
1 
American Institute of Aeronautics and Astronautics 

Copyright ©  2002 by Analytical Graphics, Inc. Published by the American Institute of Aeronautics and 
Astronautics, Inc., with permission.  

GENERALIZATION OF ADAPTIVE ATTITUDE TRACKING 
S. Tanygin  

Member AIAA  
Lead Engineer, Attitude Dynamics and Control  

Analytical Graphics, Inc.  
Malvern, PA 

 
ABSTRACT 

The paper introduces several generalizations of the 
attitude tracking problem for a rigid-body. The existing 
control laws are reformulated to include momentum 
bias both with and without angular velocity 
measurements. Then standard model reference adaptive 
control (MRAC) techniques are employed to provide 
adaptation in the presence of the unknown constant 
inertia matrix. The analysis is performed using 
Lyapunov stability methods and their extensions. The 
control laws are evaluated independently from a 
specific attitude representation, which facilitates 
development of control laws for any given attitude 
representation. The quaternion based control law is 
provided as an example and evaluated using numerical 
simulation for a realistic mission profile. 

INTRODUCTION 
The attitude dynamics and control of a rigid body have 
been studied by many authors from both theoretical and 
practical standpoint.1-10 The attitude kinematics and 
rigid-body dynamics represent one of the classical 
examples of cascade passive nonlinear systems linear in 
control, which can be stabilized by very simple linear or 
almost linear feedback control laws.1-10 What is more, a 
passive nature of both dynamics and kinematics permits 
the angular velocity measurements to be replaced by the 
outputs of a stable linear system driven by the chosen 
attitude representation.3,5,7-10 The results developed for 
the attitude stabilization are easily extended to tracking 
using relative formulations for the kinematics and 
dynamics.7-10 However, note that such control laws, 
particularly recently proposed angular velocity free 
control laws, 7,10 are inherently continuous functions of 
the tracking errors. This presents a practical problem, 
because using the rigid-body dynamics prohibits 
application of momentum exchange devices, which are 
well suited for producing continuous control. When 
angular velocity measurements are available, it is very 
straightforward to include the momentum bias into both 
the dynamics and the control law. When angular 
velocity measurements are not available, maintaining 
angular velocity free formulation of the control law 
appears not as straightforward. Another common 
feature of attitude tracking control laws is their 
dependency of the inertia matrix. This makes them 

susceptible to errors in the estimated inertia matrix 
provided for control design. A well-known alternative 
is to consider adaptive control, specifically to use 
MRAC techniques and to include additional variables 
that can be adapted to guarantee overall stability even 
in the presence of errors in the estimated inertia 
matrix.11 Lyapunov methods and their extensions can 
be used to evaluate stability of both adaptive and non-
adaptive control laws. Note that passivity based control 
laws rely on LaSalle’s invariance principle to determine 
stability based on the largest invariant set of the closed 
loop system. Introduction of additional variables for 
adaptive control complicates the analysis and may 
change the largest invariant set attainable by the attitude 
error. The analysis does not need to be performed using 
a specific attitude representation. Instead, if it is done 
generically assuming some form of attitude 
representation isomorphic to )3(SO ,12,13  the results 
can provide a greater insight into the nature of attitude 
motion and the actual control law can be formulated 
once the attitude representation is selected.    

Nomenclature 
A cross-product of two three-dimensional vectors 

ba ×  can be represented as the matrix-vector product 

ba× , where 33
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the skew-symmetric matrix constructed from the 
elements of vector 321 eeea ˆˆˆ 321 aaa ++= , where 

3ℜ∈ba,  and both are expressed in the frame { }iê , 
which denotes a triad of mutually orthogonal unit 
vectors. 

A matrix-vector product of a symmetric matrix 
33×ℜ∈= TKK  and a vector 3ℜ∈r  can be 

represented as a different matrix vector product: 

  
⊕⊗≡ KrKr , (1) 

where 
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 [ ]Tr 321 rrr≡ . (5) 
 

Three types of frames are used in this paper. The body 
frame { }ib̂  is attached to a rotating rigid body. The 

reference or desired frame { }ir̂ is a frame with respect 
to which attitude errors are found. The inertial frame 
{ }iî  provides a common inertial reference for all other 
frames. Unless stated otherwise, it is assumed that all 
variables referring to the motion of the reference frame 
with respect to the inertial frame are denoted with a 
"bar" (e.g. ω ), all variables referring to the body 
motion with respect to the inertial frame use capital 
letters (e.g. Ω ) and all variables referring to the motion 
of the body frame with respect to the reference frame 
are also called attitude error variables and do not have 
a special designation (e.g. ω ). The variables 
commonly found in any of these categories are some 
attitude representation s  belonging to a group 
isomorphic to )3(SO  and angular velocity 3ℜ∈ω , 
which is always expressed in the frame, motion of 
which it describes. Note that differentiation of the 
angular velocity with respect to time 3ℜ∈ω&  is also 
carried out in this frame. Additional notation includes 
transformation to a rotation matrix )3(SO∈C(s) , the 
exact form of which depends on the attitude 
representation s . Also, depending on this 
representation are the identity attitude s1  and the 

inverse attitude 1s− , such that s
11 1ssss == −− oo , 

where o  denotes this group’s composition operation. 
The symmetric positive definite and constant inertia 
matrix 0III T >=ℜ∈ × :33  is defined in the body 
frame. Attitude trajectories and torque are assumed to 
be functions of time 0tt ≥  unless stated otherwise. 
The relationship between attitude trajectories in 
different frames is given below: 

 ssS o= , (6) 

 ηωΩ += , (7) 
where ωC(s)η ≡ . 

Additional nomenclature is introduced as needed 
throughout this paper. 

ADAPTIVE TRACKING WITH 
MOMENTUM BIAS AND ANGULAR 

VELOCITY MEASUREMENTS 
This section describes attitude dynamics of a rigid-body 
with momentum bias and introduces control laws that 
provide desired error dynamics and in the presence of 
unknown inertia matrix. The control laws are not 
formulated explicitly and neither are attitude 
representations and the associated kinematics; instead, 
the stability of the entire class of control laws is 
evaluated using Lyapunov methods.  

Attitude motion with respect to inertial frame { }iî  is 
governed by the following differential equations: 

 p(S)ΩS =&
, (8) 

 
[ ]

Ω )d(S,Ω )f(S,
hIΩΩΩI

++
+−= ×&

, (9) 

where Ω )(S,hΩ )g(S,Ω )f(S, &−≡ , the exact form 
of kinematics p(S)  depends on the particular attitude 

representation, S ; 3, ℜ∈Ω )d(S,Ω )g(S,  are the net 
control torque and net disturbance torque applied to the 
body, both expressed in the body frame; finally, 

3ℜ∈h  is the momentum  bias also expressed in the 
body frame. Using relationships (Eqs.(6,7)) between the 

inertial frame { }iî  and the reference frame { }ir̂ , 
differential equations governing attitude motion can be 
re-written in terms of attitude errors with respect to the 
reference frame:7,9  

 p(s)ωs =& , (10) 

 
[ ]

Ω )d(S,ω )(s,f
HhIΩΩωI

++

−+−= ×&
, (11) 

where [ ]ΩηωC(s)IH ×+≡ &   is the correction due to 
angular motion and acceleration of the reference frame 
and ω )(s,f  is a different formulation of the control 
law, which should provide stability of the error 
trajectory ω )(s, . This new formulation ω )(s,f  can 



3 
American Institute of Aeronautics and Astronautics 

be obtained directly from the original control law 
Ω )f(S,  as shown next. 

Assume that stability of the trajectory Ω )(S,  governed 
by Eqs.(8,9) with the control law Ω )f(S,  can be 
shown using Lyapunov method. In other words, assume 
that there exist a proper positive definite Lyapunov 
function 00 >Ω )(S,V  such that has a negative semi-

definite derivative 000 ≤≡ Ω )(S,Ω )(S, VW &  along 
the trajectories governed by Eqs.(8,9). Note that an 
entire class of passivity based control laws relies on 
LaSalle’s invariance principle to demonstrate stability 
in the presence of not strictly negative definite 
derivative Ω )(S,0W .  

Generalization of the control law Ω )f(S,  to attitude 
tracking with respect to non-inertial reference frame 
{ }ir̂  is straightforward.7,9 The control law needs to be 
evaluated along the error trajectory ω )(s,  and needs to 
be modified using the following mapping: 

 [ ]
[ ] HhIωω

hIΩΩ
ω )f(s,ω )(s,f

++−

++

≡

×

×
. (12) 

Note that this mapping is linear with respect to the 
control law ω )f(s,  it acts on, but is nonlinear with 

respect to the reference trajectory in terms of ω&  and 
ω . Also, note that mapping needed to represent 
attitude trajectory with respect to another inertial frame 
becomes the identity mapping:  

 ω )f(s,ω )(s,f = , 0ωω ==&
. (13) 

Stability of the error trajectory ω )(s,  governed by 

Eqs.(10,11) with control law ω )(s,f  can be shown 
using the same Lyapunov function formulation 

ω )(s,0V . This is because using ω )(s,f  in 
Eqs.(10,11) reduces them to the same form as that of 
Eqs.(8,9) with the exception of bounded disturbance 

Ω )d(S, . In other words, with the exception of 

bounded disturbance, using ω )(s,f  in Eqs.(10,11) 
allows them to be converted to Eqs.(8,9) by a simple 
substitution of Ω )(S,  in place of ω )(s, .  

The following sections in this paper take advantage of a 
more specific form of the Lyapunov function that 
simplifies design of passivity based control laws: 

 (s)Iωωω )(s, T
sVV +≡

2
1

0 . (14) 

In the absence of disturbances, derivative of this 
function evaluated along the trajectories governed by 
Eqs.(10,11) with the control law ω )(s,f  becomes: 

 [ ](s)(s)λpω )f(s,ω
(s)λsω )f(s,ωω )(s,

V
TT

V
TT

+=

+≡ &0W
, (15) 

where 
T

V s
(s)

(s)λ 





∂
∂

≡ sV
. 

Hence, the following generic form of the passivity 
based control law can be recommended: 

 (s)(s)λpKωω )f(s, V
T−−≡ , (16) 

where 0>K  and p(s) , (s)λV  are such that 

0(s)(s)λp V
T =  implies s1s = . Application of this 

control law leads to the negative semi-definite 
derivative  

 00 ≤−≡ Kωωω )(s, TW . (17) 
Note that all solutions are bounded, ∞∈ lωs, , 

because ω )(s,0V  is radially unbounded and 

00 ≤ω )(s,W . The set { }0: 0 ==Ν Wω )(s,  

contains trajectories with 0ω = , which leads to 
0s =&  based on Eq.(10) assuming ∞∈ lp(s) . 

Trajectories in this set must also maintain zero higher 
derivatives, e.g. 0ω =& , hence, based on 
Eqs.(11,12,16), in the absence of disturbances: 

 0(s)(s)λp V
T = , (18) 

which means s1s = . Therefore, the largest invariant 

set in Ν  is the set { }0ω,1sω )(s, s ===Μ : . 
According to LaSalle’s invariance principle the system 
governed by Eqs.(10,11,12,16) is globally 
asymptotically stable. In particular, all trajectories of 
the system asymptotically approach Μ , i.e. 

0ω (t)1s(t) s ==
∞→∞→ tt

lim,lim . 
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This stability result can be extended to adaptive control. 
Straightforward application of MRAC principles calls 
for the augmentation of the original Lyapunov function 

ω )(s,0V  with the following terms: 

 
⊕⊕⊕ ≡ ΓΔIΔI)ΔIω(s, T

2
1,IV , (19) 

where 0>Γ  , 

 
⊕⊕⊕ −≡ IIΔI ˆ

, (20) 

and for the application of the control law )Iω ,(s,f t
ˆ  

similar to ω )(s,f , but in which true inertia matrix I  is 

replaced with its estimate Î : 

 [ ]
[ ] HhωIω

hΩIΩ

ω )f(s,)Iω(s,f t
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ˆ
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≡

×

×
, (21) 

with [ ]ΩηωC(s)IH ×+≡ &ˆˆ . The adaptive law is then 
selected so as to cancel all inertia matrix dependent 
terms from the derivative of the Lyapunov function: 

 )ΔIω(s,
)ΔIω(s,)ΔIω(s,

⊕
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where ω )(s,)ΔIω(s, 00 , VV ≡⊕ . In the absence of 
disturbances, the derivative of this function evaluated 

along the trajectories using )Iω(s,f t
ˆ,  becomes: 
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where  
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and [ ]ΩηωC(s)IH ×+∆≡∆ & . Furthermore, 
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−=

ΓΔII

ΔIΠω
ΔIΩΩω
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T
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where ΩηωC(s)Π ×+≡ & . Clearly, using the 
following adaptation law 

 [ ] ωΠΩΩΓI T1 ⊗⊗×−⊕ +−=&̂
 (27) 

leads to a negative semi-definite derivative: 

 0≤−=⊕ Kωω)ΔIω ,(s, T
tW . (28) 

Application of LaSalle’s invariance principle is similar 
to the non-adaptive case. All trajectories are bounded, 

∞∈ lΔIω ,s, , and in the set 

{ }0: ==Ν ⊕
tW)ΔIω ,(s,  must have 0ω = , 

which leads to 0s =&  based on Eq.(10) assuming 

∞∈ lp(s)  and to 0I =&̂
 based on Eq.(27). Similarly, 

considering higher derivatives gives 0ω =& . However, 
the solution now includes potentially non-zero terms 
based on Eqs.(11,12,21), which means that the attitude 
error in the absence of disturbances must satisfy: 

 const
ΩΔIΩΩΔI(s)(s)λp V

T

=
−−= ∞

×
∞

&
. (29) 

In other words, s  may not approach s1  if the reference 
trajectory can be asymptotically modeled as that of the 
rigid body driven by a non-zero constant torque with 
constant symmetric but not necessarily positive definite 

matrix 0IIΔI ≠−= ∞∞
ˆ . One simple example of 

such a trajectory is a slew with constant acceleration or 
deceleration. Then having 3EΔI k=∞  with 0≠k  
leads to  

 0constΩ(s)(s)λp V
T ≠=−= &k  (30) 

and s1s ≠ . However, it is clear that inertially fixed 

reference trajectories lead to 0(s)(s)λp V
T =  and 

s1s = . The result is not surprising, as control laws 
exist for attitude stabilization that do not require 
knowledge of the inertia matrix. This is known as the 
reduction property of attitude stabilization. It is also 
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intuitively clear that sufficiently excited reference 
trajectories would require 0ΔI =∞  in order to satisfy 

Eq.(29). This will also lead to 0(s)(s)λp V
T =  and 

s1s = . This result is well known in estimation theory 
as persistence of excitation. Therefore, in general, the 
largest invariant set in Ν  is the set 

{ }∞∞ ====Μ ΔIΔI0ω,ssΔI)ω ,(s, ,: , where 

consts =∞  and constΔI =∞ . If the reference 

trajectory is inertially fixed, s1s =∞ . If the reference 

trajectory is sufficiently excited, both s1s =∞  and  

0ΔI =∞ . According to LaSalle’s invariance principle 
the system governed by Eqs.(10,11,12,21) is globally 
asymptotically stable. In particular, all trajectories of 
the system asymptotically approach Μ , i.e. 

∞∞→∞→∞∞→
=== ΔI(t)ΔI0ω (t)ss(t)

ttt
lim,lim,lim . 

ADAPTIVE TRACKING WITH 
MOMENTUM BIAS AND NO ANGULAR 

VELOCITY MEASUREMENTS 
The passivity and cascade nature of rigid body attitude 
dynamics and kinematics have been used successfully 
to replace angular velocity measurements with a lead 
filter. In particular angular velocity free control laws 
have been developed using quaternions for 
stabilization3 and Modified Rodrigues parameters 
(MRPs) for tracking7. Note that all of them require 
continuous time-varying external torque for proper 
cancellation of the angular velocity dependent terms in 
stability analysis.  Momentum exchange devices are 
better suited for this mode of operation then pulsed jets. 
However, the momentum bias becomes coupled with 
the angular velocity and in the case of tracking remains 
coupled even when the relative angular velocity 
approaches zero. In the presence of the angular velocity 
measurements, this coupling can be easily cancelled out 
in the formulation of the control law as can be seen 
from the development in the previous section. Without 
the angular velocity measurements, the control law 
must be modified differently so that it remains angular 
velocity free. In order to take advantage of the passivity 
via LaSalle’s invariance principle, a lead filter similar 
to those that have proposed for rigid-body without 
momentum bias is introduced. The filter includes 
additional stable dynamics governed by the following 
differential equations: 

  b(s)Azz +=& , (31) 
where A  is any Hurwitz matrix, i.e. 

   QPAPAT −=+ , (32) 
with 0>= TPP  and 0>= TQQ ; b(s)  is the 
attitude representation dependent function that satisfies 
the following criterion: 0(s)b =&  necessarily implies 

0s =& . The kinematics Eq.(10) remains the same, but 
the dynamics Eq.(11) is modified to include a different  
control law formulation z)(s,fp : 

 
[ ]

Ω )d(S,z)(sf
HhIΩΩωI

p ++

−+−= ×

,

&
. (33) 

This control law, z)(s,fp , does not depend on the 
angular velocity ω : 

 
hηH

z(s)P(s)λp

(s)(s)λpz)(s,f

p

b
T

V
T

p

×++

−

−≡

& , (34) 

where  

 IηηωIC(s)Hp
×+≡ &

 (35) 

and 
T

b s
b(s)(s)λ 





∂
∂

≡ .  

Stability under this new control law formulation can be 
demonstrated by using the original Lyapunov function 

ω )(s,0V  described by Eq.(14) and extending it to 
include terms depending on the filter variables: 

 z)ω(s,z)ω ,(s,z)ω ,(s, ,0 ap VVV +≡ , (36) 
where  ω )(s,z)ω ,(s, 00 VV ≡  and  

 zPzz)ω(s, T &&
2
1, ≡aV . (37) 

The derivative the Lyapunov function z)ω ,(s,pV  

evaluated along the trajectories using z)(s,fp  
becomes: 

 z)ω ,(s,
z)ω(s,z)ω ,(s,z)ω ,(s,

pa

ppp

W
WVW

+

=≡ ,0
&

, 

 
where  
 



6 
American Institute of Aeronautics and Astronautics 

 
[ ]( )

z)(s,fω
(s)(s)λpω

HhIΩΩω

z)ω ,(s,z)ω ,(s,

p
T

V
TT

T

+

+

++−

=≡
×

00 VWp
&

, (39) 

 

{ }

[ ]

[ ]

z(s)P(s)λpω

zQz

zPs(s)λzA

s(s)λzAPz

zPzzPz

z)ω(s,z)ω(s,

b
TT

T

TT
b

T
b

T

TT

&

&&

&&&

&&&

&&&&&&

&

+

−=

++

+=

+=

≡

2
1

2
1
2
1
2
1

,, apa VW

. (40) 

Hence, the derivative simplifies to 

 ΔzQz
2
1z)ω ,(s, T +−= &&pW , (41) 

where  
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[ ]
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hωω
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This means that 

 0
2
1

≤−= zQzz)ω ,(s, T &&pW . (43) 

Closely following the analysis in the absence of 
momentum bias,7 global asymptotic stability can be 
shown based on LaSalle’s invariance principle. As 

z)ω ,(s,pV  is radially unbounded and 

0≤z)ω ,(s,pW , all solutions are bounded. The set 

{ }0: ==Ν pWz)ω ,(s,  contains trajectories with 

0z =& , which leads to 0(s)b =&  based on Eq.(31) , 
which, in turn, leads to 0s =& . Then, from Eq.(10), 

0ω =  provided that p(s)  is non-singular. 

Furthermore, as higher derivatives of s  and z  are all 
zero trajectories that belong to the same set, 0ω =& , 
which leads to s1s =  based on Eqs.(33,34). Finally, 
based on Eq.(31), steady state of the filter becomes 

)b(1Azz s
1−

∞ −≡= .  The largest invariant set in 
Ν  is thus the set 

{ }∞====Μ zz0,ω,1sz)ω ,(s, s: . According 
to LaSalle’s invariance principle the system governed 
by Eqs.(10,31,33,34) is globally asymptotically stable. 
In particular, all trajectories of the system 
asymptotically approach Μ , i.e. 

∞∞→∞→∞→
=== zz(t)0ω (t)1s(t) s ttt

lim,lim,lim . 

This stability result is particularly interesting because it 
shows that momentum exchange devices can be used 
for angular velocity free attitude tracking and that the 
effect on stability of the coupling between the 
momentum bias and the angular velocity can be 
cancelled by including the coupling of the momentum 
bias and the desired angular velocity in the control law 
formulation.  

Quaternion only tracking with 
momentum bias 
Results presented above in this section are independent 
from a specific attitude representation and, thus, can be 
used to generate different control laws. For example, if 
the unit quaternion representation is selected  

 [ ]T
Vqq 4q≡ , (44) 

where 1=q  and [ ]T
q 01 1=  with 

 [ ]T
Vq 321 qqq≡ , (45) 

the direction cosine matrix becomes defined as 

 
( )

×−+

−≡

V
T
VV

3V
T
V

qqq
EqqC(q)

4

2
4

22 q
q

 (46) 

and kinematics uses 

 








−
+

≡
×

T
V

V3

q
qE

p(q) 4

2
1 q

. (47) 

The following Lyapunov function is often used in 
design of quaternion based stabilization control laws: 
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 [ ]( )2
41

2
q

k
V q

s −+≡ V
T
Vqq(q) , (48) 

where 0>qk . The augmented dynamics can then be 
driven by the following function of attitude 

 Vqb(q) zk≡ , (49) 
where 0>zk , which clearly satisfies the requirement 

that 0(q)b =&  implies 0qV =&  and 0q =& . 

The resulting control law can now be built using  

 ( )[ ]T
VV q(q)λ 14 −≡ qkq  (50) 

and 

 [ ]T
133b 0E(q)λ ×≡ zk , (51) 

which leads to 

 

hηHzPq

zPq

hηH
z(q)P(q)λp

(q)(q)λpz)(q,f

pV

V

p

b
T

V
T

p

××

×

+++

−−=

++

−

−=

&

&

&

2

22 4

z

zq

k

qkk
, (52) 

 VqAzz zk+=& . (53) 
Since this control law was generated using generic 
framework developed in this section, it is necessarily 
angular velocity free and globally asymptotically stable 
with respect to the reference attitude trajectory. Also, 
since according to Eq.(49) 0)b(1q = , the filter state 

will asymptotically approach 0z =∞ . 

Making angular velocity free control adaptive presents 
interesting challenges, because the adaptation law itself 
also must be angular velocity free. It was shown in the 
previous section that the straightforward application of 
MRAC principles produces the adaptation law 
(Eq.(27)), which includes the angular velocity. An 
equivalent formulation of this adaptation law have been 
proposed recently.10 This formulation uses MRPs for 
attitude representation and is based on the integration 
by parts using the separation of MRPs from the 
reference trajectory. The results presented below follow 
the same approach, but without using a particular 
attitude representation.  

The original Lyapunov function z)ω ,(s,pV  is 
extended with the same terms that were used in the 
previous section for adaptive control design: 

 )ΔIz,ω(s,

)ΔIz,ω ,(s,)ΔIz,ω ,(s,
⊕

⊕⊕

+

≡

,I

ppt

V

VV
, (54) 

where  z)ω ,(s,)ΔIz,ω ,(s, pp VV ≡⊕  and 

z)ω ,(s,)ΔIz,ω ,(s, II VV ≡⊕ . Following the same 
MRAC principles that were used in the previous 
section, the adaptive control is designed by replacing 
the true inertia matrix with its estimate: 

 

hηH

z(s)P(s)λp

(s)(s)λp)Iz(s,f

p

b
T

V
T

pt

×++

−

−≡

ˆ

ˆ,

& , (55) 

where 

 [ ] ⊕

×

+=

+≡

IGG

ηIηωC(s)IH

ra

p

ˆ

ˆˆˆ &

, (56) 

 ∑
=

⊗≡
3

1i
iω&ia CG , (57) 

 ∑∑
= =

⊗×≡
3

1

3

1i j
jiωωjir CCG . (58) 

Here, 3,2,1,3 =ℜ∈ kkC  are the columns of the 
direction cosine matrix  

 [ ]321 CCCC(s) =  (59) 
and 3,2,1,, =ℜ∈ kkk ωω &  are the components of the 
reference angular velocity and angular acceleration 
computed in the reference frame. The adaptation law 
designed can now be written in the form that separates 
the attitude dependent variables from the reference 
trajectory dependent variables: 

 

[ ]
[ ]

∑∑

∑

= =

=

−

′−

′′−=

+−=

+−=

3

1

3

1

3

1

ˆ

i j
ji

i
i

s(s)FΓ

s(s)FΓ

s(s)pGGΓ

ωGGΓI

ij

i

1T
ra

T
ra

&

&&

&

&

ωω

ω , (60) 



8 
American Institute of Aeronautics and Astronautics 

where 

 [ ] (s)pC(s)F 1T
ii

−⊗≡′′  (61) 
and 

 [ ] (s)pCC(s)F 1T
jiij

−⊗×=′  (62) 
 
are matrices of the appropriate dimensions and it is 
assumed that p(s)  is non-singular. Integration of both 
left- and right-hand sides of Eq.(60) yields an 
equivalent form of the adaptation law:  

 

∑∑∫ ∫

∑∑∫ ∫

∑∑ ∫

∑∫ ∫

∑ ∫

= =

= =

= =

=

=

′+

′+

′−

′′+

′′−

+=

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

0

0 0

0 0

0

0 0

0

ˆˆ

i j

t

t t
ji

i j

t

t t
ji

i j

t

t
ji

i

t

t t
i

i

t

t
i

d

d

d

tt

τωω

τωω

ωω

τω

ω

τ

τ

τ

)s(

)s(
ij

)s(

)s(
ij

)s(

)s(
ij

)s(

)s(
i

)s(

)s(
i

(s)dsFΓ

(s)dsFΓ

(s)dsFΓ

(s)dsFΓ

(s)dsFΓ

)(I)(I

&

&

&&

&

. (63) 

Note that the integration by parts that was used to 
integrate right hand side of Eq.(60) requires integration 
of a matrix with respect to a vector, which results in 
another vector of a different dimension. Also, note that 
this adaptation law, while equivalent to Eq.(60), is 
angular velocity free: it only uses the relative attitude, 
its integrals and the angular velocity and acceleration of 
the reference trajectory. 

The stability of the closed-loop system using the control 
law Eq.(55) and the adaptation law Eq.(60) can be 
shown by differentiating the extended Lyapunov 
function )ΔIz,ω ,(s, ⊕

ptV  along the closed-loop 
trajectories: 

 

)ΔIz,ω(s,

)ΔIz,ω ,(s,

)ΔIz,ω ,(s,)ΔIz,ω ,(s,

⊕

⊕

⊕⊕

+

=

≡

,ptI

ptp

ptpt

W

W

VW &

, (64) 

where  

Hence, the derivative becomes 

 
p

T ΔHzQz
2
1

)ΔIz,ω ,(s,)ΔIz,ω ,(s,

+−=

≡ ⊕⊕

&&

&
pptp VW

, (65) 

with 

 [ ] ⊕

×

+=

+≡

ΔIGG

ΔIηηωΔIC(s)ΔH

ra

p
&

 (66) 

 

and 

 
⊕⊕

⊕⊕

=

≡

ΓΔII

)ΔIz,ω ,(s,)ΔIz,ω ,(s,
T&

&

ˆ
IptI VW

. (67) 

Combining the results of Eqs.(65-67) yields: 

 0
2
1

≤−=⊕ zQz)ΔIz,ω ,(s, T &&ptW . (68) 

Once again global asymptotic stability can be shown 
based on LaSalle’s invariance principle. As 

)ΔIzω ,(s, ⊕,ptV  is radially unbounded and 

0≤⊕ )ΔIz,ω ,(s,ptW , all solutions are bounded. 

The set { }0: ==Ν ⊕
ptW)ΔIz,ω ,(s,  contains 

trajectories with 0z =& , which leads to 0(s)b =&  and  
0s =&  based on Eq.(31). Then, from Eq.(10), 0ω = , 

provided that p(s)  is non-singular and, from Eq.(60), 

0IΔ =& . Furthermore, as higher derivatives of s  and 
z  are all zero trajectories that belong to the same set, it 
follows that 0ω =& , which yields the following 
equation: 

 const
ΔIΩΩΩΔI(s)(s)λp V

T

=
−−= ×&

. (69) 

This equation is identical to Eq.(29) derived in the 
previous section, so the same analysis applies. The 
largest invariant set in Ν  is the set 









==
==

=Μ
∞∞

∞

ΔIΔIzz
0,ω,ssΔI)z,ω ,(s,

,
:

  

with consts =∞ , constΔI =∞  and 

)b(sAz 1
∞

−
∞ −= . If the reference trajectory is 
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inertially fixed, s1s =∞ . If the reference trajectory is 

sufficiently excited, both s1s =∞  and 0ΔI =∞ . 
According to LaSalle’s invariance principle the system 
governed by Eqs.(10, 31, 33, 55, 63) is globally 
asymptotically stable. In particular, all trajectories of 
the system asymptotically approach Μ , i.e. 

∞∞→

∞∞→∞→∞∞→

=

===

ΔI(t)ΔI

zz(t)0ω (t)ss(t)

t

ttt

lim

,lim,lim,lim
. 

SIMULATION 
A simulation included in this paper has been performed 
using attitude simulation and visualization capabilities 
of Satellite Toolkit (STK) and MATLAB. The 
dynamics of a rigid body with momentum bias and the 
quaternion kinematics have been defined and 
numerically integrated in STK. The actual control laws 
have been implemented as MATLAB functions callable 
from STK. 3D visualizations have been created in STK 
and plots have been created in MATLAB. 

The simulation demonstrates performance of the non-
adaptive quaternion only control law described in this 
paper (Eqs.(52,53)). The reference trajectory has been 
designed in STK to follow nadir pointing attitude until 
a target missile is detected over the horizon, at which 
point the spacecraft switches to target pointing. Once 
the missile is no longer visible, the spacecraft is 
returned to follow nadir pointing attitude. Clearly, the 
angular velocity and acceleration along the reference 
trajectory are not zero and depend on the relative 
motion of the spacecraft and its target. The magnitude 
of angular velocity and acceleration along the reference 
trajectory are shown in Figs.1,2. The following 
parameters have been selected for the control law: 

3EA 1.0−= , 3EP 200= , 50=qk , 1=zk  for  
the spacecraft inertia matrix of 

 )(10
55.08.1
5.01.201.2
8.11.24.21

23 kgm















=I . 

The tracking performance is evaluated using 3D 
visualizations and time history plots, which are 
included below. The plots depict magnitudes of the 
angular velocity error and of the attitude error (Figs.3,4) 
as well as magnitudes of the filter state and of the 
momentum bias (Figs.5,6). All indicate successful 
performance of the quaternion only feedback using 
momentum exchange devices.  

 

Figure 1 Reference angular velocity 

 

Figure 2 Reference angular acceleration 

 

Figure 3 Angular velocity error 



10 
American Institute of Aeronautics and Astronautics 

 

Figure 4 Attitude error 

 

Figure 5 Filter state 

 

Figure 6 Momentum bias 

 

CONCLUSIONS 
A category of passivity based attitude tracking control 
laws has been considered. In their original form, these 
control laws do not include momentum bias. This paper 
has generalized them to include momentum bias with 
and without angular velocity measurements. Also, 
MRAC extensions of these control laws for use with the 
unknown constant inertia matrix have been proposed 
and evaluated. The results have indicated that it is 
possible to successfully track agile reference 
trajectories using momentum exchange devices even in 
the absence of angular velocity measurements. At the 
same time, it is possible that MRAC extension of 
attitude tracking will result in the constant steady-state 
attitude error.  
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