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EVALUATING THE SHORT ENCOUNTER ASSUMPTION OF THE
PROBABILITY OF COLLISION FORMULA

Vincent T. Coppola∗

The formula for the probability of collision for space objects results from many
assumptions concerning the motion of the objects, not least of which is that the
encounter duration is short. We develop a formula that characterizes the encounter
duration for the conjunction of two space objects and then compute it for every
conjunction in an all-on-all assessment of the public catalog. We then introduce
the concept of a short-term encounter validity interval that characterizes the total
encounter time under which the short-term assumptions are assumed met. This
metric provides the means for assessing whether a conjunction satisfies the short
encounter assumption so that the standard collision probability metric is valid.

INTRODUCTION

The formula for the probability of collision for space objects results from many assumptions
concerning the motion of the objects, not least of which is that the encounter duration is short.
Certainly, the expectation is that most encounter times are indeed short because space objects move
at speeds measured in km/sec. However, not every encounter will be of short duration. Two obvious
examples are (i) conjunctions involving objects flying in formation close to one another; and (ii)
conjunctions involving objects at GEO that slowly drift. Since the formula rests upon a short time
assumption, its use requires a determination that the assumption is indeed met. More importantly,
the formula should not be used when the assumption is violated.

There have been many papers describing the probability of collision formula: see Alfano,1, 2, 3

Chan,4, 5, 6, 7, 8 and Patera9 for example. The formula involves the integration of a Gaussian proba-
bility density function over a circular area in the encounter plane. The encounter plane is defined as
the plane perpendicular to the relative velocity vector between the two objects at TCA (i.e., time of
closest approach). The formula was first described by Foster and Estes.10

A first principles approach to the derivation of the formula was taken by Akella and Alfriend11

and by Coppola.12 They showed that a probability computation involving the 3-dimensional relative
position covariance reduces to a 2-dimensional area computation by integrating out the motion over
time. While Akella and Alfriend integrate over all time, the integrand approaches zero exponentially
so that only a finite duration is actually needed to well-approximate the integral as one. The short
encounter time assumption needs to hold only over this finite duration.

Others have developed tests for determining when the short encounter assumption is valid. Al-
fano13 developed a linearity test that determines a minimum relative velocity at TCA so that a
user-specified encounter distance (expressed in standard deviations) is traversed without altering the
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probability value by a user-specified fractional tolerance. Chan7 argues for an encounter distance,
measured in standard deviations, that makes the cumulative probability normal to the encounter
plane the value one to within machine precision. Frigm and Rohrbaugh14 investigated the use of
relative velocity as an indicator of long vs. short term encounters for a select set of LEO and GEO
spacecraft.

We will investigate the appropriateness of the short encounter assumption by computing the en-
counter duration for every conjunction in an all-on-all assessment of a large public catalog of space
objects. We will show that the short encounter assumption is not valid for certain conjunctions
while being appropriate for the vast majority. The computation of the encounter duration provides
a means for assessing the appropriateness of the collision probability formula.

DERIVATION

The classic short encounter formula for the probability of collision between space objects has
been derived by many authors.10, 15, 1, 4, 11, 12 The probability represents the likelihood that the range
between two objects becomes less than the radius R during the encounter time interval, where R
is usually taken to be the sum of the hard body radii of the two objects involved. Because of this
definition, the probability does not represent the likelihood of a collision at any particular value of
time. Instead, the probability is associated with the whole time interval of the encounter.

Short-term Encounter Formula

In its most general form, the probability of collision formula is a two-dimensional integral of a
Gaussian distribution in the encounter plane over the area of a circle of radius R:

P =

∫∫
|ζ|≤R

N2(ζ,µζ0 ,Pc)dζ , (1)

where ζ = (y, z) denotes random variables for the relative position vector in the encounter plane,
µζ0 denotes the mean value of ζ, and Pc denotes the 2× 2 covariance matrix for ζ about µζ0 . The
expressionNn(ξ,η,P) denotes the normal (Gaussian) distribution for an n-dimensional variable ξ
with mean η and symmetric positive-definite n× n covariance matrix P defined by

Nn(ξ,η,P) =
1√

(2π)n
1√

detP
exp

[
−1

2
(ξ − η)T P−1 (ξ − η)

]
. (2)

One object is termed the primary object while the other is termed the secondary object. The en-
counter plane is defined as the plane containing the primary object’s position whose normal is
aligned with the relative velocity vector between the objects at TCA. With (y, z) parameterizing
the plane, the normal becomes î. The choice of the plane makes the relative position vector at TCA
lie in the encounter plane, denoted µζ0 above.

Several assumptions have been made in deriving Eq. (1). First, the encounter occurs over so
small a time interval that the motion of the objects can be assumed to be linear (i.e., straight lines).
Second, the velocity uncertainty is assumed to be sufficiently small that it can be treated as zero and
ignored. Thus, all perturbed relative trajectories are parallel and have the same identical constant
velocity while still having uncertainty in relative position. The mean relative motion is expressed as

µx(t) = µx0 + v0(t− t0) , (3a)
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µy(t) = µy0 , (3b)

µz(t) = µz0 . (3c)

Trajectories for a sphere of initial conditions of radius R, centered on the mean trajectory, sweeps
out a cylinder over time, often referred to as the collision tube. Given the linear motion assumption,
only trajectories starting within the tube can ever collide; no trajectory outside the tube ever crosses
inside.

The probability density functions for both objects are assumed to be independent and Gaussian
for times near TCA. The linear motion and velocity uncertainty assumptions further render the
covariance constant as well. The two-dimensional probability density function in the encounter
plane Pc is found by summing the 3 × 3 position covariance matrices of the two objects at TCA,
rotating the components into axes created by the plane and its normal, and then extracting the 2× 2
sub-matrix Pc from it.

Identifying the Encounter Interval

The formula given by Eq. (1) has no information in it concerning the encounter time interval.
Akella and Alfriend11 were the first to show that Eq. (1) is derivable from more fundamental no-
tions involving a 3-dimensional integral of the full 3 × 3 relative position covariance matrix. The
integral over the dimension perpendicular to the encounter plane could be associated with an integral
over time. Integrating over all time is then equivalent to integrating the entire normal distribution
resulting in a value of 1. The remaining 2 dimensions were then given by Eq. (1).

A rigorous derivation of the probability of collision formula, including the effects of relative
velocity uncertainty, is given by Coppola.12 The probability of collision P is the sum of the initial
probability of collision P0 at the start time t0 of the encounter time interval and the probability PI
that trajectories will have a collision after t0 but within a duration T > 0. By choosing the initial
time t0 sufficiently earlier than the TCA, P0 can be made approximately zero for many types of
encounters.∗ In fact, the short encounter assumption assumes that such an initial time t0 can be
found. The probability PI involves a time integral, given by

PI =

t0+T∫
t0

∫∫
|ζ|≤R

N3(r,µr,A0)v0 dydzdt . (4)

where v0 is the relative speed at TCA, r = (x, ζ) is the relative position, µr = (µx,µζ0), A0 is
the 3 × 3 relative position covariance matrix, and the (x, y, z) axes have been chosen to align the
relative velocity at TCA with the positive x-axis. When evaluating Eq. (4), x = −

√
R2 − ζT ζ so

that r lies on the correct hemisphere of radius R, a fundamental notion of the derivation. Eq. (4) is
equivalent to Akella and Alfriend’s Eq.(28) when t0 + T →∞ and t0 → −∞.

The reduction of Eq. (4) to Eq. (1) follows by first decomposing the 3-dimensional normal distri-
bution into a product of terms that preserves the covariance in the encounter plane:11, 12

N3(r,µr,A0) = N1(x− bT ζ, µx − bTµζ0 , σ
2
ν)N2(ζ,µζ0 ,Pc) , (5)

∗Objects flying in formation or objects having long encounters may not be able to choose an initial time t0 to make
P0 ≈ 0.
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where σ2ν = η2 − bTw, bT = wTP−1c , and

A0 =

∣∣∣∣ η2 wT

w Pc

∣∣∣∣ η ∈ R,w ∈ R2 . (6)

Note that the second normal distribution in Eq. (5) is independent of time t. The probability integral
is then

PI =

∫∫
|ζ|≤R

N2(ζ,µζ0 ,Pc)

t0+T∫
t0

N1(x− bT ζ, µx − bTµζ0 , σ
2
ν) v0 dt dζ . (7)

The inner integral is an integral over time t, treating ζ as a parameter, where the only time depen-
dence lies in µx. If we let t = 0 represent the TCA, then µx(0) = 0 making µx0 = v0t0 and the
inner integral becomes

Pν(ζ) =

t0+T∫
t0

N1 v0 dt =

χT∫
χ0

N1(χ, 0, σ
2
ν) dχ , (8a)

where χ = v0t+ bT (ζ − µζ0
) +

√
R2 − ζ · ζ . (8b)

Encounter Duration

While Pν(ζ) is 1 when integrating over all time, it can be accurately approximated as 1 when
integrating over a finite duration. We define this duration as the short-term encounter duration.
Eq. (8a) can be integrated analytically as

Pν(ζ) =
1

2
(erf(αT )− erf(α0)) , (9)

where αT = α0 + ατ and

ατ =
v0T√
2σν

, (10a)

α0 =
v0t0 − q0 + δ(ζ)√

2σν
, (10b)

q0 = bTµζ0 , (10c)

δ(ζ) = bT ζ +

√
R2 − ζT ζ . (10d)

Pν(ζ)→ 1 when both erf(αT )→ 1 and erf(α0)→ −1. Define the measure of closeness to 1 using
1 − γ where γ > 0 but small. Define αc by erfc(αc) = γ. Table 1 shows the relationship between
γ and αc. Note that αc increases slowly as γ becomes smaller. On a computer, the resolution of a
double is nearly 1.e-16, so γ values less than that are not meaningful to compute.

Looking first at α0, we find

erf(α0) ≤ −(1− γ) whenever α0 ≤ −αc . (11)

This condition is satisfied when t0 ≤ τ0 where

τ0 =
−
√

2αcσν + q0 − δmax
v0

where δmax = max
‖ζ‖≤R

δ(ζ) . (12)
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Table 1. Relating γ to the sigma value αc

γ αc
√

2αc 2
√

2αc

1.0e-06 3.459 4.892 9.783
1.0e-08 4.052 5.731 11.461
1.0e-10 4.573 6.467 12.934
1.0e-12 5.042 7.131 14.261
1.0e-14 5.473 7.739 15.479
1.0e-16 5.864 8.292 16.585

Similarly, we find
erf(αT ) ≥ (1− γ) whenever αT ≥ αc . (13)

This condition is satisfied when (t0 + T ) ≥ τ1 where

τ1 =

√
2αcσν + q0 − δmin

v0
where δmin = min

‖ζ‖≤R
δ(ζ) . (14)

The encounter duration is computed as ∆τ = τ1− τ0. Direct computation shows that the minimum
and maximum of δ(ζ) over the area of the circle ‖ζ‖ ≤ R are

δmin = −R
√
bTb at ζ = − Rb√

bTb
, (15a)

δmax = R
√

1 + bTb at ζ =
Rb√

1 + bTb
. (15b)

The minimum occurs in the encounter plane at x = 0 on the boundary of the circle; the maximum
occurs at an interior point. Substituting, we find

τ0(γ) =
−
√

2αc(γ)σν + q0 −R
√

1 + bTb

v0
, (16a)

τ1(γ) =

√
2αc(γ)σν + q0 +R

√
bTb

v0
, (16b)

∆τ(γ) =
2
√

2αc(γ)σν +R
(√

1 + bTb +
√
bTb

)
v0

. (16c)

As expected, the encounter duration is related to the relative speed v0 at TCA and the relative
position uncertainty normal to the encounter plane σν . Note that σν properly accounts for cross-
correlation between the uncertainty in encounter plane and uncertainty along its normal. The term
multiplying R weights the transversal of the hemisphere itself by the cross-correlation. Usually,
σν � R so that the σν term dominates ∆τ(γ). Note also that while choosing different measures
of closeness γ will affect ∆τ(γ), the difference in duration between the smallest and largest γ from
Table 1 is only 70% longer.

Chan7 argues for an encounter duration∗ of at least 6σv0 but preferring 17σv0, essentially choos-
ing γ as 1.e-16. Although he does not provide a formula for his σ, his argument is in accordance
with the results presented here, assuming that the hemispherical traversal time is a small component
to ∆τ(γ).

∗Rather than speaking in terms of time, Chan uses distance when reducing the 3 dimensional probability integral to 2
dimensions. These are simply related using v0.
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EVALUATING THE ENCOUNTER DURATION FOR A CATALOG OF SPACE OBJECTS

We want to assess the encounter duration for each conjunction in all-on-all conjunction assess-
ment of the public catalog of space objects. We chose a 2-day time period over 01-03 Oct 2011.
However, a high-accuracy space catalog, containing ephemeris and covariance information for all
space objects, is not made available to the public. Thus, we resorted to the creation of our own
simulated catalog based upon the only the publicly available information for space objects: TLEs.

Simulated Catalog Development

The SGP4 algorithm is used to propagate ephemeris for a TLE, but does not provide covariance
information. We created the covariance information by performing orbit determination on simulated
measurements. Simulated ground measurements of an object (i.e., azimuth, elevation, and range)
were created using the ephemeris generated by its TLE. These measurements were then processed
using an extended Kalman filter. The ephemeris and covariance for each object was numerically
integrated using a force model consisting of a gravity field, third-body lunar and solar perturbations,
atmospheric drag (as applicable), and solar radiation pressure. The simulation was performed over
a time period before 01 Oct 2011 so that the ephemeris produced over 01-03 Oct would reflect only
predicted ephemeris and not any simulated measurements. This allows the covariance to grow over
time.

No attempt was made to generate simulated measurements in a manner consistent with the actual
collection of observations used to maintain the catalog. Every object was rich in simulated measure-
ments, unlike the actual collection process where debris objects may have few observations. The
resulting orbit determination provided excellent results with low uncertainty for every object in our
simulated catalog. Three typical values are shown in Table 2. Uncertainties for actual objects can
be found in practice to be up to 10× larger.

Table 2. Typical initial covariance sizes in the simulated catalog.

SSC Name Regime σmax (m) σmid (m) σmin (m)

24792 IRIDIUM-8 LEO 18.6 4.6 3.6
24876 NAVSTAR43 MEO 15.6 10.9 3.5
26388 TDRS-8 GEO 59.3 18.3 7.6

The resulting catalog consisted of 13,506 objects, of which 987 were GEOs. This compares well
to the original set of 14,680 TLEs available for that time period. The automated orbit determina-
tion process was unable to find a satisfactory orbit for a small set of objects without more manual
involvement. Our concern is conjunctions, however, and not orbit determination simulations of the
entire catalog so the difference is immaterial to our needs. This simulated catalog functions as rep-
resentative of the results expected when using the actual space catalog but not as actual results of
the official catalog.

All-on-All Conjunction Assessment

Conjunctions were computed amongst all 13,506 objects in the catalog. The computation took 27
minutes on a 64-bit high-end engineering workstation using 24 concurrent threads. A conjunction
for a pair was defined as a TCA whose range between the objects was less than 5 km. This is a
typical threshold used in conjunction assessments. There were 19,541 conjunctions over the 2-day
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period. We chose to model all objects as a sphere of radius 1 m rather then attempting to deter-
mine the correct size of each object∗, making R = 2 m in the probability and encounter duration
computations.

A little investigation showed that 22 pairings involved slowly drifting objects which stayed within
5 km for an extended time: 21 pairings remained within 5 km for the entire 2 days while one
remained close for 1.8 days. These pairings are responsible for 460 of the conjunctions. While one
might expect that all the slow drifting conjunctions involve GEO objects, this is not the case: only
two of the pairings involve GEO objects, with 1 pairing involving MEO objects and the remaining
19 involving LEO objects. Many of the conjunctions involved very close encounters that would be
a concern for collision–see Figure 1. In each conjunction the relative speed v0 was small, typically
less than 0.1 m/s but not more than 5 m/s. The shortest encounter duration ∆τ(10−6) was computed
as 167 secs, while the longest was 2.3 days. Obviously, these conjunctions do not satisfy the short-
term encounter assumptions–probability must be computed using a long-term encounter model.

Figure 1. Range histogram for the slowly drifting objects.

Because the slowly drifting objects must be treated separately, they will be removed from further
discussion. We computed the probability of collision for the remaining 19,081 conjunctions using
the short-term encounter formula. A summary is provided in Table 3. Only 25 conjunctions had
a probability greater than 10−6 and only 145 had a probability greater than 10−16. The largest
encounter duration of the 25 was 1.73 seconds; the largest duration of the 145 was 14.3 seconds.

More telling are the histograms of range, relative speed v0, and the normal plane uncertainty σν
shown in Fig. 2, Fig. 3, and Fig. 4. Relatively few conjunctions are close: 96% have a range greater
than 1 km. Over 98% of the conjunctions have a relative speed v0 greater than 1 km/s; however,
there are still 52 conjunctions with speeds less than 100 m/s. Surprisingly, 49% of the conjunctions
have a normal plane uncertainty σν of under 100m and 94% are under 500m.

Encounter Duration

Given the characteristics of v0 and σν , we should expect that the encounter durations will often
be short. This can be seen in Fig. 5 where the duration histogram for γ = 10−6 is shown. Over
95% of the conjunctions have an encounter duration of less than 0.5 seconds, and all but 33 have

∗There is no known database of object sizes for the public catalog.
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Figure 2. Range histogram.

Figure 3. v0 histogram.

Figure 4. σν histogram.
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Table 3. Distribution of probability values.

Probability Range Conjunctions

1.0E-04 ≤ P 0
1.0E-05 ≤ P < 1.E-04 7
1.0E-06 ≤ P < 1.E-05 18
1.0E-08 ≤ P < 1.E-06 40
1.0E-10 ≤ P < 1.E-08 23
1.0E-12 ≤ P < 1.E-10 15
1.0E-14 ≤ P < 1.E-12 21
1.0E-16 ≤ P < 1.E-14 21

0.0 ≤ P < 1.E-16 18,935

durations less than 5 seconds. Of those 33 only 4 conjunctions involve GEO objects; 8 conjunctions
involved slow encounters of LEO objects where the maximum speed was 35 m/s. The remaining
21 encounters were fast encounters (6.5 km/s ≤ v0 ≤ 15.5 km/s) involving LEO objects but had
relatively high normal plane uncertainty (3.7 km ≤ σν ≤ 39.1 km).

Even at γ = 10−16, the durations do not change much. The largest duration is then 902 seconds
vs. the previous maximum of 535 seconds, and 75 conjunctions have durations greater than 5 sec-
onds. Fig. 6 shows the effect of larger initial uncertainty (i.e., σν 7→ 5σν) on the encounter duration
histogram. As expected, the larger the initial uncertainty the more conjunctions have durations of
larger length.

Encounter Start and Stop Times

An interesting by-product of the encounter duration formula is the identification of the time inter-
val for the encounter, i.e., [τ0, τ1]. Recalling that we set t = 0 to indicate the TCA (i.e., the reference
time for evaluating v0, µζ0 , and A0), we might expect that t = 0 lies on [τ0, τ1]. However, this only
occurs for 3960 conjunctions (21%). A few conjunctions are shown in Table 4. Note that in some
cases the duration ∆τ is smaller than the time between the TCA at t = 0 and one (or both) of the
encounter edges times τ0 and τ1.

Table 4. Some example conjunctions metrics for γ = 10−6.

Regime SSC SSC Range (km) v0 km/s σν (km) τ0 (s) τ1 (s) ∆τ (s)

GEO 31577 36831 2.8 0.003 0.063 -98.5 105.8 204.3
LEO 34754 34962 4.6 0.006 0.037 -147.1 -92.6 54.5
LEO 34754 34962 2.9 0.012 0.056 132.5 177.8 45.3
LEO 07363 30917 4.9 14.661 1.115 14.2 14.9 0.7
LEO 18257 35443 4.9 0.172 0.063 -9.1 -8.6 0.5
LEO 26756 35770 2.3 14.866 0.428 -0.1 0.2 0.3
LEO 34969 37438 2.5 14.791 0.167 0.3 0.5 0.2
LEO 32069 34901 3.2 14.909 0.288 -0.5 -0.4 0.1

Looking at Eq. (16a) and Eq. (16b), we see that q0 can be of either sign whereas the the other
terms in the numerators are of the same sign. Thus, q0 is responsible for this behavior. q0 arises
from cross-correlation of the covariance matrix interacting with the relative position at TCA. It
determines the time during the motion of the perturbed trajectories that the greatest contribution to
N1(χ, 0, σ

2
ν) is made–that time is not normally the TCA (unless, of course, the cross-correlation is

zero).
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Figure 5. ∆τ(10−6) histogram.

Figure 6. ∆τ(10−6) histogram when σν increased 5×.

10



The formulas for τ0 and τ1 given by Eq. (16a) and Eq. (16b) have been derived in accordance
with the short-term encounter assumption. Thus, the actual time period that the assumptions are
assumed to be met is not just the encounter duration interval, but instead the larger interval ∆t, the
short-term encounter validity interval, defined by

∆t = max(∆τ, ‖τ0‖, ‖τ1‖) . (17)

A histogram of ∆t is given in Fig. 7. There are 115 conjunctions with ∆t > 5 seconds. These may
merit further investigation to determine whether the short-term encounter assumptions are valid. In
contrast, the encounter duration ∆τ identified only 33 conjunctions greater than 5 seconds.

Figure 7. ∆t histogram.

DISCUSSION

The slowly drifting objects do not satisfy the short encounter assumptions and must be assessed
using other means. Many of these objects remain very close for large amounts of time. Of the
remaining conjunctions, most all have a ∆t value of a few seconds and (probably) satisfy the short-
term encounter assumptions. The only definitive manner for determining the appropriateness of
the assumption is to compare using Monte Carlo simulations but the computational effort in doing
so even for one conjunctions can be daunting.16 There are a small number of conjunctions for
which ∆t is more than a few seconds and it is not clear that the short term assumptions are met for
these cases or not. The short-term encounter validity interval formula can be used to identify these
conjunctions–they merit more investigation.

CONCLUSIONS

We have derived the formula for the encounter duration and the validity interval satisfying the
short-term encounter assumptions. The encounter duration and validity interval were then computed
for all conjunctions in an all-on-all conjunction assessment of a large space object catalog. While
the vast majority of encounters last only a few seconds, some encounters last long enough that
further investigation is warranted to determine whether the short-term assumptions are met. The
the short-term encounter validity interval formula can be used to determine this small set needing
investigation.

11



REFERENCES
[1] S. Alfano, “Determining Satellite Close Approaches,” J. Astron. Sci., Vol. 41, No. 2, 2005, pp. 217–225.
[2] S. Alfano, “Review of Conjunction Probability Methods for Short-term Encounters,” AAS Specialist

Conference, Sedona, AZ., Paper 07-148, Feb. 2007.
[3] S. Alfano, “A Numerical Implementation of Spherical Object Collision Probability,” J. Astron. Sci.,

Vol. 53, No. 1, 2005, pp. 103–109.
[4] K. Chan, “Collision Probability Analyses for Earth Orbiting Satellites,” Adv. Astro. Sci., Vol. 96, 1997,

pp. 1033–1048.
[5] K. Chan, “Analytical Expressions for Computing Spacecraft Collision Probabilities,” AAS Specialist

Conference, Santa Barbara, CA., Paper 01-119, Feb. 2001.
[6] K. Chan, “Improved Analytical Expressions for Computing Spacecraft Collision Probabilities,” AAS

Specialist Conference, Ponce, Puerto Rico, Paper 03-184, Feb. 2003.
[7] K. Chan, “Short-Term vs Long-Term Spacecraft Encounters,” AIAA Conference, Providence, RI., Paper

2004-5460, Aug. 2004.
[8] K. Chan, Spacecraft Collision Probability. El Segundo, CA.: The Aerospace Corporation, 2008.
[9] R. P. Patera, “General Method for Calculating Satellite Collision Probability,” AIAA J. GCD, Vol. 24,

No. 4, 2001, pp. 716–722.
[10] J. L. Foster and H. S. Estes, “A Parametric Analysis of Orbital Debris Collision Probability and Maneu-

ver Rate for Space Vehicles,” NASA/JSC-25898, Aug. 1992.
[11] M. R. Akella and K. T. Alfriend, “Probability of Collision Between Space Objects,” J. GCD, Vol. 23,

No. 5, 2000, pp. 769–772.
[12] V. T. Coppola, “Including Velocity Uncertainty in the Probability of Collision Between Space Objects,”

AAS Specialist Conference, Charleston, SC., Paper 12-247, Feb. 2012.
[13] S. Alfano, “Beta Conjunction Analysis Tool,” AAS/AIAA Astrodynamics Specialist Conference, Mack-

inac Island, MI., Paper 07-393, Aug. 2007.
[14] R. C. Frigm and D. Rohrbaugh, “Relative Velocity as a Metric for Probability of Collision Computa-

tions,” NASA GSFC IAC-08-A6.2.5, 2008.
[15] Z. N. Khutorovsky, V. F. Boikov, and S. Y. Kamensky, “Direct Method for the Analysis of Collision

Probability of Artificial Space Objects in LEO: Techniques, Results, and Applications,” Proc. First
European Conf. on Space Debris, Apr. 1993, pp. 491–508.

[16] S. Alfano, “Satellite Conjunction Monte Carlo Analysis,” AAS Spaceflight Mechanics Mtg, Pittsburgh,
PA., Paper 09-233, Feb. 2009.

12


	Introduction
	Derivation
	Short-term Encounter Formula
	Identifying the Encounter Interval
	Encounter Duration

	Evaluating the Encounter Duration for a Catalog of Space Objects
	Simulated Catalog Development
	All-on-All Conjunction Assessment
	Encounter Duration
	Encounter Start and Stop Times

	Discussion
	Conclusions

