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THE MANY TRIAD ALGORITHMS* 

Sergei Tanygin† 

Malcolm D. Shuster‡ 

 
The different TRIAD algorithms are considered as specializations of the 
generalized TRIAD algorithm developed here. The attitude matrix estimate, error 
and covariance are developed for each algorithm. The optimal TRIAD algorithm 
is shown to be equivalent to first order to the optimal methods for solving 
Wahba’s problem for two vector observations. 
 
 

INTRODUCTION 

The simple and elegant TRIAD algorithm, invented by Harold D. Black in 1964 [1], was widely 
used in Spacecraft Attitude Estimation for nearly two decades. It was supplanted by the QUEST 
algorithm [2], which offered a way to process more than just two directional measurements and, based on 
them, produce optimal solutions to the Wahba problem [3]. Nevertheless, the TRIAD algorithm, because 
of its elegance and simplicity, has continued to be the object of research [2, 4-11]. 

Unlike the numerous solutions to the Wahba problem [12], which all minimize the same 
optimization criterion and are mathematically equivalent, the different varieties of the TRIAD algorithms 
offer different deterministic constructions for the attitude matrix and are guaranteed to be equivalent only 
for data uncorrupted by noise.  

The earliest enhancement to the TRIAD algorithm was the symmetric TRIAD algorithm first 
reported by Lerner in 1978 [11]. In this algorithm, the usual inputs to the TRIAD algorithm are replaced 
by their unitized sum and difference. In 1981, it was shown that in the limit when the accuracy of the 
second direction becomes infinitely poorer compared to the first, the TRIAD algorithm yields the same 
attitude as the QUEST measurement model [2]. Since then, many additional connections between the 
TRIAD algorithm (or its symmetric variation) and the Wahba problem [3] for two measurements have 
been studied [5-7]. Several modifications of the TRIAD algorithm for the case of more than two 
measurements have also been examined [9, 13]. One of them, the suboptimal SCAD algorithm [13], 
restricted here to only two measurements is studied in this work under the name TRAD. The TRIAD 
algorithm has been expanded to treat attitude estimation in a Euclidean space of n  dimensions, 3n >  [4], 
and contracted to a Euclidean space of only two dimensions [8]. Recently, it has also been shown that in a 
limited sense, particularly for computing the attitude covariance matrix, the TRIAD algorithm can be 
treated as a maximum- likelihood estimator [10]. Even more recently new connections between the 
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TRIAD algorithm and a solution to the Wahba problem [3] have been studied, namely, the possibility of 
finding the effective measurements for the Wahba problem which yield the same attitude estimate and 
attitude covariance matrix as the TRIAD algorithm [14], and the existence of a simple linear combination 
of the TRIAD algorithm for two orderings of the input directions which leads to an algorithm which is 
equivalent to a solution to the Wahba problem within the validity of the QUEST measurement model 
[15].  

In the present work, we propose a generalization of the TRIAD algorithm (G-TRIAD) which 
establishes a framework within which we investigate the issue of optimality and examine multiple 
variations of the TRIAD algorithm as specializations of the G-TRIAD algorithm. These include: 

• the basic TRIAD algorithm or TRIAD-I 

• the reversed TRIAD algorithm or TRIAD-II 

• the symmetric TRIAD algorithm (S-TRIAD) 

• the TRAD algorithm 

• the optimal TRIAD algorithm (O-TRIAD) 

All of these variations simply modify the inputs to the basic TRIAD algorithm and are, therefore, 
very similar in execution.  The TRAD and optimal TRIAD algorithms are presented for the first time in 
the present work. 

In the present work, we generally follow the notation of Reference [16]. Specifically, we shall 
denote a random variable by the superscript “r.v.”, its realization by a prime and its true value by the 
superscript “true” (although we may omit the superscript entirely when the variable’s nature is clear from 
the context). The “ ∆ ” will, unless otherwise noted, always indicate a random infinitesimal quantity. An 
estimator (always a random variable) is usually denoted by an asterisk and an estimate by an additional 
prime. 

 

THE ORIGINAL TRIAD ALGORITHM (TRIAD-I) 

All variations of the TRIAD algorithm are constructed based on a pair of unit vectors represented 
in both the spacecraft body frame and the reference frame. The two vector observations in the body frame 

1
ˆ ′W  and 2

ˆ ′W  are the respective realizations of two random 3 ×1 column vectors r.v.
1Ŵ  and r.v.

2Ŵ  with 

respective true values true
1Ŵ  and true

2Ŵ . The corresponding vector representations in the reference frame 

1V̂  and 2V̂  are considered to be always non-random and known (hence, always true values). These 
representations satisfy 

 r.v.
1 1 1

ˆ ˆ ˆA= + ∆W V W     and   r.v.
2 2 2

ˆ ˆ ˆA= + ∆W V W  (1ab) 

 true
1 1

ˆ ˆA=W V     and   true
2 2

ˆ ˆA=W V  (1cd) 

with A  the attitude matrix of the spacecraft body frame with respect to the reference frame.  
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 All variations of the TRIAD algorithm also share the same basic idea for constructing the 
estimator of a (proper orthogonal) attitude matrix [1, 2].  They create the attitude matrix as a product of 
two proper orthogonal matrices one of which has columns defined by a right-hand orthonormal triad of 
column vectors constructed from the two vector observations and the other has its rows defined in the 
same manner but from the corresponding reference vectors. It is the differences in the manner of 
construction of right-hand orthonormal triads that give rise to the variety of TRIAD algorithms. In the 
original TRIAD algorithm, which has also been called the asymmetric TRIAD algorithm and the TRIAD-
I algorithm [7], the two right-handed orthonormal triads { }r.v. r.v. r.v.

1 3 3
ˆ ˆ ˆ, ,s s s  and { }1 2 3ˆ ˆ ˆ, ,r r r  are constructed 

as follows 

 r.v. r.v. r.v.ˆ /i i i=s s s ,       ˆ /i i i=r r r ,         1, 2,3i =  (2ab) 

with 

 r.v. r.v.
1 1

ˆ=s W ,       r.v. r.v. r.v.
2 1 2

ˆ ˆ= ×s W W ,         r.v. r.v. r.v.
3 1 2= ×s s s  (3abc) 

 1 1
ˆ=r V ,          2 1 2

ˆ ˆ= ×r V V ,         3 1 2= ×r r r  (4abc) 

with the estimator defined as  

 
TTRIAD* r.v. r.v. r.v.

1 2 3 1 2 3
ˆ ˆ ˆ ˆ ˆ ˆA  =    s s s r r r  (5) 

where the superscript “T” denotes the matrix transpose. The related estimate and the true value of the 
attitude matrix are given by 

 
TTRIAD*

1 2 3 1 2 3
ˆ ˆ ˆ ˆ ˆ ˆA ′ ′ ′ ′=       s s s r r r  (6a) 

and 

 ( )true Ttrue TRIAD true true true
1 2 3 1 2 3

ˆ ˆ ˆ ˆ ˆ ˆA A  = =    s s s r r r  (6b) 

respectively. 

 It is clear that the TRIAD-I algorithm satisfies r.v. TRIAD*
1 1

ˆ ˆA=W V   exactly, and that, if there were 

no measurement noise, ( )truetrue TRIAD
2 2

ˆ ˆA=W V  would also be satisfied. It can be shown that the TRIAD-I 

algorithm satisfies 1 1
ˆ ˆA′ =W V  exactly but only minimizes 

2

2 2
ˆ ˆA′ −W V  subject to 1 1

ˆ ˆA′ =W V .  The 

TRIAD algorithm treats the two measurements unsymmetrically.  

 The covariance matrix for the spacecraft attitude [16] is given in general by  

 { }TP E≡ ∆ ∆ξξ ξ ξ  (7) 

where { }E i  denotes the expectation operator, and where the attitude increment error ∆ξ  is defined by 
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 [ ]* trueA e A∆  = ξ  (8) 

with the asterisk indicating in general an estimator and where, for a 3×1 column vector u , 

 [ ]
3 2

3 1

2 1

0
0

0

u u
u u
u u

− 
   ≡ −   
 − 

u  (9) 

With this definition, the covariance matrix for the TRIAD-I attitude is given by [9] 

 ( )TRIAD-I 2 T 2 T 2 T
1 2 2 2 1 1 1 2 22

2

1 ˆ ˆ ˆ ˆ ˆ ˆP σ σ σ= + +ξξ W W W W s s
s

 (10) 

where we have used true values of the vectors, and where we have assumed the QUEST measurement 
model [2], namely, that the ˆ

i∆W , 1, 2i =  are mutually uncorrelated and  

 ( )ˆ
ˆ ,

i
i N R∆ ∼

W
W 0 , 1, 2i =  (11) 

with  

 ( )2 T
ˆ 3 3

ˆ ˆ
i

i i iR Iσ ×= −
W

W W , 1, 2i =  (12) 

The variances 2
1σ  and 2

2σ  are ordered so that 2 2
1 2σ σ≤ .  For linear Gaussian measurement noise, the 

Fisher information matrix is the inverse covariance matrix [17] and is given by [9, 10] 

 
( )

( )

1TRIAD-I TRIAD-I T T T
2 2 3 3 4 42 2 2

1 1 2

T T
3 3 1 1 4 42 2

1 2

1 1 1ˆ ˆ ˆ ˆ ˆ ˆ

1 1ˆ ˆ ˆ ˆ

F P

I

σ σ σ

σ σ

−

×

= = + +

= − +

ξξ ξξ s s s s s s

W W s s
 (13) 

where 

 r.v. r.v. r.v.
4 2 2

ˆˆ ˆ≡ ×s W s  (14) 

We present the two-measurement solution to the Wahba problem [3] as a useful point of 
reference for assessing the accuracies of the various TRIAD algorithms. The Wahba attitude estimator 

Wahba*A  for two measurements minimizes the cost function [2, 5, 7] 

 
2 2

r.v. r.v.
1 1 1 2 2 2

1 1ˆ ˆ ˆ ˆ( )
2 2

J A a A a A= − + −W V W V  (15) 

where 1a  and 2a  are positive weights, which are generally taken to be inversely proportional to the 
respective variances.  Thus, we write [18]  
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 2 2
1 tot 1/a σ σ=       and      2 2

2 tot 2/a σ σ=  (16ab) 

with  

 2 2 2
tot 1 2

1 1 1
σ σ σ

= +     (17) 

so that 1 2 1a a+ = . Assuming the QUEST measurement model, the solution to the Wahba problem is the 
maximum-likelihood estimate of the attitude and have as covariance matrix 

 ( )Wahba 2 T 2 T 2 T
1 2 2 2 1 1 tot 2 22

2

1 ˆ ˆ ˆ ˆ ˆ ˆP σ σ σ= + +ξξ W W W W s s
s

 (18) 

and the Fisher information matrix [18] is given by [2, 10, 11] 

 
( )

( ) ( )

1Wahba Wahba T T T
2 2 3 3 4 42 2 2

tot 1 2

T T
3 3 1 1 3 3 2 22 2

1 2

1 1 1ˆ ˆ ˆ ˆ ˆ ˆ

1 1ˆ ˆ ˆ ˆ

F P

I I

σ σ σ

σ σ

−

× ×

= = + +

= − + −

ξξ ξξ s s s s s s

W W W W
 (19) 

  

 
 

THE GENERALIZED TRIAD ALGORITHM (G-TRIAD) 
 

We may alter the TRIAD algorithm by transforming the observation- and reference-vector inputs, 
as was done in the symmetric TRIAD algorithm [11].  In the most general form, we can define two vector 
functions 1F  and 2F , which operate on the original input directions to produce new vectors 

 1 1 1 2
ˆ ˆ( , )=U F V V ,       2 2 1 2

ˆ ˆ( , )=U F V V         (20ab) 

 r.v. r.v. r.v.
1 1 1 2

ˆ ˆ( , )=Z F W W ,       r.v. r.v. r.v.
2 2 1 2

ˆ ˆ( , )=Z F W W         (20cd) 

The generalized triad vectors then have the form 

 G-TRIADr.v. G-TRIADr.v. G-TRIADr.v.ˆ /i i i=s s s , G-TRIAD G-TRIAD G-TRIADˆ /i i i=r r r , 1, 2,3i =  (21ab) 

with 

 G-TRIADr.v. r.v.
1 1=s Z , G-TRIADr.v. r.v. r.v.

2 1 2= ×s Z Z , G-TRIADr.v. G-TRIADr.v. G-TRIAD r.v.
3 1 2= ×s s s  (22abc) 

 G-TRIAD
1 1=r U , G-TRIAD

2 1 2= ×r U U , G-TRIAD G-TRIAD G-TRIAD
3 1 2= ×r r r  (23abc) 

and we write the G-TRIAD estimator as (note the carets) 
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TG-TRIAD* G-TRIADr.v. G-TRIADr.v. G-TRIADr.v. G-TRIAD G-TRIAD G-TRIAD
1 2 3 1 2 3

ˆ ˆ ˆ ˆ ˆ ˆA    =    s s s r r r  (24) 

Note that, while the structure of this estimator remains similar that of the original TRIAD, the G-TRIAD 

estimator creates a different attitude matrix G-TRIADA ′  which satisfies  1 1
ˆ ˆA′ =Z U  exactly and minimizes 

2

2 2
ˆ ˆA′ −Z U  subject to 1 1

ˆ ˆA′ =Z U  .  We obtain the original TRIAD algorithm by using  

 1( , ) =F a b a ,                  2 ( , ) =F a b b         (25) 

In all of the algorithms considered in this work, 1F  and 2F  are taken to be linear functions of the two 
vector arguments  

 1 11 12( , ) e e= +F a b a b ,                  2 21 22( , ) e e= +F a b a b         (26) 

which means that the algorithms are fully identified by their mixing matrix E  

 11 12

21 22

e e
E

e e
 

≡  
 

    (27) 

For example,  

 TRIAD-I 1 0
0 1

E  
=  

 
    (28) 

For any value of the mixing matrix,   

 ( )G-TRIAD
2 1 2

ˆ ˆ det E= ×s W W  (29) 

so that the G-TRIAD attitude matrix depends only on 11e  and 12e , as long as Z1 and Z2 are different, or, 
equivalently, the determinant of E does not vanish.  Thus, for all practical purposes the mixing matrix 
depends essentially only on the mixing angle ϕ . In other words, the mixing matrix can be parameterized 
as 

 
21 22

c s
E

e e
 

=  
 

    (30a) 

where 

 cosc ϕ≡        and       sins ϕ≡  (30bc) 

and values of 21e  and 22e  are arbitrary as long as they result in a non-singular E . Thus, linear choices for 
the functions F1 and F2 result in a one-parameter family of TRIAD algorithms. 
 
Covariance Analysis of the General TRIAD Algorithm 
 

It follows from equation (8) that the attitude increment error to within terms of order 2∆ξ  is 
given by  

 [ ] ( )TtrueA A ∆ = ∆ ξ  (30) 
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which, following equation (24), is equivalent to 

[ ] ( )( ) ( ) ( )
3 3TG-TRIAD G-TRIAD true G-TRIAD true G-TRIAD

1 1

1ˆ ˆ ˆ ˆ
2i i i i

i i= =

   ∆ = ∆ = − × ∆    ∑ ∑s s s sξ  (31) 

Thus, 

 ( ) ( )
3

G-TRIAD true G-TRIAD

1

1 ˆ ˆ
2 i i

i=
∆ = − × ∆∑ s sξ  (32) 

or, after some algebra, 

 
3

G-TRIAD true

1

ˆi i
i

ξ
=

∆ = ∆∑ sξ  (33) 

with 

 ( ) ( ) ( )G-TRIAD true G-TRIAD true3 TG-TRIAD
G-TRIAD true

1

ˆ ˆ1
2

i j
i j

j j

ξ
=

×
∆ = − ∆∑

s s
s

s
 (34) 

In terms of the mixing angle, we obtain 

 G-TRIADtrue true true
1 1 2

ˆ ˆc s= +s W W , G-TRIADtrue true
2 2=s s , G-TRIADtrue true true

3 3 4c s= +s s s  (35abc) 

with 

 G-TRIADtrue
1 1/ true

Wn=s , G-TRIAD true
2

true
Wβ=s , G-TRIADtrue

3 /true true
W Wnβ=s  (36abc) 

where we define 

 cosW Wα θ≡ ,  sinW Wβ θ≡ ,   1/ 1 2W Wn csα≡ +  (37abc) 

 cosV Vα θ≡ ,   sinV Vβ θ≡ ,   1/ 1 2V Vn csα≡ +  (38abc) 

with angles ( )1 2
ˆ ˆ,Wθ = ∠ W W  and ( )1 2

ˆ ˆ,Vθ = ∠ V V . The two angles satisfy true
W Vθ θ= . Also, note that 

true
2Vβ = s . 

 Assuming the QUEST measurement model [2, 17], we write to within terms of order 2
1σ  and 2

2σ    

 true true
1 1 2 2 3

ˆ ˆ ˆv v∆ = +W s s     and   true true
2 4 2 5 4

ˆ ˆ ˆv v∆ = +W s s  (39ab) 

where  

 ( )2
1 2 1, 0,v v N σ∼     and   ( )2

4 5 2, 0,v v N σ∼  (40ab) 

are statistically-independent noise terms. The choice of indices for the noise terms in equations (39) and 
(40) follows Reference [10]. Then, also to order 2

1σ  and 2
2σ , we obtain 

 ( )G-TRIAD true true true
1 1 4 2 2 3 5 4

ˆ ˆ ˆv c v s v c v s∆ = + + +s s s s  (41a) 

 ( )G-TRIAD true true true
2 2 5 2 4 3 1 4

ˆ ˆ ˆ
Vv v v vα∆ = − + −s s s s  (41b) 
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( )( ) ( ) ( )( )

( ) ( )

G-TRIAD true true true
3 1 2 5 2 1 4 2

true true
2 3 5 4

ˆ ˆ ˆ

ˆ ˆ
V V V

V V

c s v v v c s v s c

v c s v s c

β α α

α α

∆ = − − + + − +

+ + − +

s W W s

s s
 (41c) 

and, after considerable algebra,  

 ( ) ( )( )
true true

G-TRIAD 2 true1 2 4 1
2 5 2

ˆ ˆ
ˆV V V

V

v v n v s c c v c s sξ α α
β
−

∆ = + + + +
W W s  (42) 

Simplified further in terms of double angles, the attitude increment error becomes 

 ( ) ( )( )G-TRIAD 2 21 2 4 1
2 5 2

2

ˆ ˆ 1 ˆ1 cos 2 1 cos 2
2 V V

v v v n v nξ ϕ ϕ
−

∆ = + + + −
W W s

s
 (43) 

Here and in what follows, we omit the superscript “true” for conciseness. 
The attitude error covariance follows straightforwardly from equations (7) and (43) 

 
( )

( ) ( )( )

G-TRIAD 2 T 2 T
1 2 2 2 1 12

2

2 22 2 2 2 T
1 2 2 2

1 ˆ ˆ ˆ ˆ

1 ˆ ˆ1 cos 2 1 cos 2
4 V V

P

n n

ξξ σ σ

σ ϕ σ ϕ

= +

+ + + −

W W W W
s

s s
 (44) 

The covariance matrix of the G-TRIAD estimate resembles that of the Wahba estimate (Eq.(18)). In fact, 
we can write 

 ( )2G-TRIAD Wahba 2 G-TRIAD T
2 2

ˆ ˆ
totP P σ δ= +ξξ ξξ s s  (45) 

with the cost coefficient 

 
( )

2
G-TRIAD

2

cos 2

1

Va n

a

ϕ
δ

∆ −
=

− ∆
 (46) 

where  1 2a a a∆ ≡ −  is a scalar ranging from 0 to 1 representing the difference between the larger and the 
smaller of the weights in the Wahba cost function (Eqs.(15, 16)). An equally straightforward relationship 
exists between the Fisher information matrices of the two estimators 

 ( ) ( )
( )

2G-TRIAD
1G-TRIAD G-TRIAD Wahba T

2 222 G-TRIAD

1 ˆ ˆ
1tot

F P F
δ

σ δ

−
 
 = = −
 + 

ξξ ξξ ξξ s s  (47) 

 

THE OPTIMAL-TRIAD (O-TRIAD) AND OTHER TRIAD ALGORITHMS 
 

Different TRIAD algorithms can be generated from the generalized TRIAD algorithm by 
choosing various values of the mixing angle ϕ . Benefiting from the general G-TRIAD formulae 
(Eqs.(43-46)), the attitude error and its covariance (as well as the corresponding Fisher information 
matrix) should follow straightforwardly for any of the TRIAD variations.  
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First, we examine the TRIAD-I and TRIAD–II algorithms for which we have 0ϕ = o  and 
90ϕ = o , respectively, resulting in the following attitude error and covariance 

 TRIAD-I 1 2 4 1
2 2

2

ˆ ˆ
ˆv v vξ

−
∆ = +

W W s
s

,        TRIAD-I Wahba 2 T2
2 2

1

ˆ ˆ
tot

aP P
a

σ= +ξξ ξξ s s  (48ab) 

 TRIAD-II 1 2 4 1
5 2

2

ˆ ˆ
ˆv v vξ

−
∆ = +

W W s
s

,        TRIAD-II Wahba 2 T1
2 2

2

ˆ ˆ
tot

aP P
a

σ= +ξξ ξξ s s  (49ab) 

Note that as expected equation (48b) is equivalent to equation (10). Also, note that, given the same set of 
two measurements, the TRIAD-I estimate will have a smaller covariance compared to that of the TRIAD-
II estimate. Of course, there will be no difference between the two covariance matrices if the algorithms 
are presented with the set of two equally accurate measurements (because the covariance matrix is always 
evaluated at the true value of the measurements). Overall, the TRIAD-II estimator makes the least 
effective use of the data by emphasizing the less accurate direction; however, in a case when directions 
are equally accurate, both estimators become statistically equivalent. 
 For the symmetric TRIAD algorithm (S-TRIAD), for which the mixing angle φ = 45°, we obtain 

 S-TRIAD 2 51 2 4 1
2

2

ˆ ˆ
ˆ

2
v vv v

ξ
+−

∆ = +
W W s

s
,   

( )
( )

2
S-TRIAD Wahba 2 T

2 22
ˆ ˆ

1
tot

a
P P

a
σ

∆
= +

− ∆
ξξ ξξ s s  (50ab) 

It is clear that, in the case of two equally accurate directions, the S-TRIAD estimate will match the 
covariance of the Wahba estimate and will be smaller than the covariance of the TRIAD-I estimate. In 
fact, the S-TRIAD estimator will be more accurate than the TRIAD-I estimator, i.e. TRIAD-I S-TRIADP P>ξξ ξξ , 
as long as  

 1
2

a∆ <              or            2 2 2
1 2 13σ σ σ≤ <  (51ab) 

 The TRAD algorithm uses a different, but equally simple mixing matrix. In this case, 11 1e a=  
and 12 2e a= , or in terms of the mixing angle, 2 1tan /a aϕ = . This leads to 

 
( )( )( )

( )TRAD 2 51 2 4 1
2 2 5 22

2

ˆ ˆ
ˆ ˆ

2 2 1 1 V

v vv v a v v
a

ξ
α

 
+− ∆ ∆ = + + −  − − ∆ −

 

W W s s
s

 (52a) 

 
( ) ( )( )( )

( )( )( )

2 2 2

TRAD Wahba 2 T
2 222

1 1
ˆ ˆ

2 1 1

V

tot

V

a a
P P

a

α
σ

α

∆ − ∆ −
= +

 − − ∆ −
 

ξξ ξξ s s  (52b) 

from which it immediately follows that the TRAD estimate will match the covariance of the Wahba 
estimate in two limiting cases: (1) when 0a∆ =  (the case for which the S-TRIAD estimator would 
perform equally well), and (2) when 1a∆ =  (not a very practical case). 
 We now consider arguably the most useful and interesting variation of the TRIAD algorithm ― 
the optimal TRIAD (O-TRIAD). We can pose the optimization problem using the original Wahba cost 
function (Eq.(15)) but define it in terms of the G-TRIAD mixing angle ϕ  of the generalized TRIAD 
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algorithm.  In this way we will obtain a suboptimal algorithm, i.e. minimized over a limited set of attitude 
matrices. Keeping terms up to order 2

W Vθ θ′ − , inclusive, one obtains after some effort 

 2G-TRIAD* 2 2 2 21 1( ) ( ( )) 1 cos 2 sin 2
2 2W V V V VJ J A n a nϕ ϕ θ θ ϕ β ϕ ′′ ′≡ = − − ∆ −  

 (53) 

from which it is clear that the optimal mixing angle *ϕ  must be independent of the level of measurement 
errors and independent of the attitude. Differentiation of equation (53) with respect to ϕ  leads with much 
effort to  

 ( )2* 6 * *
2( ) sin 2 cos 2 0W V V V
V

dJ an
d n

ϕ θ θ α ϕ ϕ
ϕ

 ′ ∆′= − + − = 
 

 (54) 

from which we obtain 

 *
2cos 2
V

a
n

ϕ ∆
=  (55) 

whence 

 
( ) ( )

( )

2 2
* 1

tan
1

V Va a
a

α β
ϕ

− ∆ + − ∆
=

+ ∆
 (56) 

 
as the only physical solution. We can confirm this finding by using it in the G-TRIAD formulae (Eqs.(43-
46)) to get 

 ( )O-TRIAD 1 2 4 1
2 1 5 2 2

2

ˆ ˆ
ˆv v v a v aξ

−
∆ = + +

W W s
s

 (57) 

and to determine that O-TRIAD 0δ = , and, thus, O-TRIAD WahbaP P=ξξ ξξ .  
We now establish a connection between our results and those developed by Markley in Reference 

[7]. We begin with the closed-form optimal attitude matrix presented in Reference [7], but re-formulated 
using our notation, namely, 

 
( ) ( )( )

( ) ( )( )

T Topt S-TRIAD S-TRIAD S-TRIAD S-TRIAD
1 1 3 3

T TS-TRIAD S-TRIAD S-TRIAD S-TRIAD T
1 3 3 1 2 2

ˆ ˆ ˆ ˆcos /

ˆ ˆ ˆ ˆ ˆ ˆsin /

A

a

ε λ

ε λ

′ ′ ′= +

′ ′ ′−∆ − +

s r s r

s r s r s r
 (58) 

with 

 ( ) / 2W Vε θ θ′≡ − ,                      ( )22 2cos sinaλ ε ε= + ∆  (59ab) 

Then, to first order, 

 
( ) ( )

( ) ( ) ( ) ( )( )
T Topt opt true S-TRIAD S-TRIAD S-TRIAD S-TRIAD T

1 1 3 1 2 2

true T true TS-TRIAD S-TRIAD S-TRIAD S-TRIAD
1 3 3 1

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆsin

A A A

a ε

′∆ = − = ∆ + ∆ + ∆

−∆ −

s r s r s r

s r s r
 (60) 
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and, once again omitting the superscript “true” for brevity,  we obtain 

( ) ( ) ( )
( ) ( )( )

T T Topt opt true S-TRIAD S-TRIAD S-TRIAD S-TRIAD T
1 1 3 3 2 2

T TS-TRIAD S-TRIAD S-TRIAD S-TRIAD
1 3 3 1

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆsin

A A

a

ξ

ε

  ∆ = ∆ = ∆ + ∆ + ∆  

− ∆ −

s s s s s s

s s s s
(61) 

Next we identify two terms in the expression above 

 opt S-TRIAD ε          ∆ = ∆ + ∆          ξ ξ ξ  (62) 

The first term comes directly from the attitude error we have already developed for the S-TRIAD 
algorithm as shown in equation (50a). The second term represents a first-order contribution from ε , 
which can easily be shown to satisfy 

 2
ˆsinaξε ε∆ = ∆ s  (63) 

In other words, 

 opt S-TRIAD 2 51 2 4 1
2

2

ˆ ˆ
ˆsin

2
v vv v aξ ξ ξε ε

+−  ∆ = ∆ + ∆ = + + ∆ 
 

W W s
s

 (64) 

We have, to first order, 

 
T T
2 1 1 2

2

ˆ ˆ ˆ ˆ
sin

2
ε

∆ + ∆
= −

W W W W
s

 (65) 

which, given the QUEST measurement model (Eqs.(39ab)), leads to 

 2 5sin
2

v v
ε

−
=  (66) 

This result substituted into equation (64) reduces the optimal attitude error to 

( )opt 2 5 2 51 2 4 1 1 2 4 1
2 2 1 5 2 2

2 2

ˆ ˆ ˆ ˆ
ˆ ˆ

2 2
v v v vv v v va v a v aξ

+ −− − ∆ = + + ∆ = + + 
 

W W W Ws s
s s

(67) 

which, when compared to equation (57), confirms that this error and the O-TRIAD attitude error are 
identical to first order. 

 

NUMERICAL RESULTS 
We develop several figures of merit for use in numerical analyses based on the spectral 

decomposition of the G-TRIAD covariance matrix, which is described in detail in the Appendix. The 
three characteristic values of the G-TRIAD covariance matrix are given by 

 ( )2
2

1 2 2 2
1 2 2

11 1 4
2

tot a a
a a
σ

λ± = ± − s
s

 (68ab) 

 ( )22 G-TRIAD1s totλ σ δ = +  
 (68c) 
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(These are not to be confused with the characteristic values of the Davenport K-matrix, which also are 
commonly denoted by λ.)  It is clear from equations (68ab) that the first two characteristic values satisfy 
λ λ+ −≥ , and that they are invariant with respect to ϕ , and, thus, invariant with respect to the type of 
TRIAD algorithm. From equation (68c), we can conclude that the third characteristic value satisfies 

2
s totλ σ≥ . We can also identify the following useful limiting conditions 

 2
2λ σ+ ≥       and     2 2

1 totλ σ σ− ≥ ≥  (69ab) 

As figures of merits we shall use square roots of the characteristic values divided by totσ  

 
2

1 2 2

2 1 2

1 1 41
2tot

a a
a a

λ
ρ

σ
±

±

± −
= =

s
s

 (70ab) 

 ( )2G-TRIAD1s
s

tot

λ
ρ δ

σ
= = +  (70c) 

Note that 2
totσ  represents the lowest error covariance bound in the Wahba solution.  

 The RSS (for “root-sum-square” standard deviation) metric given by  

  ( )2G-TRIAD
2

1 2 2

11RSS s tot a a
σ λ λ λ σ δ+ −= + + = + +

s
 (71) 

provides us with another normalized figure of merit when divided by totσ  

 ( )2G-TRIAD
2

1 2 2

1/ 1RSS RSS tot a a
ρ σ σ δ= = + +

s
 (72) 

The figures of merit ρ+  and ρ−  are independent of φ and, therefore, identical in value for all of 
the TRIAD algorithms.  Therefore,  Figures 1 and 2 only show them as functions of a∆  for various 
angles between observed vectors.  

Unlike ρ± , the third figure of merit sρ  depends on the type of TRIAD algorithm. For the S-

TRIAD, sρ  exhibits two special traits: (1) it is independent of the angle between observed vectors (Fig. 
3), and (2) at some threshold value, a a∆ = ∆ , it becomes equal to ρ− . In other words, for sufficiently 
dissimilar measurements, i.e. a a∆ > ∆ , the lower bound of the S-TRIAD errors becomes limited by ρ−  
instead of sρ . The threshold value a∆  grows from 0  to 1/ 2  as the two observed vectors vary from 
collinear to perpendicular (Fig. 4). The TRAD algorithm yields sρ  that remains very close (within 

6%≈ ) to the lowest possible value (Fig. 5).  
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The next figure of merit RSSρ  characterizes the average error level of each algorithm. With the 

exception of  TRIAD-II, the rest of the TRIAD estimators yield RSSρ  close to that of the Wahba estimator 

(Figs. 6, 7). TRIAD-II yields a progressively worse performance as the disparity between the accuracies 

of the observed vectors widens (Fig. 7). This is expected as the TRIAD-II algorithm favors the lower 

accuracy vector. An alternate figure of merit   

 
22

2
2 2

( ) 1 2 2

cos 2
1

2 1

VRSS

RSS Wahba

a n

a a

ϕρ
δρ

ρ

∆ −
= − =

+

s

s
 (70) 

can be used to highlight the relative increase in the error level of the TRIAD estimators compared to the 

Wahba estimator (Fig. 8). 

 

 

Figure 1 ρ+  as a function of a∆  for all TRIAD algorithms 
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Figure 2 ρ−  as a function of a∆  for all TRIAD algorithms 

 

 

Figure 3 sρ  as a function of a∆  for the S-TRIAD algorithm for any angle between the two 
vectors 
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Figure 4 { }min , , sρ ρ ρ+ −  as a function of a∆  for the S-TRIAD algorithm 

 

 

Figure 5 sρ  as a function of a∆  for the TRAD algorithm 
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Figure 6 RSSρ  as a function of a∆  for a 45-deg angle between the two vectors 

 

Figure 7 RSSρ  as a function of a∆  for a 45-deg angle between the two vectors 
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Figure 8 δρ  in % as a function of a∆  for a 45-deg angle between the two vectors 

 

CONCLUSIONS 

We have developed a general formulation of the TRIAD algorithm which encompasses all 
variations of the TRIAD algorithm and which permits a unified treatment of the covariance analysis of 
these algorithms.  These different TRIAD algorithms differ only in the value of a single parameter, the 
mixing angle.  By finding the optimal value of this angle which minimizes the Wahba cost function over 
the continuum of TRIAD algorithms we have obtained the optimal TRIAD algorithm, which differs from 
the optimal Wahba estimate only by terms of higher order in the measurement noise. 

Had this estimator been discovered in 1970, it would have been an important practical result. 
Today, given the exponentially increasing computational power and the availability of fast optimal 
algorithms that can accommodate any number of measurements, its importance is largely of theoretical 
interest only, but certainly of great theoretical interest.  No doubt, the TRIAD algorithm has still more 
secrets to reveal. 

 

REFERENCES 

1.  H. D. Black, “A Passive System for Determining the Attitude of a Satellite,” AIAA Journal, Vol. 2, 
July 1964, pp. 1350–1351. 

2.  M. D. Shuster, and S. D. Oh, “Three-Axis Attitude Determination from Vector Observations,” 
Journal of Guidance and Control, Vol. 4, No. 1, January–February 1981, pp. 70–77. 



XVIII  Tanygin and Shuster 

3.  G. Wahba, “Problem 65-1: A Least Squares Estimate of Spacecraft Attitude,” Siam Review, Vol. 7, 
No. 3, July 1965, pp. 409. 

4.  M. D. Shuster, “Attitude Determination in Higher Dimensions,” Journal of Guidance, Control and 
Dynamics, Vol. 16, No. 2, March–April 1993, pp. 393–395. 

5.  F. L. Markley, “Attitude Determination using Vector Observations: a Fast Optimal Matrix 
Algorithm,” The Journal of the Astronautical Sciences, Vol. 41, No. 2, April-June 1993, pp. 261–280. 

6.  D. Mortari, “EULER-2 and EULER-n Algorithms for Attitude Determination from Vector 
Observations,” Space Technology, Vol. 16, Nos. 5-6, 1996, pp. 317-321. 

7.  F. L. Markley, “Attitude Determination using Two Vector Measurements,” Proceedings, Flight 
Mechanics Symposium, NASA Goddard Space Flight Center, Greenbelt, MD, May 1999, NASA 
Conference Publication NASA/CP-19989-209235, pp. 39–52. 

8.  M. D. Shuster, “Attitude Analysis in Flatland: the Plane Truth,” The Journal of the Astronautical 
Sciences, Vol. 52, Nos. 1-2, January–June 2004, pp. 195–209. 

9.  Y. Cheng, and M. D. Shuster, “QUEST and the Anti-QUEST: Good and Evil Attitude Estimation,” 
The Journal of the Astronautical Sciences, Vol. 53, No. 3, July–September 2005, pp. 337–351. 

10. M. D. Shuster, “The TRIAD Algorithm as Maximum Likelihood Estimation,” The Journal of the 
Astronautical Sciences, Vol. 54, No. 1, January–March 2006, pp. 113–123. 

11. G. M. Lerner, “Three-Axis Attitude Determination,” in J.R. Wertz, (ed.), Spacecraft Attitude 
Determination and Control, Springer Scientific + Business Media, 1978, pp.420–428. 

12. F. L. Markley, and D. Mortari, “Quaternion Attitude Estimation using Vector Measurements,” The 
Journal of the Astronautical Sciences, Vol. 48, Nos. 2 and 3, April–September 2000, pp. 359–380. 

13. M. D. Shuster, “SCAD – A Fast Algorithm for Star-Camera Attitude Determination,” The Journal of 
the Astronautical Sciences, Vol. 52, No. 3, July–September 2004, pp. 391–404. 

14. M. D. Shuster, “The Equivalent-Vector Method,” The Journal of the Astronautical Sciences, Vol. 55, 
No. 1, January–March 2007  (to appear). 

15. M. D. Shuster, “The Optimization of TRIAD,” The Journal of the Astronautical Sciences, Vol. 55, 
No. 2, April–June 2007 (to appear). 

16. M. D. Shuster, “A Survey of Attitude Representations,” The Journal of the Astronautical Sciences, 
Vol. 41, No. 4, October–December 1993, pp. 439–517. 

17. M. D. Shuster, “Maximum Likelihood Estimation of Spacecraft Attitude,” The Journal of the 
Astronautical Sciences, Vol. 37, No. 1, January–March 1989, pp. 79–88. 

18. H. W. Sorensen, Parameter Estimation, New York, Marcel Dekker, 1980. 
 
 



The Many TRIAD Algorithms  XIX 

APPENDIX: SPECTRAL DECOMPOSITION OF THE G-TRIAD 
COVARIANCE MATRIX 
 

We can take advantage of the structure of the G-TRIAD covariance matrix (Eq.(43)) to partition 
space into two subspaces: one that lies along the vector 2ŝ , and the other that is perpendicular to it. The 

characteristic vector 2
ˆ ˆ

s =e s  has the associated characteristic value given by 

 ( )( )2T G-TRIAD 2 G-TRIAD
2 2

ˆ ˆ 1s totPλ σ δ= = +ξξs s  (A.1) 

The remaining two characteristic vectors, that must be perpendicular to 2ŝ , can be parameterized using 

the mutually orthogonal vectors 1Ŵ  and 3ŝ , and the rotational angle ψ , i.e. 

 ( )( )1 3 1 2
1ˆ ˆ ˆˆ ˆ

V V
V

c s s c sψ ψ ψ ψ ψα β
β

≡ + = + −e W s W W  (A.2) 

with coscψ ψ≡  and sinsψ ψ≡ . Then, 

 
2

G-TRIAD
1 22

2 1

ˆ ˆˆ V Vtot

V

c c s
P

a a
ψ ψ ψα βσ

β
− 

= + 
 

ξξ e W W  (A.3) 

Using the condition that direction of the characteristic vector remains unchanged by the matrix product, 
we obtain from equations (A.2) and (A.3) 

  ( )( )1 2 0V V V Va c s a s c c sψ ψ ψ ψ ψ ψα β α β+ + − =  (A.3) 

which leads to two possible solutions for the characteristic vectors 

 * *
1 3

ˆˆ ˆc sψ ψ+ = +e W s     and     * *
1 3

ˆˆ ˆs cψ ψ− = −e W s  (A.4ab) 

with  

 ( )
( )

*
22 2

1
tan 2 V V

V V

a
a
α β

ψ
α β

− ∆
= −

+ ∆
 (A.5) 

Once the characteristic vectors are found, the associated characteristic values follow directly from 

 ( )2
2T G-TRIAD

1 2 2 2
1 2 2

1ˆ ˆ 1 1 4
2

totP a a
a a
σ

λ+ + += = + −ξξe e s
s

 (A.6a) 

 ( )2
2T G-TRIAD

1 2 2 2
1 2 2

1ˆ ˆ 1 1 4
2

totP a a
a a
σ

λ− − −= = − −ξξe e s
s

 (A.6b) 


