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EFFECT OF COORDINATE SELECTION ON ORBIT 
DETERMINATION 

James W. Woodburn* and Vincent Coppola† 

The application of linear estimation techniques to the non-linear problem of or-

bit determination requires that a linearization about the spacecraft trajectory be 

performed. This linearization process can be performed in any number of differ-

ent coordinates. The effect of coordinate selection on the resulting orbit state 

and orbit state error covariance in batch and sequential estimators is investigated 

through examination of the mathematics of the estimators and a numerical ex-

ample. Estimation in equinoctial elements is seen to be preferred to Cartesian 

coordinates in both batch and sequential estimation when the orbital motion is 

dominated by two-body dynamics. Means for affecting a change in the estima-

tion coordinates through localized modifications to batch and sequential estima-

tors are identified which allow for simple conversion of an estimator operating 

in Cartesian coordinates to be equivalent to an estimator operating in equinoctial 

elements.  

INTRODUCTION 

Traditional orbit estimation employs linear estimation techniques to estimate corrections to the 

non-linear trajectory of the satellite. As both the dynamical model and the measurement models 

are non-linear, the application of linear methods to the problem of orbit determination requires 

that linearization be performed about the nominal trajectory of the satellite and on the mathemati-

cal model of the measurements. The linearization about the trajectory may be global, as is the 

case in batch weighted least squares (BWLS) estimators, or it may be local, as is the case in the 

extended Kalman filter (EKF). In either case, the linearization of the trajectory and measurement 

processes allows the mapping of measurement residuals into state corrections via the linear ma-

chinery of the estimator. In this analysis, we are primarily concerned with the linearization of the 

trajectory. 

The linearization process, which represents variations about the nominal trajectory using a 

first order Taylor series expansion, can be performed in any coordinates. Different coordinates 

are generally related by a non-linear transform, while variations in coordinates are related linearly 

by the appropriate Jacobian matrices. If the problem being treated is truly linear, there should be 

no preferential coordinates (all coordinates are equally valid) outside of issues of numerical com-

putation. In the case of extremely small variations around the non-linear nominal orbit trajectory, 

the same conclusion is generally accepted. It has been suggested, however, that as variations from 

the nominal trajectory are allowed to grow in magnitude, certain coordinates yield superior linear-
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ization properties relative to other potential coordinate selections in the problem of orbit determi-

nation. Specifically, orbital elements have been stated to have superior linearization properties 

compared to Cartesian coordinates. This conclusion is reached based on superior agreement be-

tween the orbit error covariance function associated with errors about a non-linear nominal trajec-

tory and populations of sample variations which have been integrated in a non-linear fash-

ion
1,2,3,4,5

. It should be noted that there is little significance to the distinction between different 

coordinate selections for the case of determination of maintained orbits
2
.  While coordinate pref-

erence in this sense has been demonstrated in multiple studies, the connection to the orbit deter-

mination process requires additional study. 

The questions to be examined in this research are:  

1. Is there a difference in the non-linear orbit determination solution achieved using differ-

ent coordinates during the orbit determination process? 

2. Is there a difference in the information content of the orbit error covariance function 

based on the use of different coordinates during the orbit determination process? 

3. Where in the orbit determination algorithm is linearization applied and can the effect of 

coordinate selection be localized to these points? 

 

The first question (i.e. the effect of coordinate selection on the orbit determination solution) is 

examined both through the mathematical machinery of the estimation method (batch weighted 

least squares and extended Kalman filter) and through numerical investigation. To facilitate the 

numerical study, an extension to AGI’s Orbit Determination Tool Kit (ODTK)
6
 has been con-

structed which allows for estimation to be performed natively in either Cartesian or equinoctial 

coordinates. A further augmentation to ODTK is made which allows for Cartesian coordinates to 

be included in the estimation state while state corrections are constructed in a manner which emu-

lates estimation in equinoctial elements. 

A difference in the information content of the orbit error covariance function exists if there is 

a difference, beyond that expected from numerical truncation errors, between the covariance ob-

tained with two sets of coordinates after transformation to a common set of coordinates using the 

appropriate Jacobian matrices.  We first examine the state error transition function, used in both 

BWLS and the EKF, for coordinate dependence. The state error transition function is used in 

BWLS to map measurement residuals to a common epoch and in the EKF during the time update 

of the state error covariance. We then investigate the non-linear state update process in each type 

of estimator to determine how and where coordinate selection affects the estimation process. 

Finally, we examine the computational algorithms of the batch weighted least squares and ex-

tended Kalman filter estimators to determine if algorithmic changes based on coordinate selection 

can be localized to a small number of areas. Proper abstraction in the software design allows for 

the efficient implementation of new coordinates for research purposes or to satisfy requirements. 

Specifically, we show that the improved performance seen when estimating in equinoctial ele-

ments can be achieved through minor augmentations of the estimation algorithm when estimating 

in Cartesian coordinates. 

GENERAL ASSUMPTIONS 

A set of general assumptions are made which apply to both the batch weighed least squares 

and extended Kalman filter estimation methods for the purpose of this analysis. It is assumed that, 

• propagation of the non-linear orbit trajectory can be performed in any coordinates 

with equivalent accuracy, 
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• evaluation of the non-linear observation model  can be performed in any coordinates 

with equivalent accuracy, 

• required non-linear transformations between coordinates can be computed to suffi-

cient accuracy so as not to adversely affect the accuracy of the estimation process,  

• required partial derivatives can be computed to sufficient accuracy so as not to ad-

versely affect the accuracy of the estimation process. 

The first two assumptions are easily satisfied if the third assumption of accurate non-linear coor-

dinate transformations is satisfied since a single set of coordinates can be selected for the non-

linear orbit and observation model computations. With regards to the fourth assumption, it is well 

known that certain coordinates have singularities which limit their range of application. For ex-

ample, classical orbital elements have singularities at zero inclination and zero eccentricity. While 

the existence of such limitations is acknowledged, in this study we will limit ourselves to the use 

of equinoctial elements where such concerns are minimized. 

In addition to the orbit state, force modeling parameters such as the ballistic coefficient and 

solar pressure coefficient are typically estimated. Since the definition of these parameters is inde-

pendent of the coordinates used to represent the orbit state, we choose not to address them direct-

ly in this analysis. For the same reason, we do not address measurement model specific estima-

tion states such as biases and stochastic clock parameters.  

BACKGROUND 

We define two sets of coordinates, Cartesian position and velocity and equinoctial elements 

represented in the same inertial reference frame
7,8
. The orbit state representations in Cartesian 

coordinates X  and the equinoctial elements α  are related by non-linear transformations.  

 ( )αGX =  , (1) 

 ( )XU=α  . (2) 

A variation in one set of coordinates is mapped to a variation in another set of coordinates us-

ing the Jacobian between the two coordinates, 

 α
α
∆

∂
∂

=∆
X

X + H.O.T. , 
(3) 

and 

 X
X
∆

∂
∂

=∆
α

α + H.O.T. , 
(4) 

where H.O.T. denotes higher order terms than first order. The state error covariance associated 

with an estimate X̂  of the true state X  is defined as the expected value of the outer product of 
the state error

9
,  

 ( )( ) 
 −−=

T

X XXXXEP ˆˆ  . 
(5) 
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Defining XXX −=∆ ˆ , we can express XP  as 

 [ ]TX XXEP ∆∆=  + H.O.T. . (6) 

Substituting the relation between state differences in different coordinates gives 

 








∂
∂

∆∆
∂
∂

=
T

T

X

XX
EP

α
αα

α
 + H.O.T. . 

(7) 

Since the Jacobian itself is not a random variable, it can be moved outside the expectation opera-

tor to arrive at   

 [ ]
T

T

X

X
E

X
P

α
αα

α ∂
∂

∆∆
∂
∂

= + H.O.T. . 
(8) 

The expectation operation on the outer product of errors in the orbit elements yields the state error 

covariance expressed in terms of the orbit elements. The resulting expression provides the trans-

formation of state error covariance between different coordinates
10
, 

 

T

X

X
P

X
P

αα α ∂
∂

∂
∂

=  . 
(9) 

The relationship given in Equation (9) describes an equivalence of information content in the 

covariance matrix. The previously referenced studies have shown that error covariance expressed 

in certain coordinates provides a better model of the error distribution than when it is expressed in 

other coordinates. We will use Equation (9) in the sequel to determine if a change in the coordi-

nates used for estimation results in a change in the information content as expressed in the state 

error covariance. 

The observation models in BWLS and EKF estimators are non-linear functions of the orbit 

state. Let ObsY  represent measured observations and Y represent the modeled values of those ob-

servations. The observation residual y  is defined as the difference between the measured and 

modeled values of the observations,  

 YYYy Obs −=∆=  . (10) 

The non-linear model of the observations is computed using the non-linear representation of the 

trajectory. Since the non-linear trajectory is the same in different coordinates, the modeled value 

of an observation has no dependence on the coordination selection for the estimator. The meas-

urement residual is therefore also independent of the coordination selection. 

The Jacobian of the measurement representation with respect to the estimation state is required 

to map measurement residuals into state corrections. The measurement Jacobian matrices can be 

written as 

 
X

Y
H X ∂

∂
=   

(11) 

for the case of Cartesian coordinates and  
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αα ∂
∂

=
Y

H   
(12) 

when equinoctial elements are used to represent the trajectory. XH  and αH are related by the 

Jacobian between the two sets of coordinates,  

 
X

H
X

Y
H X ∂

∂
=

∂
∂

∂
∂

=
αα

α α  . 
(13) 

Both the BWLS and EKF estimators use linearized time transition of variations about the state 

and linear measurement updates. The state error transition matrixΦ  is used in the BWLS estima-
tor to map state differences at the solution epoch 0t  to state differences at each measurement time 

t . In the EKF estimator, the state error transition matrix is used to move the state error covariance 
forward in time between measurements. The transition of state differences represented in Carte-

sian coordinates and equinoctial elements are represented as
11
, 

 ( ) ( ) ( )00 , tXtttX X ∆Φ=∆  , (14) 

 ( ) ( ) ( )00 , tttt αα α ∆Φ=∆  . (15) 

Substituting Equation (4) into Equation (14) yields 

 ( ) ( ) ( )
( )

( )0
0

0
0 , tX

tX

t
tttX

X
∆

∂
∂

Φ=∆
∂
∂ αα

α  , 
(16) 

and using 
α

α
∂
∂

=







∂
∂

−
X

X

1

 we find 

 ( ) ( ) ( )
( )

( )0
0

0
0 , tX

tX

t
tt

X
tX ∆

∂
∂

Φ
∂
∂

=∆
α

α α  . 
(17) 

Comparing Equation (14) and Equation (17) we see that
11
 

 ( ) ( ) ( )
( )0
0

00 ,,
tX

t
tt

X
ttX ∂

∂
Φ

∂
∂

=Φ
α

α α  . 
(18) 

The inverse relationship to compute the state error transition matrix in equinoctial elements from 

the state error transition matrix in Cartesian coordinates is given as  

 ( ) ( ) ( )
( )0
0

00 ,,
t

tX
tt

X
tt X α

α
α ∂

∂
Φ

∂
∂

=Φ  . 
(19) 

BATCH WEIGHTED LEAST SQUARES ESTIMATION 

In BWLS estimation, a global linearization is used to enable the application of the linear algo-

rithm to the non-linear problem of orbit determination. In using global linearization, a single non-
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linear reference trajectory serves as the reference about which variations are represented. The 

non-linearity of the problem is addressed through the use of multiple iterations of linear correc-

tions at the solution epoch until the process has converged. With each linear correction, the non-

linear reference solution is updated to serve as a new reference for the next iteration. 

Minimization of the sum of squares of residuals 

The BWLS algorithm is derived with the goal of minimizing the sum of the squares of the 

weighted measurement residuals. Based on the fact that the measurement residuals are independ-

ent of the coordinate selection, we can state that the non-linear trajectory which minimizes the 

BWLS cost function is also independent of the selection of coordinates used for linearization. 

This statement is based on the presumption of convergence to the same local minimum. 

The path to convergence 

Though the actual non-linear state which minimizes the sum of squares of the residuals is in-

dependent of coordinates, the path taken from the initial conditions to the solution may vary with 

the selection of coordinates. As mentioned, the BWLS algorithm overcomes the non-linear nature 

of the orbit determination problem through iteration. The mapping of the measurement partials to 

the BWLS epoch requires the state error transition matrix which represents the linearized dynam-

ics in a particular set of coordinates. For observation i , this mapping is represented as 

 
( )

( )iX
ii

iX tt
X

Y

tX

Y
H ,0

0

, Φ
∂
∂

=
∂
∂

=   
(20) 

in Cartesian coordinates and  

 
( )

( )iii
i tt

Y

t

Y
H ,0

0

, αα αα
Φ

∂
∂

=
∂
∂

=   
(21) 

in equinoctial elements. The normal equation, expressed here in Cartesian coordinates
9
,   

where y  is an array of residuals and W is the weighting matrix, provides one possible method of 

computing the update to the non-linear state during the BWLS iteration. We can use the normal 

equation to demonstrate the effect of coordinate selection on the BWLS solution path. From 

Equation (13) and Equation (20), we see that 

 
( ) ( )

( )
( )

( )
( )0
0

,

0

0

00

,
tX

t
H

tX

t

t

Y

tX

Y
H i

ii
iX ∂

∂
=

∂
∂

∂
∂

=
∂
∂

=
αα

α α  . 
(23) 

Substituting Equation (23) into the normal equation, Equation (22), gives 

By inspection we note that the inverse in Equation (24) is given by 

 ( ) yWHHWHX T

XX

T

X

1−=∆  , (22) 

 
( )
( )

( )
( )

( )
( )

yWH
tX

t

tX

t
HWH

tX

t
X T

T

T

T

ααα

ααα

0

0

1

0

0

0

0

∂
∂












∂
∂

∂
∂

=∆

−

 . 

(24) 
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If the residual weighting is chosen as the inverse of the variances of the measurement noise, then 

the least squares covariance is given as
11
, 

for Cartesian coordinates and  

 ( ) 1−= ααα HWHP T
  (27) 

for equinoctial elements. Examination of Equation (25) then provides the relationship between 

the least squares covariance in Cartesian elements and the least squares covariance in equinoctial 

elements, 

Noting that 
α

α
∂
∂

=







∂
∂

−
X

X

1

, we see that Equation (28) is equivalent, as expected, to Equation (9). 

Substitution of Equation (25) into Equation (24) gives 

We recognize the existence of the normal equation solution expressed in equinoctial elements in 

the right hand side of Equation (29). Therefore, for a particular iteration, the BWLS correction in 

Cartesian coordinates is related to the correction in equinoctial elements simply by the Jacobian 

between the coordinate types,  

which is, of course, in agreement with Equation (3). The final step in the BWLS iteration is to 

update the non-linear state, which is expressed as 

for the case of Cartesian coordinates and 

for equinoctial elements. We note that since higher order terms exist in the transformation be-

tween Cartesian coordinates and equinoctial elements,  

 
( )
( )

( )
( )

( )
( )

( ) ( )
( )

T

TT

T

tX

t
HWH

tX

t

tX

t
HWH

tX

t
−

−
−−

∂
∂

∂
∂

=










∂
∂

∂
∂

0

01
1

0

0

1

0

0

0

0 αααα
αααα . 

(25) 

 ( ) 1−= X

T

Xx HWHP . (26) 

 
( )
( )

( )
( )

T

x
tX

t
P

tX

t
P

−−

∂
∂

∂
∂

=
0

0

1

0

0 αα
α . 

(28) 

 
( )
( )

( ) yWHHWH
t

tX
X TT

αααα
1

0

0 −

∂
∂

=∆  . 
(29) 

 
( )
( )

α
α

∆
∂
∂

=∆
0

0

t

tX
X  , 

(30) 

 XXX ∆+=   (31) 

 ααα ∆+=   (32) 
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Thus despite the fact that the iteration process will eventually lead both solutions to the same re-

sult, within the limits of BWLS convergence, the path to achieving the solution will be different. 

We also note that Equation (30) indicates that the coordinates in which the BWLS estimator op-

erates can be changed through a simple modification to the non-linear state update. For example, 

to convert a BWLS estimator operating in Cartesian coordinates to perform like one operating in 

equinoctial elements, the Cartesian state update is converted to an equinoctial state update using 

Equation (30). The non-linear state is then updated in equinoctial elements and transformed back 

to Cartesian coordinates using the non-linear coordinate transformation described by Equation 

(1). 

The dependence of the convergence path upon coordinate selection means that it is possible 

for the number of iterations required for the BWLS algorithm to converge to depend on the coor-

dinate selection. There may also be cases where convergence is achieved using one set of coordi-

nates while the use of a different set of coordinates leads to divergence of the algorithm. Such 

cases would indicate a difference in the capture region of the estimator. If measurement editing is 

being employed, editing decisions on particular iterations can also differ. Disparate editing deci-

sions on the final iteration would result in a different state solution.  

SEQUENTIAL ESTIMATION 

In the EKF, local linearization is employed to enable the application of the linear Kalman fil-

ter algorithm to non-linear problems such as orbit determination. Each time a new observation is 

processed, the non-linear trajectory is updated and serves as the new reference for linearization. 

The EKF is not iterated by design, but does typically experience an initialization period due to a 

lack of proper a priori covariance information. During this initialization period, the covariance 

structure develops based on the dynamics of the problem and the processing of measurements. 

The EKF is more sensitive to divergence during the initialization period leading to the conclusion 

that the EKF has a smaller capture region than BWLS. At the end of the initialization period, the 

filter is considered to be converged or steady-state and the filter covariance enables a powerful 

data editing capability. The EKF is a recursive machine of time and measurement updates. We 

will examine both types of updates to identify where coordinate selection plays a role.  

Time Updates 

The sequential time update algorithm moves the non-linear state and the associated state error 

covariance from the time of the time of the last observation (or the initial time) to the time of the 

next observation. As mentioned above, the transition of the non-linear state is assumed to be of 

equivalent accuracy, regardless of coordinate selection. The transition of the state error covari-

ance is performed in a linear manner using the state error transition function about the nominal 

non-linear trajectory
11
, 

 ( ) ( ) ( )11|1|1 ,,, ++++ +ΦΦ= kkXkk

T

XkkXkkXkkX ttQttPttP  , (34) 

where the notation kkP |1+  indicates that the covariance represents uncertainty at time 1+kt includ-

ing measurement information through time kt  and ( )1, +kkX ttQ  is the additive process noise ma-

trix which accounts for dynamical uncertainty over the interval from time kt  to time 1+kt  and is 

 ( )αα ∆+≠∆+ GXX  . (33) 
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added at time 1+kt . Substituting Equation (18) and Equation (9) into Equation (34), applying a 

linear transformation to the process noise matrix ( )1, +kkX ttQ  and simplifying yields 

 
( )
( )

( ) ( ) ( )
( )

( )
( )

( ) ( )
( )

T

k

k
kk

k

k

T

k

k
kk

T

kkkk

k

k
kkX

t

tX
ttQ

t

tX

t

tX
ttPtt

t

tX
P

1

1
1

1

1

1

1
1|1

1

1
|1 ,,,

+

+
+

+

+

+

+
++

+

+
+ ∂

∂

∂

∂
+

∂

∂
ΦΦ

∂

∂
=

αααα αααα ,  
(35) 

which simplifies to 

 
( )
( )

( ) ( ) ( )[ ] ( )
( )

T

k

k
kkkk

T

kkkk

k

k
kkX

t

tX
ttQttPtt

t

tX
P

1

1
11|1

1

1
|1 ,,,

+

+
+++

+

+
+ ∂

∂
+ΦΦ

∂

∂
=

αα αααα  . 
(36) 

Recognizing that the term inside the brackets is simply kkP |1+α  allows us to write 

 
( )
( )

( )
( )

T

k

k
kk

k

k
kkX

t

tX
P

t

tX
P

1

1
|1

1

1
|1

+

+
+

+

+
+ ∂

∂

∂

∂
=

αα α  . 
(37) 

Equation (37) is again identical to Equation (9) and shows that the EKF time update algorithm 

results in the same information content for the state error covariance in all coordinates, based on 

the assumption that the non-linear reference trajectory is identical. 

Measurement Updates 

The sequential measurement update algorithm computes a correction to the state and an update 

to the state error covariance at the current time based on a measurement residual at the current 

time. The measurement updates of the state and the state error covariance using different coordi-

nates can be shown to be related through the Jacobian relating the two sets of coordinates. 

The state update for a measurement at time 1+kt for the Cartesian representation is expressed 

as
11
 

 kXkkkk yKXX += +++ |11|1  . (38) 

where XK  is the Kalman gain defined as
11
 

 ( ) 1−+= RHPHHPK T

XXX

T

XXX  (39) 

and R is the measurement white noise variance which is independent of coordinate selection by 

definition. The part of XK shown inside parentheses above is the measurement residual error var-

iance. Using Equation (13) we see that,  

 
T

T

X

T

XXX H
X

P
X

HHPH αα
αα
∂
∂

∂
∂

= , (40) 

which can be simplified as 

 
TT

XXX HPHHPH ααα=  (41) 
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to show the coordinate independence of the measurement residual error variance. We substitute 

Equation (9) and Equation (13) into the first two terms of Equation (39) to yield  

 ( ) 1−+










∂
∂

∂
∂

∂
∂

= RHPHH
X

X
P

X
K TT

TT

X αα
α

αα
, (42) 

where we have dropped the coordinate designation on the measurement residual error variance to 

reflect its coordinate independence. Equation (42) can be simplified to yield the relationship be-

tween the Kalman gain in Cartesian coordinates and the Kalman gain in equinoctial elements, 

 ( ) ααα αα
K

X
RHPHHP

X
K TT

X ∂
∂

=+
∂
∂

=
−1

. (43) 

The relationship between the gains can be applied to Equation (38) to provide the relationship 

between the measurement state update in the different coordinates, 

 α
αα α ∆
∂
∂

=
∂
∂

==∆
X

yK
X

yKX X , (44) 

or in the opposite sense, 

 X
X

yK
X

yK X ∆
∂
∂

=
∂
∂

==∆
αα

α α . (45) 

Equations (44)-(45) indicate that coordinate selection in the measurement state update can be im-

plemented by computing the modeled measurements and measurement partial derivatives in a 

single set of coordinates and then transforming the state update to the coordinates native to the 

estimation process. For example, the measurement state update for an augmented EKF which op-

erates in Cartesian coordinates but emulates an EKF operating in equinoctial elements is accom-

plished by computing the normal update to the Cartesian state update 

 yKX X=∆ , (46) 

then transforming the result to an update in equinoctial elements, 

 X
X
∆

∂
∂

=∆
α

α . (47) 

The non-linear state is updated in equinoctial elements, 

 ααα ∆+= +++ kkkk |11|1  . (48) 

Finally, the updated equinoctial elements are transformed back to Cartesian coordinates using the 

full non-linear transformation, 

 ( )1|11|1 ++++ = kkkk GX α  . (49) 

The measurement covariance update in Cartesian coordinates is given by
11
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 kkXXXkkXkkX PHKPP |1|11|1 ++++ −=  . (50) 

Substituting expressions in terms of equinoctial elements on the right hand side of Equation (50) 

yields 

 

T

kk

T

kkkkX

X
PHK

XX
P

X
P

αααα αααα ∂
∂

∂
∂

−
∂
∂

∂
∂

= ++++ |1|11|1  , 
(51) 

which further simplifies to 

 

T

kkkkX

X
P

X
P

αα α ∂
∂

∂
∂

= ++++ 1|11|1  , 
(52) 

or in the opposite sense, 

 

T

kkXkk
X

P
X

P
∂
∂

∂
∂

= ++++

αα
α 1|11|1  . 

(53) 

We note that the coordinate Jacobian matrices in Equations (52)-(53) are evaluated at time 1+kt . 

Equations (52) and (53) are the result that we expected, with one subtle distinction: the Jacobian 

matrices given in the right hand side of both equations are evaluated using the non-linear state 

prior to the measurement update of the state.  

Let us now consider the case where we wish to augment an EKF operating in one set of coor-

dinates to perform the measurement update in another set of coordinates (i.e. changing an estima-

tor operating in Cartesian coordinates to emulate estimation in equinoctial coordinates). In this 

circumstance, we need to remember that the a posteriori covariance is associated with the a poste-

riori state. The covariance measurement update augmentation to emulate estimation in equinoctial 

elements therefore starts with the computation of the normal covariance update in Cartesian coor-

dinates given by Equation (50). The Cartesian representation of the covariance 1|1 ++ kkXP is then 

converted to equinoctial elements with the Jacobian computed using the a priori state kkX |1+ (state 

at time 1+kt prior to the application of the measurement at time 1+kt ), 

 

T

kk

kkX

kk

kk
X

P
X

P
|1

1|1

|1

1|1

+
++

+
++ 





∂
∂







∂
∂

=
αα

α  . 

(54) 

The equinoctial representation of the state error covariance given in Equation (54) is the same as 

what would have been computed in an EKF operating natively in equinoctial elements. This state 

error covariance is a measure of the uncertainty in the a posteriori equinoctial state. To generate 

the equivalent a posteriori state error covariance in Cartesian elements, we need convert back to 

Cartesian coordinates using the Jacobian computed using the a posteriori state 1|1 ++ kkX  (state at 

time 1+kt  after the application of the measurement at time 1+kt ), 
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(55) 

COORDINATE PREFERENCE 

We have shown that coordinate selection can affect the behavior of both BWLS and EKF es-

timators in the orbit determination problem. The question now becomes: Should we expect one 

set of coordinates to be preferred over another set? As previously mentioned, a number of studies 

have shown that covariance represented in orbital elements provides a better representation than 

Cartesian coordinates of the distribution of a set of trajectories which represent perturbations 

drawn from an initial Gaussian distribution about a nominal trajectory. This indicates that the lin-

earization of the dynamics in terms of orbital elements has superior properties relative to lineari-

zation in terms of Cartesian coordinates.  

In the two body problem, which dominates the overall dynamics in most cases, the particular 

choice of orbital elements where the energy is represented through the mean motion n and the 

angle in the orbit is given by the mean longitude L results in the equations of motion being linear 

rather than non-linear. Let the equinoctial elements be represented as 

 [ ] [ ]TT

gf qpLnhkLnaa == ψχα  (56) 

where we use the mean motion as the energy parameter of the element set as originally expressed 

by Arsenault and Koskela
8
 in preference to the semi-major axis length used by Broucke and Cel-

fola
7
 to take advantage of the improved linearization of the dynamics when using mean motion. 

The time derivative of the equinoctial elements under two body motion is given as 

 [ ]Tn 00000=αɺ . (57) 

The time derivative of the linearized dynamics is given as 

 [ ]Tn 00000 ∆=∆αɺ , (58) 

which leads to the following result  

 ( )αααα ∆+=∆+
dt

d
ɺɺ . (59) 

Since the two body dynamics are linear when expressed in these coordinates, the linearization of 

the dynamics is not an approximation of motion about the nominal trajectory, it is an exact repre-

sentation of motion about the nominal trajectory. A Gaussian distribution will therefore propagate 

exactly as a Gaussian distribution for all time. In contrast, the two body dynamics expressed in 

Cartesian coordinates the two body dynamics are not linear. The linearized dynamics in Cartesian 

coordinates are an approximation valid only in a local region about the nominal. Thus the equi-

noctial set of coordinates should be preferred over Cartesian as their update is not an approxima-

tion.  

The connection to orbit estimation comes in the update of the non-linear state. The state cor-

rection is computed, for both the BWLS and the EKF, under the assumption that the updated non-

linear state will behave in a manner predicted by the linearized dynamics. This assumption will 
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obviously be more valid for cases where the linearized dynamics are a better representation of the 

non-linear dynamics. In the context of this study, we therefore expect an update in equinoctial 

elements to demonstrate superior performance to an update in Cartesian coordinates. The signifi-

cance of the improvement will be determined by size of the update. When updates are small, as is 

the case for the vast majority of orbit determination, empirical evidence demonstrates that either 

representation is adequate. We will therefore examine cases which are more representative of low 

resolution tracking with low data density to provide examples of the effect of coordinate selection 

on the orbit determination process. 

NUMERICAL EXAMPLE 

The following simplified example is chosen to demonstrate the effect of coordinate selection. 

A satellite in a high LEO orbit is tracked by a single tracking station using range, Doppler, azi-

muth and elevation measurements with a time between observations of 15 minutes. Approximate 

initial conditions for the orbit and initial error root variances on the position and velocity are giv-

en in Table 1. The error root variances are provided in the Gaussian frame (radial, along track, 

cross track). The initial conditions and tracking schedule for this test case is designed to produce 

a large initial uncertainty prior to the processing of measurements.  

Table 1. Example case parameters. 

Orbital  

Element 
Value Uncertainty Value 

a 8674 Km Rσ  4768 m 

e 0.003 Iσ  12026 m 

i 68.7 deg Cσ  7791 m 

Ω  0.3 deg RDotσ  7.52 m/s 

ω  207.5 deg IDotσ  3.79 m/s 

ν  152.4 deg CDotσ  8.12 m/s 

 

The initial covariance was generated by processing a small amount of data using a BWLS es-

timator. To test the equivalence of the state error transition function between the Cartesian and 

equinoctial element coordinate selections, the initial state error covariance was propagated using 

two body dynamics without process noise in both Cartesian coordinates and equinoctial elements. 

The state error covariance evolution was used as a proxy for the state error transition matrix since 

it is an existing output of ODTK. The state error covariance matrices were then transformed to 

the Gaussian frame for comparison. The resulting time histories of the one sigma position uncer-

tainties are shown in Figures 1 and 2.  
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Figure 1. Position error covariance propagated in Cartesian coordinates. 

 

Figure 2. Position error covariance propagated in equinoctial elements. 

It is interesting to note that despite the fact that the linearization in equinoctial elements is exact 

while the linearization in Cartesian coordinates is not, there is no difference in information con-

tent in the state error covariance histories when the covariance is propagated in a linear manner. 

For testing of the estimation algorithms, the perturbation due to J2 was added to the dynamical 

model. To push the estimation algorithms toward the computation large corrections, no data was 
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processed for 3 days after the initial conditions. Figure 2 shows the results of the BWLS orbit 

determination. The number of iterations shown along the X axis includes the total number of iter-

ations required to converge. Note that while both formulations start with the same initial weighted 

RMS (73970) and achieve the same final weighted RMS (0.9163), the number of iterations re-

quired using Cartesian coordinates is double the number required using equinoctial elements. Ad-

ditionally, the convergence path in Cartesian coordinates includes one iteration where the 

weighted RMS increased while the convergence path in equinoctial elements contained no itera-

tions where the RMS increased. The weighted RMS is the root mean square of the measurement 

residuals where each residual has been weighted by the inverse of the measurement noise root 

variance. 

 

Figure 3. BWLS convergence using Cartesian coordinates and equinoctial elements. 

Three variants of the EKF were tested: Estimating natively in Cartesian coordinates, estimat-

ing natively in equinoctial elements and estimating in Cartesian coordinates with an augmentation 

to perform the measurement update in equinoctial elements. Range and Doppler measurement 

residuals were computed during estimation with the EKF but were not accepted for measurement 

updates to avoid non-linear effects of the measurement model during the processing of the first 

measurements. Figures 4-5 contain the resulting residual ratio plots and position error covariance 

in the Gaussian frame for estimating natively in equinoctial elements and estimating in Cartesian 

coordinates. The case of estimating in Cartesian coordinates with an augmentation to perform the 

measurement update in equinoctial elements is indistinguishable from the case of estimating na-

tively in equinoctial elements. The residual ratio plots show the time history of processed meas-

urement residuals which have been divided by the corresponding measurement error root vari-

ance. Ideally, 99% of the residual ratios would lie between +/- 3. A trend of residual ratios mov-

ing away from the desired range of +/- 3 indicates divergence of the filter. As seen in Figure 3, 

the EKF in Cartesian mode diverged from the true trajectory indicating that the measurement up-

date in Cartesian coordinates was too large to be within the linear range of the estimator.  

Figures 6-7 contain plots of the position error covariance. Again, the case of estimating in Car-

tesian coordinates with an augmentation to perform the measurement update in equinoctial ele-

ments is indistinguishable from the case of estimating natively in equinoctial elements. The secu-

lar in-track error growth at the left side of both plots is due to propagation in the absence of 

measurements. At the time when the first measurements are processed, the in-track uncertainty is 



 16

approximately 200Km (one sigma). The secular in-track error growth at the right side of Figure 5 

is indicative of filter divergence. 

 

Figure 4. Residual ratios resulting from estimation in Cartesian coordinates. 

 

 

Figure 5. Residual ratios resulting from estimation in equinoctial elements and the Cartesian coordinates 

with measurement update in equinoctial elements. 
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Figure 6. Position error covariance resulting from estimation in Cartesian coordinates. 

 

 

Figure 7. Position error covariance resulting from estimation in equinoctial elements and the Cartesian co-

ordinates with measurement update in equinoctial elements. 

Even prior to the divergence of the EKF, Figure 8, the state estimate is different from that pro-

duced by processing in equinoctial elements due to non-equivalence of the measurement update. 

These state differences then result in differences in the state error covariance. On the other hand, 
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Figure 9, the native equinoctial and the augmented Cartesian results are identical for all practical 

purposes (less than 1 cm of difference after 7 days). 

 

Figure 8. In-track position difference between Cartesian and equinoctial solutions and in-track position 

uncertainty from both solutions. 

 

Figure 9. In-track position difference between native equinoctial and augmented Cartesian solutions. 
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CONCLUSION 

BWLS and EKF estimation methods are modified linear estimation techniques commonly ap-

plied to the non-linear problem of orbit determination. Differences in the effect of coordinate se-

lection between BWLS and EKF based orbit determination can be traced to a difference in linear-

ization approaches. 

In BWLS based estimation, the non-linear solution and associated error covariance which 

minimizes the sum of squares of the residuals is seen to be independent of the coordinate selec-

tion. Coordinate selection in BWLS orbit determination does affect the path taken to the final so-

lution. This difference in the convergence path can lead to a difference in the number of iterations 

required for convergence or even to a difference in the capture region of the orbit determination 

process. A change in coordinate selection can be implemented through augmentation of the non-

linear state update at the end of each BWLS iteration without modification of rest of the BWLS 

implementation. 

In EKF based estimation, the non-linear solution and associated state error covariance are both 

influenced by the selection of trajectory coordinates. The coordinate dependence of the EKF algo-

rithm results from the use of local linearization where the non-linear state is updated as each 

measurement is processed. Applying the linear measurement update in different coordinates re-

sults in a slightly different non-linear state and state error covariance. A change in coordinate se-

lection can be implemented through augmentation of the measurement update algorithm without 

modification of the time update algorithm. 

The use Cartesian coordinates in orbit determination is a widely accepted and successful prac-

tice. For the case where satellite motion is dominated by the two body dynamics, the selection of 

orbital elements, especially those containing the mean motion as the energy parameter, has been 

seen to provide the desirable characteristic that the dynamics are nearly linear (or exactly linear in 

the case of the two body problem). When state corrections are large, the selection of orbital ele-

ments as the estimation coordinates is seen to have superior convergence properties relative to 

Cartesian coordinates. The improved convergence properties are evident in both batch and se-

quential estimators and include a likely expansion of the capture region of the estimator. 

The propagation of the post-fit state error covariance is seen to yield equivalent information 

content when performed in different coordinates. For example, the state error covariance propa-

gated in Cartesian coordinates can be linearly transformed to yield the same result as the state 

error covariance propagated in equinoctial elements. 
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