ADAPTIVE RE-
DESIGN OF ATTITUDE TRACKING 

The adaptive re-design addressed in this section deals 
with attitude tracking control laws that are generated 

via the adaptive operator 
~
Lr  derived from Lr  and 

acting on stabilizing control laws, which are 
independent from the inertia matrix.  

Nomenclature: 

The matrix En Œ¬ ¥n n  is the identity. The product of 

the inertia matrix I = = =
∆

I I I i jij ij ji, , , , ,1 2 3 and 

the vector a Œ¬3  both expressed in $b in s  can be 

transformed into a different matrix-vector product 
Ia a I= ≈ , where 

a a⊕ ×=
L

N
MMM

O

Q
PPP

∈ℜ
∆

diag
a a
a a

a a
l q

2 3

1 3

1 2

3 6

0
0

0
 and 

I T= Œ¬I I I I I I11 22 33 12 13 23
6 . Any 
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adaptive element is denoted with “~” and the difference 
between the adaptive and true values is denoted with 
“δ ”. The adaptive re-design methodology is developed 
in this section under the assumption that all unknown 
torque contributions are constant, i.e. d 0∫ , p p0≡ . 

This also means that the operator 
~
Lr  acts only on the 

actively controlled contribution u(s, )Oω  of the net 
applied torque g(s, )Oω . 

Several extensions of the proposed methodology, 
including adapting to bounded disturbances and 
operating on inertia dependent tracking control laws, 
are discussed in the next section. 

The adaptive re-design depends on the type of the 
original Lyapunov function that can be found to 
demonstrate that the nominal control law u(s, )Oω  
ensures asymptotic stability of the error dynamics in the 
absence of disturbances. Let Lyapunov function of 
Type 1 be radially unbounded, defined as 

 
V V01 010 0( , ) , & ( , )

,
s s

s 1 0s

ω ω
ω

> ≤
∀ ≠ ∀ ≠  (19) 

with &V01  negative definite in s and such that its partial 
derivative with respect to ω  can be written as 

 
∂

∂
=V01( , )

( , )
s

w s I01
Tω

ω
ω , (20) 

where w s01( , )ω Œ¬3 .  

Let Lyapunov function of Type 2 also be radially 
unbounded, defined as  

 
V V02 020 0( , ) , & ( , )

,
s s

s 1 0s

ω ω
ω

> ≤
∀ ≠ ∀ ≠  (21) 

with &V02  negative definite in s. However, its partial 
derivative with respect to ω  can only be written as 

 
∂

∂
=V02 ( , )

( , )
s

w s02
Tω

ω
ω , (22) 

where w s02( , )ω Œ¬3 . In other words, the inertial 
matrix I  cannot be extracted from the partial derivative 
as in the case of Type 1.  

As was shown in the preceding section, the nominal 

operator Lr  acting on the control law u(s, )Oω  
generates a new control law, which, in the absence of 
uncontrolled torque, produces error dynamics identical 
to those produced by u(s, )Oω . Clearly, in this 

nominal case, stability can still be shown using the 
direct method applied to the same Lyapunov function. 

However, any realizable form of the operator Lr  will 
have to use estimates of the true inertia matrix and as 
such will potentially be perturbed. Thus, the adaptive 

operator 
~
Lr  is sought such that, acting on the original 

control law, it ensures asymptotically vanishing attitude 
errors even in the presence of constant unknown torque 
p0 .  Modifications to the original Lyapunov functions 
are introduced to demonstrate this property. Note that 

the original operator Lr  is linear and incorporates the 
inertia matrix linearly. In conjunction with the fact that 
rigid body dynamics are linear in torque, these results 
warrant the use of the standard MRAC methodology of 
replacing unknown constants with their time-varying 
counterparts. Depending on the type of the Lyapunov 

function different adaptive operators 
~
Lr1 and 

~
Lr 2  are 

proposed.  

If the original Lyapunov function is of Type 1, the 

adaptive operator 
~
Lr1 uses the time-varying inertia 

matrix 
~I  instead of the unknown true inertia I  and the 

time-varying compensating torque ~q p q0=- +
D

δ  
instead of the unknown compensating torque -p0 . 
With the use of the notation above, the adaptive 

operator 
~
Lr1 is defined as 

 
~ ~L Er1 = +

D
Frυ , (23) 

where  

 

F F

E

r r

B r 3

Œ¬ =

- +LNM OQP
¥

¥ ≈ ¥ ≈ ≈

3 9 ,

&

D

Ω Ω ω ω ω
, (24) 

 
~

~

~υ =
L
NMM
O
QPP Œ¬

D I
q

9
. (25) 

The perturbative torque is defined in the body frame as 
the difference between the results of the adaptive and 

nominal operators, 
~
Lr1 and Lr , acting on the same 

original control law in the presence of the unknown 
torque p0 :  

 
δ ω ω

δυ
g u s u s p

F
r1 O O 0

r

= - +
=

D ~
( , ) ( , )L Lr r1

. (26) 

The following theorem demonstrates adaptive re-design 
for systems with Type 1 Lyapunov function.  
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Theorem 8: 

In the presence of the unknown inertia matrix I  and 

constant torque p0 , the adaptive operator 
~
Lr1 with the 

following adaptation law 

 
~&υ Γ= - F wr

T
01 , (27) 

where Γ Γ ΓŒ¬ = >¥9 9 0: T , asymptotically 
stabilizes the error dynamics with respect to the 
reference frame $ril qr

 by operating on any inertia 

matrix independent and asymptotically stabilizing 
control law, stability of which can be shown with Type 
1 Lyapunov function. 

Proof: 

Consider the following positive definite and radially 
unbounded candidate function 

 V V1 01
1
2

( ) ( )s, , s, Tω δυ ω δυ Γ δυ1= + -
,(28) 

derived from the original Type 1 Lyapunov function. 
The derivative of the candidate function with respect to 
time evaluated along the trajectories of the closed-loop 
system is  

 

& ( ) & ( )
&

V V1 01s, , s,

w II g01
T 1

r1
T

ω δυ ω

δ δυ Γ δυ1

=
+ +- - . (29) 

The last two terms vanish with the use of adaptation 

law of Eq.(27) and recognizing ~& &υ δυ∫ . Hence, 
&V1 0≤  and, with V1 being radially unbounded, 
s, ,ω δυ ∈ ∞l . Also, δυ& ∈ ∞l  based on Eq.(27) 
provided that V01  is smooth in ω . Since the original 

function &V01  is negative definite in s, the largest 

invariant set s, ,ω δυb gm r: &V1 0=  must necessarily 

include s 1s=  with &s 0= . Then it follows that ω = 0  
for any attitude representation s. (Otherwise, non-zero 
angular velocity must not induce motion of the body 
frame, which is not possible). Hence, the largest 

invariant set is s, , s 1 , 0sω δυ ωb gm r: = = , which 

also leads to δυ& = 0  based on Eq.(27). Thus, according 
to LaSalle's invariance principle13, δυ  and, 
consequently, ~υ  are guaranteed to be bounded with ~υ  
asymptotically approaching some constant (but not 
necessarily true) value. The attitude error is guaranteed 
to be bounded and to vanish asymptotically. Q.E.D. 

The results of the preceding theorem indicate that any 
stabilizing control law that permits Type 1 Lyapunov 
function can be re-designed to adapt to the unknown 
inertia matrix and constant torque by extending the 
dimension of the state space by no more than 9 with 
only 6 contributed from the inertia matrix adaptation. 
This number increases significantly if only the function 
of Type 2 can be used to prove stability of the original 
control law.  

The adaptive operator 
~
Lr 2  is defined as 

 
~ ~L Er2 = +

D
Q rµ , (30) 

where the true unknown matrix Q Œ¬ ¥3 9  is  

  Q Q Q I1 2=
D

, (31) 

 Q1 =
-

-
-

L

N
MMM

O

Q
PPP

D
0

0
0

23 23

13 13

12 12

I I
I I

I I
, (32) 

 Q2 =
-

-
-

L

N
MMM

O

Q
PPP

D
D

D
D

I I I
I I I
I I I

13 12 32

23 13 12

21 23 13

, (33) 

  D
D

I I I i jij ii jj= - =, , , ,12 3, (34) 

 µ µ µ ωr r1
T

r2
T

B r

T T

=LNM OQP Œ¬ ¥
D

& 9 1
, (35) 

 µ r1

T
=
D

λ λ λ1
2

2
2

3
2

, (36) 

 µ r2
T=

D
λ λ λ λ λ λ1 2 1 3 2 3 , (37) 

 λ ωi i i i= - =
D

W , , ,1 2 3 . (38) 
 
The perturbative torque in this case changes to  

 
δ ω ω

δ µ δ
g u s u s p

Q q
r2 O O 0

r

= - +
= +

D ~
( , ) ( , )L Lr r2

. (39) 

The adaptive re-design for systems with Type 2 
Lyapunov function is also different and is described in 
the following theorem.  

Theorem 9: 

In the presence of the unknown inertia matrix I  and 

constant torque p0 , the adaptive operator 
~
Lr 2  with the 

following adaptation law 
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~&Q w 02 r

T= - -α 1 µ , (40) 

 
~&q w 02= - -β 1

, (41) 
where α β, Œ¬+ , asymptotically stabilizes the error 

dynamics with respect to the reference frame $ril qr
 by 

operating on any inertia matrix independent and 
asymptotically stabilizing control law, stability of 
which can only be shown by Type 2 Lyapunov 
function. 

Proof: 

Consider the following positive definite and radially 
unbounded candidate function 

 

V V

tr

2 02

1 1

2 2

( , , , ) ( , )s Q q s

Q I Q q I qT T

ω δ δ ω

δ δ δ δ

=

+ +- -α βm r  (42) 

derived from the original Type 2 Lyapunov function. 
The derivative of the candidate function with respect to 
time evaluated along the trajectories of the closed-loop 
system is  

 

& ( ) & ( )

& &

V V

tr

2 02s, , Q, q s,

w I g

Q I Q q I q
02
T 1

r2

T 1 T 1

ω δ δ ω

δ

δ δ δ δ

=
+

+ +

-

- -α βm r
. (43) 

After some re-arrangement of terms utilizing the trace 
invariance under cyclic permutations14, the derivative 
of the candidate function becomes  

 

& ( , , , ) & ( , )
&

&

V V

tr
2 02s Q q s

I Q Q I Q w

w I q q I q

1 T 1
r 02

T

02
T 1 T 1

ω δ δ ω

δ δ δ µ

δ δ δ

=

+ +

+ +

- -

- -

α

β

m r  (44) 

and all the terms except the original derivative &V02  
vanish with the use of the adaptation law of Eqs.(40,41) 

and recognizing that 
~& &Q Q∫ δ , ~& &q q∫ δ . The rest of the 

proof and its results parallel those of Theorem 8 . Q.E.D. 

Hence, the dimension of the state space for adaptation 
of stabilizing control laws that only permit Type 2 
Lyapunov functions is increased by 21 compared to the 
dimension required with Type 1 Lyapunov functions. 
All of the increase comes from a different form of the 
adaptive gain needed to handle the unknown inertia 
matrix. Note that the adaptation law in the form of 
Eqs.(40,41) has been also developed for a different type 
of the attitude error.8  

CONTROL LAW  EXTENSIONS   
The requirement imposed on both Type 1 and Type 2 
Lyapunov functions to have negative definite 
derivatives in s presents a significant complication to 
MRAC development, which is explained in the 
following remarks. 

Remark 7 : 

The problem is particularly difficult for Type 1 
Lyapunov functions. At the present time, we are 
unaware of any controls, stability of which can be 
proven via Type 1 functions with derivative negative 
definite in s. Since there is a number of control laws 
stability of which is established with "almost" Type 1 
Lyapunov functions,3-5 the performance of MRAC is 
now evaluated for these cases. "Almost" Type 1 
Lyapunov functions have &V01 0≤ , which is negative 
definite in ω . They as well as the associated control 
laws follow naturally from the passivity properties of 
both the rigid-body dynamics and the rotational 
kinematics.3,5 The asymptotic stability of  the attitude 
itself is established via LaSalle's invariance principle.3-

5,13 The fact that the largest invariant set in 
s, 0ω ωb gm r: =  implies s 1s=  is established as the 

only solution to u(s,0) 0O = . However, the adaptive 

operator 
~
Lr1 augments the original control, so that 

~
Lru(s,0) 0O =  no longer implies s 1s=  unless the 
reference frame is inertial or the inertia matrix and the 
disturbance torque are estimated exactly. Since the 
estimates are not guaranteed to be exact, the MRAC 
extension only achieves tracking within a constant 
attitude offset. The following example illustrates this 
result.  

Example 1: 

Let the original control law be4  

 u ,
O

σ ω σ ωb g = - - " Œ¬+k k k k1 2 1 2, , , (45) 
where σ  is the modified Rodrigues parameters10 
representation of SO( )3  used here in place ofs. Using 
~
Lru( ,0)Oσ  even in the absence of uncontrolled torque 
leads to σ  asymptotically approaching a constant 
value, which is a solution of  

 
k1σ δ σ ω

σ ω δ σ ω

=

+ ¥

IC

C IC
r

r r

( ) &

( ) ( )
. (46) 
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Hence, σ = 0  if either δI 0≡  or ω ωr r, 0,0&d i b g≡ , 

otherwise it may not be 0 . 

Remark 8 : 

The question may arise whether there are any controls 
satisfying Type 2 Lyapunov functions. The direct 
answer can be found via the application of the 
structured dynamic model inversion8 proposed as a way 
of finding control laws that produce the prescribed error 
dynamics. This methodology first leads to a desired 
angular acceleration &ωd , which can in turn be used to 
solve for the required net torque. Selecting the 
asymptotically stable attitude error dynamics leads 
directly to the Type 2 Lyapunov function. In fact, the 
operator Lr  can be easily modified to act on &ωd  itself. 

Corollary 5 : 

The operator ′ ℜ × ℜ ℜ → ℜL 3 3 3 3m r:  

 
¢= ¢ = +

- + " Œ¬

¥

¥

L L Er

D D
ω ω Ω Ω

ω ω ω ω ω

r r

B r 0r r

I I

I I

, &

& , , &

n s
3
 (47) 

acting on the desired angular acceleration &ωd generates 
such net control torque that produces the prescribed 
error dynamics. 

Note that the new operator is still linear in the inertia 
matrix, so the standard MRAC methodology is 
similarly applicable.  

Example 2 : 

A simple choice for the asymptotically stable attitude 
error dynamics is a damped oscillator, which is 
presented below in the form of modified Rodrigues 
parameters:10 

 && & , ,σ σ σ+ + = " Œ¬+c k c k0 . (48) 
The resulting adaptive control has been formulated 
using a somewhat different definition of the attitude 

error:8 σ Σ σ= −
∆

r :, where Σ  indicates the rigid-body 

attitude with respect to the inertial frame $iin s . A very 

similar derivation can be obtained simply by following 
the methodology described in this paper, which 
produces the Type 2 Lyapunov function control and its 
corresponding adaptation law. 

As shown in this paper, Type 1 Lyapunov functions can 
lead to a much more efficient adaptation law. At the 
present time, it is unclear if such functions can be found 
via the structured dynamic model inversion. 

The next extension presented in this paper augments the 

form of the original operator Lr  when only the 
asymptotic stability needs to be preserved and not the 
exact error dynamics. 

Remark 9 : 

The original operator Lr  can be modified without 
affecting asymptotic stability provided the 
modifications appear in the tangent space of the 
Lyapunov function. In particular, this extension has 
been utilized without acknowledging its existence in 
order to generate velocity-free attitude tracking control 
law.7 Since this is a very useful form of the extension, it 
is formally presented in the following corollary.  

Corollary 6 : 

The following operator ′′ ℜ × ℜ ℜ → ℜL 3 3 3 3m r: , 

which does not require knowledge of the angular 
velocity, preserves the asymptotic stability of the 
original control law provided that there exists a 
Lyapunov function V ( )s,ω > 0  such that 
∂

∂
=V( )s,

I Tω
ω

ω : 

 
¢¢= ¢¢ = +

+ " Œ¬¥

L L Er

D D
ω ω ω

ω ω ω ω

r r r

r r r r

IC(s)

C(s) IC(s)

, & &

, , &

n s
3
. (49) 

This result is obtained by removing terms lying in the 
tangent space of V ( )s,ω  and by using triple product 
identities to eliminate remaining dependencies on the 
angular velocity.  

Example 3 : 

Several angular velocity free stabilizing controllers 
have been proposed recently.3,5 Their development 
utilizes passivity of both the rigid-body dynamics and 
the rotational kinematics. The passivity of the former is 
easily established with the use of the well-known 

Lyapunov function: Vω ( )ω ω ω=
1
2

TI . The overall 

Lyapunov function is then created as the sum of 
Vω ( )ω  and another function, Vs( )s , of the particular 
attitude representation s. Clearly, the resulting function 
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satisfies the criterion of Corollary 6, thus, permitting 
application of the operator ′′Lr . This way the velocity- 
free tracking controller can be established for any of the 
existing velocity-free stabilizing controllers. In 
particular, one recently proposed tracking control law7 
follows directly from the simple form of the more 
general stabilizing controller.5 Note that, while the 
stability of such tracking controllers can of course be 
proven, there is no need to do so if they are generated 
from the existing stabilizing controllers via the operator 

′′Lr . 

Finally, it should be mentioned that the adaptive re-
design presented in this paper can be extended to the 
case of non-constant bounded disturbances. The re-
design should follow methodology similar to the one 
developed for a different form of the attitude error.6  

CONCLUSIONS 
A family of trajectory dependent operators acting on the 
input torque is introduced. The basic operators 
mechanize mapping for preserving attitude motions 
with respect to different moving reference frames. As a 
result, duality of attitude stabilization and tracking is 
established. General dependency of tracking control 
laws on the inertia matrix is also demonstrated. Then 
the advanced operators are developed for adapting the 
mapping in the presence of the unknown inertia matrix 
and constant uncontrolled torque. The minimum order 
of the adaptive gains is evaluated for different types of 
control laws. Finally, various extensions to basic 
operators are presented, including coupling with the 
structured dynamic model inversion and angular 
velocity free controllers. All of the results presented are 
valid for any choice of the attitude representation. 
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