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ABSTRACT 
An important aspect of attitude determination is 
covariance analysis. It can be essential for precise and 
robust instrument pointing, target acquisition and 
communications. As part of this analysis, covariance 
visualization can be a powerful tool directly illustrating 
the spatial structure of the uncertainty. While 
covariance visualization of position naturally produces 
ellipsoids in three-dimensional space, covariance 
visualization of attitude is not as straightforward. 
Various attitude error parameterizations and 
corresponding covariance definitions have been 
introduced for attitude determination in both single-
frame and filter configurations. None produce ellipsoids 
that can be easily interpreted in three-dimensional 
position space. This paper describes how pointing 
uncertainty affected by both relative position and 
attitude can be characterized and visualized using 
several useful projections, including a unit sphere and a 
focal plane.  

INTRODUCTION 
Construction of the attitude covariance matrix depends 
on the type of attitude representation. A problem arises 
from the fact that three parameter attitude 
representations contain singularities and higher-order 
representations contain constraints.1 Several methods 
have been proposed to circumvent this problem,2-4 one 
of which is selected in this paper. The selected method 
assumes that attitude perturbations with respect to its 
mean estimate can be interpreted as a Gaussian 
multivariate process using some attitude representation 
isomorphic to )3(SO . In this case, for all practical 
purposes, only small perturbations with respect to the 
mean attitude estimate are considered. The Gaussian 
probability density function (pdf) in the region of small 
attitude perturbations can be adequately characterized 

by another Gaussian pdf defined in terms of a three-
parameter representation with the singularity far 

removed from its “zero”. Let C~  be the direction cosine 
matrix that represents stochastic attitude perturbations 
with respect to its mean estimate. The following first 
order approximation may be applied for small attitude 
perturbations: 

 δ CEC 3 −≈
~

, (1) 
where 33×ℜ∈3E  is the identity matrix, 
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 [ ] 3ℜ∈≡ Tδ θ zyx δθδθδθ . (3) 
The attitude covariance matrix can now be constructed 
using the three-parameter representation above: 
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where { }E  denotes the expected value operator. The 

covariance matrix 33×ℜ∈θ θP  is positive definite and 

symmetric, 0PP T
θ θθ θ >= , which means that there 

are only six unique elements in the matrix.  

POINTING COVARIANCE 
The covariance matrix defined in the previous section 
can be used directly to define either k-sigma ellipsoids 
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or ellipsoids encompassing certain probability levels. 
However, since the covariance is not based on position 
variables, its visualization in three-dimensional position 
space is not instructive. One of the important practical 
uses of attitude covariance is for pointing analysis. Two 
aspects of this analysis will be covered in this paper. 
First, consider a vector, perturbations of which with 
respect to its mean estimate follow Gaussian 
distribution and are uncorrelated with attitude. For 
example, the mean estimate and covariance of relative 
position vector between two spacecraft can be obtained 
from an orbit-determination (OD) process, which has 
no correlation to the attitude. Then, this stochastic 
vector and its mean estimate, all originally defined in 
some known reference frame, can be deterministically 
mapped into the frame defined by the mean attitude 
estimate. The vector and its mean are denoted by 

3~ ℜ∈′V  and 3ℜ∈V , respectively.  Note that 

VVVΔ −′≡′ ~
 is the zero mean Gaussian 

multivariate process. The vector V′~
 can be in turn 

mapped into a perturbed attitude frame using the 

direction cosine matrix C~ :  

 
Vδ CΔVδ CVΔV

VΔCVCVCV
′−−′+≈

′+=′=
~~~~~

. (5) 

The mean estimate of V~  remains the same 

 { } VV =~E , (6) 
while the covariance becomes defined in terms of  

 Vδ CΔVδ CVΔVVΔV ′−−′≈−≡ ~
. (7) 

Using Eq.(2) and truncating at first order yields: 
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It is convenient to define the relative stochastic vector 
 

 δ θVVδ
V
ΔVδ V ×+′≈≡ ˆ

, (9) 

where 
V
VΔVδ

′
≡′  and 

V
VV ≡ˆ . Note that δ V , 

Vδ ′  and δ θ  are zero mean Gaussian multivariate 
processes, and that according to the original assumption 

Vδ ′  and δ θ  are uncorrelated. Then the following 

covariance, which takes into account attitude 
uncertainty, can be found: 

 
T

θ θVVVV VPVPP ××+′≈ ˆˆ
, (10) 

 
where  

 { } 33×ℜ∈≡ T
VV δ Vδ VP E , (11) 

 { } 33×ℜ∈′′≡′ T
VV VδVδP E . (12) 

The resulting covariance VVP  differs from the original 

covariance VVP′ , because according to Eq.(10) it is 
expanded in directions perpendicular to the mean vector 
estimate. This expansion, due to the added attitude 
uncertainty, may not simply result in the enlargement of 
certain dimensions of the corresponding ellipsoids. 
Depending on the orientation of the original ellipsoid 
with respect to the mean vector, the resulting ellipsoid 
may also change in orientation (Fig.1).  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Pointing covariance analysis 
The ellipsoids described above in three dimensions are 
special cases of n -dimensional surfaces of equal 
probability density, which can be a very useful and 
visual measure of uncertainty constructed from the 
covariance matrix.  In general, Gaussian pdf for a zero-
mean n -dimensional vector nℜ∈x  is defined as5 
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where { }T
xx xxP E≡ . A surface of equal probability 

density in n  dimensions becomes a hyper-ellipsoid, 
which encloses an n -dimensional volume and has an 
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associated probability of locating x  inside.  The hyper-
ellipsoid is defined by the following equation:  

 
2k=− xPx 1

xx
T

, (14) 
where k  is the scaling factor that determines the size of 
the hyper-ellipsoid. The hyper-ellipsoid defined by the 
un-scaled covariance matrix is called 1-sigma. 
Similarly, k-sigma hyper-ellipsoids can be introduced. 
Note that k  can be derived from the associated 
probability level of locating x  inside the enclosed 
volume. The relationship between the scaling factor k  
and the associated probability )(kpn  also depends on 
the dimension n :5 
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for odd ,...5,3,1=n  and 
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for even ,...6,4,2=n .  

The analysis presented above demonstrates how to 
quantify the uncertainty in the perceived direction of a 
stochastic vector as viewed from a stochastic frame. For 
example, the expected uncertainty in the direction of a 
relative position vector must be augmented as shown 
above when it is interpreted for an instrument fixed in 
the spacecraft body frame, the attitude of which is 
subject to attitude determination. This discussion leads 
to the second aspect of the covariance analysis covered 
in this paper: apart from the ellipsoid itself, its 
projections onto a unit sphere and the focal plane of an 
instrument may be of interest. These projections are 
developed in the next two sections. 

 
COVARIANCE PROJECTION ONTO A 

UNIT SPHERE 
Development of the covariance projection onto a unit 
sphere can be facilitated by the introduction of a new 
coordinate frame defined by the right-handed triad of 

the unit vectors { }Z,Y,X ˆˆˆ  with VZ ˆˆ = . All of these 
vectors are defined with respect to the mean attitude 
frame. By construction, the plane containing vectors X̂  

and Ŷ  is orthogonal to the normalized mean vector V̂  
and is tangential to the unit sphere at that point. Then, 
the two- dimensional Cartesian coordinates 2ℜ∈d  

defined along vectors X̂  and Ŷ  can be used to 
characterize projections of the three-dimensional 

vectors V~  and V : 
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and 
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Equivalently, in compact form,  

 VHδ d δ= , (20) 
where 32×ℜ∈H  is the projection matrix defined as 
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Note that, according to Eq.(20), δ d  is also a zero mean 
Gaussian multivariate process: 

 { } { } 0δ VHδ d == EE . (22) 
Also, note that 
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so that the pseudo-inverse 23×+ ℜ∈H  is greatly 
simplified: 

 ( ) [ ]YXHHHHH T1TT ˆˆ==≡
−+

. (24) 
 
It is instructive to use Eq.(9) to identify contributions to 
the projection from the position covariance and from 
the attitude covariance:  
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and 2
T EGG = , [ ] 23ˆˆ ×+ ℜ∈−== XYGG T . 

 
COVARIANCE PROJECTION ONTO A 

FOCAL PLANE 
A focal plane projection is similar to the projection onto 
a plane tangential to the unit sphere developed in the 
previous section. However, unlike the tangential plane, 
the focal plane defined by the right-handed triad 

{ }Z,Y,X ˆˆˆ  is perpendicular to the unit vector Ẑ  and is 

not necessarily perpendicular to the vector V . In 
addition, the focal ratio f  scales the coordinates in the 
focal plane. In this case, the two-dimensional Cartesian 
coordinates 2ℜ∈d  are derived from the three 

dimensional vectors V~  and V  as follows: 
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where  0ˆ >VZT . In this case, 
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Equivalently, in compact form,  

 VHδ d δ= , (30) 
where, in this case, the projection matrix 32×ℜ∈H  is 
defined as  
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with  VXT ˆˆˆ ≡xV , VYT ˆˆˆ ≡yV  , VZ T ˆˆˆ ≡zV . 

As in the previous section, δ d  is a zero mean Gaussian 
multivariate process: 

 { } { } 0δ VHδ d == EE . (32) 
The pseudo-inverse 23×+ ℜ∈H of the projection 
matrix is still relatively simple: 
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which is based on  
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Similar to the previous section, it is instructive to 
develop formulation for the projected covariance that 
identifies contributions from the position covariance 
and from the attitude covariance:  
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Note that the expressions above reduce to forms very 
similar to those of the planar projections in the previous 
section if the focal plane is perpendicular to the mean 
vector estimate, i.e. Ẑ  is collinear with V : 
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Finally, note that the tangential plane projection 
discussed in the previous section can be viewed as the 

special case of the focal plane projection with VZ ˆˆ = , 
0d0 =  and 1−=f . 

SURFACES OF EQUAL PROBABILITY 
DENSITY 

The projections of the covariance matrix established in 
the previous sections are necessary but not sufficient for 
creating k -sigma ellipses in two dimensions. These 
ellipses (similar to ellipsoids in three or more 
dimensions (Eq.(14)) are based on the following 
equation: 

 
2k=− δ dPδ d 1

dd
T

, (42) 
where 22,0 ×−−− ℜ∈>= 1

dd
T

dd
1

dd PPP  and k  is the 
specified scaling factor, which can be related to the 
associated probability as described above in this paper 
(Eqs.(15,16)). The equation for ellipses requires 
computation of the inverse of the covariance matrix in 
two dimensions. The first and most straightforward 
approach is to simply invert the projected covariance 
matrix: 

 [ ] [ ] 1T
VV1

1
dd

1
dd HHPPP −−− ≡= . (43) 

Since the covariance matrix is projected first, the 
resulting inverse does not account for any correlation 
with the discarded dimension. This also means that the 
relationship between the scaling factor k  and the 
associated probability, which is based on Eq.(16), must 
be established in two dimensions: )(2 kp .5 
Alternatively, the covariance matrix can be first 
inverted and then projected: 

 [ ] [ ] +−+−− ≡≡ HPHPP 1
VV

T
2

1
dd

1
dd . (44) 

This second method does take into account correlations 
with the discarded dimension. Thus, the relationship 
between the scaling factor k  and the associated 
probability, which in this case is based on Eq.(15), must 
be established in three dimensions: )(3 kp .5 Note that, 
in general for non-diagonal matrices, the two methods 
do not generate the same inverses: [ ] [ ]2

1
dd1

1
dd PP −− ≠ . 

Geometrically, the first method uses the extent of an 
entire ellipsoid to create the corresponding projected 
ellipse. The second method is based on the cross-
section of the ellipsoid defined by the plane crossing 
through its center. 
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VISUALIZATION 
For visualization, the size and orientation of the two 
dimensional ellipse resulting from either of the two 
methods can be determined using eigen-decomposition6 
of the inverse 1

ddP − :  

 
T21

dd QQΣP −− =  , (45) 

where 22
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orthogonal matrix of eigenvectors and 
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ε
ε

Σ  is the diagonal matrix of 

eigenvalues. Then, the ellipse defined in the X̂ - Ŷ  
plane is centered at the projection of the mean estimate 
d  and has semi-axes of the following sizes: 

 2,1, == ik ii εσ  . (46) 
The orientation of the ellipse can be determined based 
on the angle πα 20 <≤  measured from the unit 

vector X̂  to the first semi-axis of the ellipse, i.e. the 
semi-axis, size of which is equal to 1σ : 

 { }2212
1 /tan qq−=α . (47) 

The contour on the unit sphere that follows the ellipse 
on the tangential plane can be generated using the 
following two angular variables: 

 )/(tan 1
xy dd δδδϕ −= , (48) 

 δ d1tan −=δλ , (49) 
where πδϕ 20 <≤  is the clock-angle measured 

counterclockwise about the vector V  from the unit 

vector X̂  and the small perturbation angle 
πδλ <<<0  is measured away from the vector V . 

Several issues related to interpolation of the resulting 
matrices have been discussed recently for position 
covariance visualization in three dimensions.7 Similar 
issues arise in two dimensions and similar solutions are 
proposed in this paper. Since there is no guarantee that 
the first eigenvalue obtained during eigen-
decomposition at one time will correspond to the first 
eigenvalue obtained at a later time, the eigenvalues are 
consistently ordered according to their size. Symmetry 
of the ellipse also produces a o180  ambiguity in its 
orientation. To avoid possible o180  rotations when 

interpolating subsequent ellipses, the orientation is 
selected such that the angle between them is minimized.   

CONCLUSIONS 
A method for combining the position and attitude 
covariance matrices to characterize pointing uncertainty 
has been presented. Surfaces of equal probability 
density have been generated in both two and three 
dimensions based on the pointing covariance. The two 
dimensional surfaces have been generated using 
projections onto a unit sphere and a focal plane of an 
instrument. These quantities, which are well suited for 
visualization, provide additional insight into a 
geometric structure of the pointing uncertainty and its 
evolution with time.  
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