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A technique for integrating orbit trajectories influenced by attitude 
dependent forces is presented. The method employs an Encke 
type correction algorithm to account for the attitude dependence 
not modeled in the main orbit integration process. The 
formulation improves computational efficiency over the straight-
forward integration of the fully coupled system by eliminating the 
need to compute the acceleration due to the geopotential at the 
time step required for the attitude dependent forces. Examples are 
shown for the integration of coupled orbital and attitude motion 
and for the integration of the orbit trajectory when the attitude 
profile is known a priori. 
 

INTRODUCTION 

The computation of coupled orbit and attitude trajectories is a challenging problem, 
which can be addressed at many levels.  The first step is to define what it means to have 
coupled orbit and attitude states.  In some circumstances, the integration of the orbit state 
may be dependent upon the attitude, while the attitude is considered to independent of the 
orbit.  The attitude of the satellite typically affects the orbit via the interaction of the three 
dimensional configuration of the satellite with atmospheric drag or solar radiation pressure 
(SRP). It has even been proposed in recent studies to use the interaction of the spacecraft 
geometry with the SRP to provide orbit control for formation flying1.  In other 
circumstances the integration of the attitude may be dependent upon the position and 
velocity of the satellite2, while the orbit trajectory is not influenced significantly by the 
attitude.  This type of situation can occur when the attitude of the satellite is maintained in 
accordance with a control law while the satellite is experiencing torques due to solar 
radiation pressure, atmospheric drag, gravity gradient or Earth’s magnetic field. In a 
completely coupled case, the integration of the orbit and attitude parts of the state must be 
performed simultaneously. 
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The integration of orbit trajectories which depend upon the satellite attitude and the 
simultaneous integration of the orbit and attitude introduce a problem in the selection of a 
step size for the integration process.  In practice, it is typically assumed that the spacecraft 
attitude changes much faster than its position. This means that, if the two motions are not 
coupled, the numerical integration of attitude trajectory will require more (smaller) steps 
than the numerical integration of orbit trajectory for comparable duration and accuracy. The 
goal in computing coupled solutions is to avoid evaluating the computationally expensive 
accelerations on the satellite position at the frequency required to adequately sample the 
attitude. One approach to the problem is to use weakly coupled numerical integration where 
two separate integrators are employed: one for orbit propagation and one for attitude 
propagation. Their coupling is accomplished via periodic updates of their respective forcing 
terms with the state coming from the "companion" integrator. One possible implementation 
might involve using a two body approximation of the orbital motion inside the attitude 
integration. The attitude state could then be propagated for the duration of one orbit 
integration step allowing the subsequent step in the orbit integration process access to 
accurate attitude information.  The initial state for the two body approximation is then 
updated based on the current orbit state and the process continues. Clearly, there will be 
errors when using this method in both the orbit and attitude trajectories.  

The original procedure can be improved if additional characteristics of the 
trajectories and the exerted forces and torques are examined. Consider the effect of small 
orbit state errors on drag, SRP and gravity-gradient torques. Note that all of them are 
"differential" in nature, i.e. they are caused by differences in torques produced on individual 
parts of the spacecraft. Consequently, while not negligible, they are typically small. In 
addition, the "differential" nature of these torques reduces the effect of orbit state errors. The 
errors induce first order variations of the small torques, which makes them effectively second 
order with respect to the attitude state. The effect of attitude errors on the orbit propagation 
is different. Attitude dependent drag and SRP forces, while relatively small, are significant 
and are not "differential" in nature. More importantly, the attitude errors during the single 
(large) step taken by the orbit integrator cannot be treated as small. Indeed, while the orbit 
integrator may assume fixed attitude during the step, the satellite may undergo fast spin, 
going through several revolutions. For example, if the satellite was facing the Sun with its 
largest area at the beginning of the orbit integration step, but was maneuvered to face the 
Sun with its smallest area sometime during this step, the orbit propagation errors can be 
comparable with those induced by missing the eclipse boundary with cylindrical shadow 
model. Such errors are known to be potentially significant3-6.  

An alternative approach is to integrate a correction to the orbit trajectory, taking as 
many steps as there are attitude updates, using an Encke type algorithm. The Encke 
algorithm uses a reduced force model that only computes changes in attitude dependent 
forces unaccounted for during the orbit integration step and the differential two body 
acceleration7. This algorithm has been used successfully to correct for missed eclipse 
boundaries and has the advantage over fully coupled integration that a much simpler force 
model is used during the integration of the high frequency component8. The resulting 
accuracy is comparable to that of the fully coupled orbit and attitude trajectory integration, 
but requires a fraction of the computation time. Note that the algorithm can be implemented 
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to only account for attitude dependent translational accelerations or to provide complete 
coupling with the integration of the attitude part of the state. In either case, the only 
assumption being made is that the differences in higher order perturbations between the 
main orbit integrator and the Encke correction algorithm are negligible.   

FORMULATION 

Two formulations for orbit integration with attitude dependent forces and fully 
coupled orbit and attitude integration will be developed in the sections to follow. In each 
case, the problem will be separated into two parts.  In part one, the main orbit integration 
step performs the integration of the equations of motion for the orbit. In part two, the 
correction step, a correction to the orbit state computed by part one, is determined along 
with the optional integration of the attitude state.  This process is illustrated in Figure 1. 

Orbit Integration Step

Time
∆xk+1 = 0

∆x
Encke Correction Steps

xk xk+1

qk
qk+1

Orbit
Update

Updated Attitude
 

Figure 1. Encke correction timeline 

The difference between the pair-wise formulations is the distribution of translational 
accelerations between the main orbit integration step and the correction step.  The first 
formulation includes nominal accelerations due to atmospheric drag and solar radiation 
pressure as part of the main orbit integration model. This formulation will be referred to as 
the attitude correction formulation.  In the second formulation, the computation of drag and 
SRP are only done in the correction step.  This formulation will be referred to as the 
extended correction formulation.   

Orbit integration model 

The equations of motion for the main orbit integrator for the attitude correction 
formulation are given as 

 
00 SRPdragMoonSunAC aaaaU rrrrr

&&r ++++∇=ρ , (1) 
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while the orbital equations of motion for extended correction formulation are, 
 

 MoonSunEC aaU rrr
&&r ++∇=ρ , (2) 

where U∇
r

 is the gradient of the gravitational potential function, Sunar  is the third body 

gravitational acceleration due to the Sun, Moonar  is the third body gravitational acceleration 

due to the moon,  
0dragar  is the acceleration due to atmospheric drag and 

0SRPar  is the 

acceleration due to solar radiation pressure.   The zero subscripts on the accelerations due to 
atmospheric drag and SRP in Eq. (1) indicate that a constant reference area is used instead of 
the instantaneous area in the main orbit integrator.  The form of the atmospheric drag and 
solar radiation pressure accelerations are given in Eq.(3) and (4) respectively, 
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where DC  is the coefficient of drag, DA  is the projected area of the spacecraft in the planet 

fixed velocity direction, FV
r

, Atmρ  is the atmospheric density, M is the mass of the satellite, 

RC  is the coefficient of radiation, RA  is the projected area of the spacecraft in the apparent 

Sun direction, SunR
r

, meanF is the mean solar flux at 1 AU, c  is the speed of light and 

]1,0[∈κ  is the fraction of visible solar disk. 

Encke correction model 

The dependence of the orbit trajectory on the satellite attitude is realized through the 
variation of the areas in Eqs. (3-4). During the correction phase of the trajectory integration, 
the areas are allowed to vary continuously.  The differential equation for the trajectory 
update is therefore given by 
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for the attitude correction formulation and by 
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for the extended correction formulation.  In Eqs. (5-6) DA  and RA  are the instantaneous 
attitude dependent areas exposed in the Earth-Fixed velocity and Sun directions respectively, 
rr is the corrected state, ρr is the uncorrected state, µ is the gravitational parameter and the 

state correction rr∆  is defined as 
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 ρrrr
−=∆ rr . (7) 

The first term in Eq.(5-6) is the difference in the two body accelerations between the 
corrected and uncorrected trajectories.   The second and third terms account for the 
improper modeling of the acceleration due to drag and SRP during the main integration step 
in the attitude correction formulation and complete accelerations due to drag and SRP in the 
extended correction formulation.  The advantage of computing complete accelerations for 
drag and SRP in the extended correction formulation is that less expensive force model 
evaluations are required in the main orbit integration process.  The disadvantage is that the 
step by step corrections to the main integration state will be larger and have a greater 
potential to violate the assumption that the effect of the corrections on higher order 
perturbations is negligible.  

 It is important to note that the reference trajectory for the Encke correction is a 
numerically integrated trajectory, not a two body trajectory as in the classical Encke 
formulation.  To compute the position and velocity of the spacecraft at various times along 
the reference solution as required during the integration of the Encke correction, 7th order 
Lagrangian interpolation is used in conjunction with a history of the computed orbit states.  

Attitude Integration Model 

The equations of motion for the attitude state, assuming rigid body motion, are 

 qq )(
2
1 ωr& Ω= , (8) 

 ( )ωωω rrr
&r ⊗+= − )(1 ITI , (9) 

where q is the attitude quaternion, ωr  is the angular velocity in the body frame, I  is the 

moment of inertia matrix and T
r

 is the sum of the torques acting on the satellite.  The skew-
symmetric matrix Ω  is given as, 
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To facilitate the verification of the attitude trajectory, no torques were added into the 
implementation of Eq.(9).  A torque due to SRP was computed during the integration of the 
attitude to provide a more realistic value for the computation time, but it was set to zero.  
This step made the equations of motion for the attitude state independent of the equations 
of motion of the orbit state.  It is important to note that the nullification of the torque is 
done purely to aid in the verification of the process and does not affect the formulation of 
the equations of motion or the matter in which they are implemented. 
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Implementation 

The correction to the orbit has been implemented using the Runge-Kutta-Fehlberg 
7-8 single step integration procedure9.  This integration procedure has the benefit of 
automatic step size based error control and is therefore a good choice for cases where the 
rates of the attitude dynamics may vary significantly.  The error control senses the attitude 
motion directly when the orbit correction and attitude are integrated simultaneously and 
indirectly through atmospheric drag and solar radiation pressure when the attitude is known 
a priori.   

The main orbit integrator has also been implemented using the Runge-Kutta-
Fehlberg 7-8 single step integration procedure. The Encke correction algorithm is simply 
applied at the end of integration steps over which a change in the attitude of the satellite has 
occurred.  The updated state at the leading node of the integration process is then used as the 
starting state for the next integration step. It is important to note that computation of the 
Encke correction may require multiple steps of the numerical integrator to cover a single 
time step of the main orbit integrator.  Implementation of the main orbit integrator using a 
multi-step integration procedure was not investigated, but would be complicated due the 
state updates at every integration step. 

TEST CASES 

A single initial condition set for a tumbling cylinder in LEO was run using varying 
truncations of the geopotential to evaluate the accuracy and computational efficiency of the 
correction algorithms.  The initial conditions for the orbit state are given in Table 1 and the 
initial conditions for the attitude state are given in Table 2. 

TABLE 1. ORBIT INITIAL CONDITIONS 

Epoch Apo Alt     
(km) 

Peri Alt 
(km) 

I 
(deg) 

Ω            
(deg) 

ω 
(deg) 

ν 
(deg) 

Cp CD 

1 Jan 2001 
00:00:00 430.0 360.0 98.5 0.0 0.0 0.0 1.6 2.0 

 

TABLE 2. ATTITUDE INITIAL CONDITIONS 

Epoch (313) Euler Angles 
(deg) 

ωr        
(deg/s) 

Ixx            
(kg m2) 

Iyy            
(kg m2) 

Izz            
(kg m2) 

1 Jan 2001 00:00:00 20.0  40.0  118.0 3.0   1.0   2.0 1000.0 1000.0 600.0 

The Jacchia-Roberts atmospheric density model was used in the computation of the 
acceleration due to atmospheric drag.  Environmental inputs to the atmospheric density 
model were held constant at the following values: F10.7 cm flux 180, average F10.7 cm flux 
165 and a Kp geomagnetic index of 4.3.  The geopotential model was EGM-96.  The positions 
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of the Sun and Moon were computed from the JPL DE405 ephemeris and the apparent 
position of the Sun was used in the computation of SRP.  Errors can be introduced when the 
trajectory crosses a lighting condition boundary during the numerical integration process.  
To avoid these trajectory errors and the additional complexity in comparing trajectories, the 
test cases for this paper were computed without a shadow model for the Earth.  This is 
equivalent to setting κ = 1 in Eq.(4). The spacecraft body was modeled as a cylinder with a 
radius of 1.5 m and a height of 3 m. The duration of the analysis span was one day.  Orbit 
and attitude trajectories were computed simultaneously using a fully coupled formulation for 
use as a reference for the accuracy and efficiency of the trajectory computations performed 
using the correction formulations.   

The frequency of the attitude dynamics modeled in this test case is much higher than 
the frequency of the orbit dynamics.  To illustrate this point, the time history of the area to 
mass ratios for drag and solar radiation pressure are plotted over a one hour time span in 
Figures 2 and 3.  The area to mass ratio for drag was computed based on the area of the 
cylinder facing the direction of the Earth-Fixed velocity vector.  The area to mass ratio for 
SRP was computed based on the computed based on the area of the cylinder facing the 
direction of the apparent Sun.   The dynamic values of the area to mass ratios were computed 
based on a specification of an area to mass ratio of 0.02 m2/kg along the axis of the cylinder.   

 

Figure 2.  Area/Mass in drag direction 
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Figure 3. Area/Mass in Sun direction 

Trajectories were computed using a variety of truncations of the geopotential.  The 
results of these tests are given in Table 3.  The listed computation times have been 
normalized by dividing by the amount of time required to compute the fully coupled 
solution.  The maximum positional differences between the trajectory computed as part of 
the fully coupled system and those computed using the correction formulations are also 
given.  The attitude solution was in near perfect agreement in all cases with a solution 
generated separately from the orbit model. 

The information in Table 3 shows that the improvement in computational efficiency 
increases rapidly as the size of the geopotential increases.  The data also indicates that the 
accuracy of trajectories generated using the correction formulations relative to the fully 
coupled solution is independent of the size of the gravity.  It also appears that the extended 
correction formulation provides a slight computational advantage over the attitude 
correction formulation, as was expected, but does not significantly increase the errors in the 
trajectory. To verify that the assumption that size of the orbit state correction is small in 
reference to higher order perturbations, the maximum magnitude of the corrections to the 
position were computed for the case where a 4x4 geopotential was used.  The maximum 
correction to the position was 2.2 cm for the attitude correction formulation and 6.2 cm  for 
the extended correction formulation, thus justifying the assumption.   
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TABLE 3. EFFICIENCY AND ACCURACY  FOR COUPLED INTEGRATION  

Attitude Correction Extended Correction 
Geopotential 
Truncation Computation 

Time 
Maximum 
Diff (cm) 

Computation 
Time 

Maximum 
Diff (cm) 

4x4 1.12 35 1.05 35 

8x8 0.98 30 0.94 21 

12x12 0.86 45 0.80 40 

21x21 0.66 35 0.63 35 

36x36 0.35 37 0.34 31 

50x50 0.27 44 0.26 42 

 

To understand the importance of modeling the attitude dependence of the 
accelerations due to drag and SRP, a reference is needed to determine what the effect would 
be of not modeling the variation in area.  Matlab was used to compute the time average of 
the area to mass ratios, Figures 2-3, for drag, 0.030036662 m2/kg, and solar radiation 
pressure, 0.0299 m2/kg.  The area to mass ratios were set to the average values and held 
constant for the duration of integration time span without use of a correction algorithm.  
The maximum difference in the resulting orbit trajectory from a trajectory computed 
simultaneously with the attitude using fully coupled equations of motion was 9.5 meters 
using a 50x50 degree and order truncation of the geopotential.  If the area to mass ratio is 
changed by only 0.1%, the trajectory difference becomes 160 meters.  This indicates the 
extreme sensitivity of this test case to the area projected in the direction of the Earth-Fixed 
velocity direction.  It should also be noted that it was possible to compute the average areas 
in this case due to the fact that the attitude could be integrated independently.  In the case 
where environmental torques depending on the position and velocity of the satellite are 
included, coupled trajectories would have to be generated to compute the average areas.  The 
computation time for independent integration of the orbit and attitude motion was also 
computed.  The results in normalized time units compared with the computation time for 
the extended correction formulation are shown in Figure 4.  It is seen that time required for 
coupled integration using the correction algorithm approaches the lower limit set by 
independent integration as the size of the geopotential increases.  
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Figure 4. Computation time comparison 

A separate test was performed for the case where the attitude motion is known and 
available as input to the orbit integration.  In this case, the attitude is no longer part of the 
integrated state and therefore does not have a direct effect on the step size selection of the 
integrator.  The effect of the attitude is now sensed indirectly by the integrator via the 
attitude effects on the accelerations due to drag and SRP.   The ability of the integrator to 
sense changes in the accelerations due to drag and SRP will be dependent on the size of those 
changes relative to the other computed accelerations.  In addition to the two correction 
based formulations, trajectories were also generated using only the main orbit integrator, but 
allowing the projected areas to change based on the attitude.  This formulation will be 
referred to as  the variable attitude formulation.  Each case was run twice for each 
formulation.  In the first run, the integration step size selection was performed purely based 
on the relative error sensed in the integrated state.  In the second run, the step size was 
restricted to be at most 10 seconds for integration of the attitude dependent effects.  In the 
case where the attitude dependent accelerations were computed as part of the main orbit 
integration, the variable attitude formulation, this means that entire integration process has a 
capped step size.  In the cases where an Encke correction is used, only the correction process 
has a capped step size.  The results of this test are given in Table 4. The listed computation 
times have been normalized by dividing by the amount of timed required to compute a 
solution with varying area in the main orbit integration loop with the step size capped at 10 
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seconds.  The maximum positional differences are measured based on the trajectory 
computed as part of the fully coupled system. 

TABLE 4. EFFICIENCY AND ACCURACY  FOR VARYING AREA  

Attitude Correction Extended Correction Variable Attitude 
Geopotential 
Truncation 

Step Size 
Selection Comp. 

Time 
Maximum 
Diff (m) 

Comp. 
Time 

Maximum 
Diff (m) 

Comp. 
Time 

Maximum 
Diff (m) 

4x4 Error Control 
10 sec max. 

0.77      
1.11 

26         
0.7 

0.61      
1.03 

26         
0.7 

0.29     
1.0 

35         
0.45 

8x8 Error Control 
10 sec max. 

0.74    
1.05 

25          
0.8 

0.66     
0.97     

25          
0.8 

0.29     
1.0 

66          
0.5 

12x12 Error Control 
10 sec max. 

0.63      
0.91 

25         
0.7 

0.59      
0.85 

22               
0.8 

0.30     
1.0 

47         
0.5 

21x21 Error Control 
10 sec max. 

0.47       
0.61 

22          
0.6 

0.43       
0.58 

25            
0.6 

0.30      
1.0 

40           
0.5 

36x36 Error Control 
10 sec max. 

0.31        
0.39 

25          
1.6 

0.30       
0.38 

23         
1.6 

0.29       
1.0 

53         
0.5 

50x50 Error Control 
10 sec max. 

0.26       
0.31 

22          
0.7 

0.24       
0.29 

25          
0.8 

0.29       
1.0 

74           
0.5 

 

The data in Table 4 indicates that the use of the Encke correction procedure increases the 
sensitivity to attitude dependent accelerations. The differences from the fully coupled 
trajectory in this example are about half the size of the differences seen when the attitude is 
allowed to vary in the main integration step.  The significant differences found for the 
trajectories computed using only the standard error control are indicative of the sensitivity 
of the trajectories to the proper computation of the drag area.  In these cases, it is suspected 
that the sampling of the area to mass ratio during the integration procedure was not fine 
enough to ensure that an accurate average area could be realized.  The results of the test cases 
where the step size was capped at 10 seconds show similar levels of accuracy for all cases, 
indicating adequate sampling of the attitude motion, but the use of the correction procedures 
allows the computation to be done in significantly less time for geopotential sizes above 12th 
degree and order.  As was the case for the coupled integration test cases, the difference in 
accuracy between the attitude correction and attitude extended correction is not significant.   

CONCLUSIONS 

Two algorithms for computing coupled orbit and attitude trajectories using a main 
orbit integration step paired with an Encke type correction step have been developed.  Both 
algorithms, which differ in the distribution of accelerations between the main orbit 



12 

integrator and the correction step, have been shown to be computationally efficient for both 
simultaneous integration of orbit and attitude trajectories and integration of orbit 
trajectories with attitude dependence when the attitude is known.  The new algorithms are 
seen to be more computationally efficient than the integration of fully coupled equations 
when the truncation of the geopotential is beyond degree and order 12 for the test case 
analyzed.  The exact point of tradeoff will vary with the relative weight of other forces being 
modeled, but the trend of the reduction in computation time as the time required for 
computation of the gravitational acceleration begins to dominate the computation time for 
the sum of the accelerations.  A similar improvement in computational efficiency is seen for 
the case when the attitude motion is known and only the orbit trajectory has to be 
computed.  

REFERENCES 

1. Williams, T., Wang, Z., “Potential Uses of Solar Radiation Pressure in Satellite 
Formation Flight,”  AAS Paper 00-204, AAS/AIAA Space Flight Mechanics Meeting, 
Clearwater, Florida, Jan. 2000. 

2. Wertz, James R. Ed., Spacecraft Attitude Determination and Control. Dordrecht, Holland: 
D. Reidel Publishing Company, 1978. 

3. Anderle, R.J., “Geodetic Analysis Through Numerical Integration,” Proceedings of the 
International Symposium on the Use of Artificial Satellites for Geodesy and 
Geodynamics, Athens, Greece, 1973. 

4. Lundberg, J.B., “Mitigation of Satellite Orbit Errors Resulting from the Numerical 
Integration Across Shadow Boundaries,” AAS Paper 95-408, Presented at the 
AAS/AIAA Astrodynamics Specialist Conference, Halifax, Nova Scotia, August 1995. 

5. Woodburn, J. “Effects of eclipse boundary crossings on the numerical integration of 
orbit trajectories”, Paper No. AIAA-2000-4027, AIAA/AAS Astrodynamics 
Conference, Denver, Colorado, August 2000. 

6. Rowlands,David D., McCarthy, John J., Torrence, Mark H., Williamson, Ronald G., 
“Multi-Rate Numerical Integration of Satellite Orbits for Increased Computational 
Efficiency,” The Journal of the Astronautical Sciences, Vol. 43, No.1, 1995, pp 89-100. 

7. Vallado, David A., Fundamentals of Astrodynamics and Applications. New York: 
McGraw-Hill, 1997. 

8. Woodburn, J., “Mitigation of the Effects of Eclipse Boundary Crossings on the 
Numerical Integration of Orbit Trajectories Using an Encke Type Correction 
Algorithm,” Paper No. AAS 01-223, AAS/AIAA Space Flight Mechanics Conference, 
Santa Barbara, California, Feb. 2001. 

9. Fehlberg, E., “Some Old and New Runge-Kutta Formulas with Stepsize Control and 
Their Error Coefficients,” Computing, Vol. 34, 1985, pp 265-270. 


