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PARAMETRIC OPTIMIZATION OF CLOSED-LOOP SLEW 
CONTROL USING INTERPOLATION POLYNOMIALS 

Sergei Tanygin* 

 
Missions of many civilian, commercial and military satellites 
include slewing between multiple targeting opportunities. While 
the boundary conditions for the slew are set by the targets, the 
shape of the slew trajectory can be optimized to meet various 
performance metrics, such as minimizing integral of the magnitude 
of the angular acceleration or of the external torque. This paper 
investigates design and parametric optimization of the slew 
trajectory using blending of two simple spins. The resulting 
trajectory that becomes a Hermite interpolant in unit quaternion 
space is controlled by the blending function. Various types of 
blending functions permit various optimization techniques. 
 
  
 

INTRODUCTION 

Attitude trajectory optimization has been studied extensively.1-7 In general, even 
seemingly simple problems such as minimum-time rest-to-rest reorientation of a rigid 
spacecraft subject to control limits have eluded a closed-form solution.1-4 Proposed 
numerical solutions to this and other attitude trajectory optimization problems include 
various combinations of direct and indirect optimization methods, all of which tend to be 
computationally expensive.1-7 This paper describes a method for generating a smooth 
slew trajectory with known boundary points via blending of two simple spins. The shape 
of the slew trajectory is controlled by a scalar blending function, which in turn can adopt 
various parameterizations. Thus, a full trajectory optimization can be replaced by a 
parametric optimization carried out on a simpler and more structured formulation. While 
results of the parametric optimization may not be as optimal as those of the full trajectory 
optimization, computational advantages of the former make it suitable for near-real time 
slew design.  
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TRANSITION BETWEEN TRAJECTORIES USING BLENDING 

A basic concept of blending is quite straightforward and can be applied to various 
types of trajectories. In general, it simply means that a new trajectory is a weighted 
combination or a blend of the two known trajectories which are typically designed to 
satisfy certain boundary conditions. As mentioned in the introduction, this partitioning of 
the trajectory suggests alternative approaches to its optimization. For example, an 
efficient optimization of the blending function may prove to be a reasonable proxy to a 
full trajectory optimization that often results in computationally expensive problems 
unsolvable in a closed form. A specific type of blending discussed in this paper produces 
a particularly simple 1C  Hermite interpolant that permits many straightforward 
parameterizations.8,9 Such characteristics are important for generating physically 
realizable trajectories along which optimization metrics can be integrated in a closed 
form. This type of blending includes a constant rate extrapolation of the departure 
trajectory from the blending start time into the future and a constant rate extrapolation of 
the arrival trajectory from the blending end time into the past (Fig.1). The actual blending 
occurs by combining the two extrapolated trajectories via a scalar blending function 
which varies from 0 at the departure time to 1 at the arrival time and which departs and 
arrives with 0 rate of change (Fig.2). At any time between the departure and arrival, the 
blended trajectory is a weighted combination of the two extrapolated trajectories where 
the blending function value indicates the proportion of the extrapolated arrival trajectory 
in the blend (Fig.1). A manner in which trajectories are combined depends on the space 
in which they are defined. For example, a simple weighted sum combines trajectories in 
Euclidean space nℜ . However, for attitude trajectories a more complicated blending 
scheme is required: the one that relies on a mapping between the Euclidean space 3ℜ  and 
the unit quaternion space 3S . 

 

Figure 1 Transition by blending constant rate extrapolated trajectories 
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Figure 2 Examples of blending functions 

 

LOGARITHMIC AND EXPONENTIAL MAPS 

Majority of interpolants, splines and blending functions are originally developed 
in Euclidean space nℜ , i.e. their useful properties rely on the existence of Euclidean 
metric. A common approach for applying them to trajectories that reside in non-
Euclidean spaces includes mapping trajectories to and from some related Euclidean space 
in which standard interpolants, splines and blending functions can operate natively.9-13 
Since the non-Euclidean space )3(SO  which contains attitude matrices has many 
geometric properties which are much different from those of the Eucledian space 3ℜ , it 
is advantageous to employ unit quaternions instead. They reside on the 3-sphere 

3S embedded in 4ℜ , have the same local geometry as attitude matrices in )3(SO  and 
possess simple mappings to and from the Euclidean space 3ℜ . A unit quaternion can be 
defined by four coordinates, three vector part coordinates and one scalar part coordinate, 
all related via the unit norm constraint.14 At any point on the 3-sphere, i.e. for any unit 
quaternion, there exists a tangential space defined as a 3-plane. The plane contains all 
vectors in 4ℜ  that are orthogonal to the associated unit quaternion. The plane orthogonal 
to the identity unit quaternion is particularly useful. Since this quaternion has zero vector 
part, any and all pure quaternions, i.e. quaternions that have zero scalar part, belong to its 
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tangent space. Geometry of pure quaternions is equivalent to Euclidean geometry of 
vectors in 3ℜ . In other words, the Euclidean space 3ℜ  is a tangential space for the 
identity unit quaternion in 3S , 33

1 ℜ≡ST  (Fig. 3). The mappings between the two spaces 
can be explained using Taylor series expansion of the exponential operator applied to a 
pure quaternion (i.e. applied to a vector in 3ℜ ).  This exponential map, 33:exp SR → , as 
well as its inverse, 33:log RS → , the logarithmic map, are presented below (Fig.3):†12,13 
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Figure 3 Logarithmic and exponential mapping between 3S  and 3ℜ  

Before completing discussion about unit quaternion tangent spaces, it is 
instructive to evaluate derivative of a unit quaternion and its relationship to the angular 
velocity of rotation. The derivative q&  is inherently orthogonal to the unit quaternion 

3Sq ∈  and of course lies in its tangent space, 43 ℜ⊂∈ STq q&  (Fig.4). The derivative is a 
quaternion, but not necessarily a unit quaternion. A key transformation occurs when the 
coordinates are changed in a manner that makes the quaternion in question the identity. 

                                                
† Note that, except for the constant scaling factor of 2 related to the metric change between 

3S  and )3(SO , these 
maps are equivalent to relationships between quaternion and rotation vector representations of attitude. 

33
1 ℜ≡ST

4ℜ

q

3S

1 { } r=qlog

r

{ } q=rexp



 5 

The transformation is accomplished by multiplying the quaternion it by its conjugate q : 
qq ⊗=1 . With this change of coordinates, the tangent plane and the derivative vector in 

it are rotated into: 33
1 ℜ≡∈⊗ STqq& . Note that the transformed derivative vector is a 

pure quaternion (or a simple vector in 3ℜ ) and that it is exactly one half of the angular 
velocity of rotation represented by the quaternion q . The difference in size reflects the 
difference in metrics between 3S  and )3(SO  due to their 2-to-1 relationship (Fig.4). 

 

 

Figure 4 Quaternion and angular velocity relationship 
 

BLENDING OF SPINS 

Provided with the logarithmic and exponential maps to and from the Euclidean 
space 3ℜ , interpolation, splining and blending of unit quaternion trajectories can 
proceed. A specific blending type evaluated in this paper requires that departure and 
arrival trajectories be extrapolated with constant rate of change. Simplicity of this 
requirement is one of the main advantages of applying this type of blending to attitude 
problems. Indeed, a constant rate of change extrapolation of attitude trajectory is readily 
available: it is just a constant angular velocity spin.12 This simplicity translates into an 
equally straightforward formulation for the spins in unit quaternion space: the departure 
and arrival unit quaternion curves are12,13 
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and 
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respectively, where quaternion derivatives are computed using known angular 
velocities:12-14  

111 2
1 qq ⊗= ω& ,        (5)   

22 2
1 qq ⊗= 2ω& ,        (6)   

where subscript 1 indicates departure and subscript 2 indicates arrival. Note that these 
quaternion curves that represent constant angular velocity spins are great arcs on the 3-
sphere and that they depend on time t  only explicitly, i.e. all other parameters in their 
formulation are considered to be known constants. Given these curves at any time 
between the departure and arrival, the relative closeness of the blended quaternion to the 
departure curve is determined by the value of the blending function at that time. In order 
to define the blended quaternion, the direct path from a point on the departure spin to a 
point on the arrival spin must be evaluated at that time as well. Of course, the direct path 
on the 3-sphere is also a great arc, but in this case it is defined between synchronous 
points on the two curves: ( ) 3

12 SCC ∈⊗ . As discussed earlier, the blending should occur 
in the Euclidean space 3ℜ , transformation to which is accomplished via the logarithmic 
map: { } 3

12log ℜ∈⊗ CC . Once in 3ℜ , the distance along the path is scaled according to 
the blending function f  and the resulting path is transformed back to 3S  using the 
exponential map:  { }{ } 3

12logexp SCCf ∈⊗ , (Fig.5). A final transformation moves the 
blended quaternion from being relative to the departure curve to being relative to the 
original reference in which all trajectories are defined:12-13 

{ }{ } 1122121 logexp),,,,,,,( CCCffqqtttq ⊗⊗=21 ωω .   (7)   

If the blending function 1
21 ),,( Ctttf ∈  satisfies the following boundary conditions: 

0),,( 211 =tttf , 1),,( 212 =tttf , 0),,( 211 =tttf& , 0),,( 212 =tttf&   (8)   

the blended quaternion curve represents a smooth slew that satisfies both attitude and 
angular velocity boundary conditions: 

11 )( qtq = , 22 )( qtq = , 1ωω =)( 1t , 2ωω =)( 2t .    (9)   
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Closed form expressions for angular velocity and angular acceleration can be obtained 
via straightforward differentiation of the quaternion curve as shown in the Appendix 
(Eqs.(44,52)). These rigorous expressions contain trigonometric and inverse 
trigonometric functions, which coupled with various types of blending functions, are 
likely to present a challenge for computing integrals for many optimization metrics. 
Therefore, although the blended quaternion curve is rigorously described in the closed 
form, it is desirable to look for approximations that facilitate computation of integrals 
along the curve.  

 

Figure 5 Blending of spins 

 

LINEARIZED BLENDING OF SPINS IN QUATERNION SPACE 

The presence of trigonometric functions in quaternion curve formulations is a 
natural byproduct of being located on the 3-sphere. The blended curve formulation 
presented in this paper combines three great arc curves: two great arcs representing 
extrapolated spins and a third great arc that at any time during the blending connects 
synchronous points on the two spin arcs (Fig.5). A natural first order approximation in 
this case relies on limiting of all three great arcs to a small region of the 3-sphere, where 
planar formulations in 4ℜ  can replace spherical formulations in 3S . In other words, it 
limits the transition range (Fig.1) to a small region of the 3-sphere. Note that 2-to-1 
relationship between 3S  and )3(SO  is advantageous in this case, because the limiting arc 
length on the 3-sphere is doubled when converted to a limiting eigen-angle displacement 
in )3(SO . Linearization of the extrapolated spins yields: 
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( ) 222 ωω qttqqttCqttC &22222222 ),,,(~),,,( −+=≈ .    (11)   

A linearized blend of these approximate curves produces a desired approximation for the 
blended curve: 

[ ]12121212121
~~~),,,,,,,(~),,,,,,,( CCfCfqqtttqfqqtttq −+=≈ 2121 ωωωω . (12)   

Note that these approximations take quaternion curves off the 3-sphere, so they are no 
longer unit quaternion curves in 3S  and, thus, do not represent actual attitude motions 
(Fig. 6). However, the approximations are still adequate for a less stringent task of 
capturing representative integral metrics for optimization. Closed form approximations 
for angular velocity and angular acceleration are obtained in a manner similar to that used 
for rigorous expressions, except that quaternion derivatives are evaluated along the 
linearized blended curve. The resulting approximate expressions permit the following 
useful partitioning: 

QFωωωωωω 2121 =≈ ),,,,,,,(~),,,,,,,( 21212121 fqqtttfqqttt ,  (13)   

FQωωωωωω 2121
&&& =≈ ),,,,,,,(~),,,,,,,( 21212121 fqqtttfqqttt ,  (14)   

where [ ] 63
21 ),,,( ×ℜ∈= 65432121 QQQQQQωωQ qq  serves a set of 6 basis 

vectors, 3
21 ),,,( ℜ∈21i ωωQ qq , which are only functions of the boundary conditions 

and do not depend on the time or the blending function; and where 6
21 ),,,( ℜ∈tttfF  

contains a vector of 6 coordinates for the basis, ℜ∈),,,( 21 tttfFi , that are independent 
from the boundary conditions and only depend on the time and the blending function 
(Eqs.(53-72)). This partitioning offers a better structured approach to computing integral 
metrics. 
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Figure 6 Linearized blending of spins 

PERFORMANCE METRICS FOR PARAMETRIC OPTIMIZATION 

Various performance metrics include angular velocity and angular acceleration.6 
Arguably the simplest one among them integrates magnitude of the angular acceleration. 
The alternative metric derived from the approximate angular acceleration becomes: 
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As parametric optimization requires5-7 various partial derivatives can be readily computed 
form this formulation.  For example, since any variation in boundary conditions only 
affects some basis vectors, kQ   and none of the basis coordinates iF , the following 
partial derivative can be computed: 
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Conversely, any variation in parameters p  of the blending function only affects the basis 
coordinates and none of the basis vectors: 
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A more complex performance metric integrates magnitude of the external torque applied 
to the rigid body.6,14 Approximation of the torque based on the approximate angular 
velocity and acceleration yields: 

( ) ( )IQFQFFIQωωM 21 ×+= &),,,,,,,(~
2121 fqqttt ,    (20)   

where 330 ×ℜ∈=< TII  is the rigid-body inertia matrix. Although more complicated than 
the angular acceleration, this expression too can be used in the alternative performance 
metric: 
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Note that, while these approximate formulations are simpler than their rigorous 
counterparts, a determining factor in easing solutions to the parametric optimization 
remains the type of the blending function: it determines the ease or difficulty of 
computing the integrals and partial derivatives. Therefore, it is instructive to consider 
several examples of blending functions. 

   

EXAMPLES 

One of the most straightforward types of the blending function that satisfies the 
boundary conditions (Eq.(8)) are various degree polynomials of t . For example, it is 
possible to create a continuous and smooth blending function by piecing together two 
quadratic polynomials:12,13 
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or a single cubic polynomial: 
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Higher degree polynomials can satisfy the boundary conditions and have one or more 
free parameters. For example, the following blending function constructed using a quartic 
polynomial has one free parameter p , the quartic coefficient: 
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This means that there is in fact an entire family of quartic blending functions 
parameterized by the quartic coefficient. This also means that parametric optimization 
can be carried out with respect to this coefficient. What is more, for a simple metric, such 
as the integrated magnitude of the angular acceleration, the optimal value of the quartic 
coefficient ends up being one of the roots of the cubic polynomial in p :  
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where polynomial coefficients ),,,,,( 2121 21 ωω qqttai  shown in Appendix are functions 
of the boundary conditions (Eqs.(73-76)). 

Consider a numerical example in which a slew is designed to achieve a net 40 deg 
rotation about the x-axis in 1 second, given the following boundary angular velocities:  

[ ] srad /3.02.01.0 T
1ω = , [ ] srad /1.02.03.0 T

2ω −=   (26)   

Resulting angular velocity components computed with the cubic blending function using 
both exact and approximate formulations show satisfactory agreement (Figs. 7, 8) as do 
angular acceleration components, which are quite high (Figs. 9, 10). Evolution of the 
eigen-angle relative to the initial orientation shows that the angle reaches the intended 
value as prescribed (Fig. 11). Evolution of another eigen-angle, which is measured 
between the two extrapolated spins, shows that satisfactory approximation is achieved 
even when transition range spans almost 60 deg (Fig. 12). The remaining examples 
compare performances of the quadratic, cubic and quartic blending functions. The 
integrated magnitude of the angular acceleration is evaluated for each of these functions. 
For the quartic blending function, the metric is evaluated as a function of the quartic 
parameter (Figs. 13, 14). The cubic function performs significantly better then the 
quadratic function. However, the optimal value of the quartic parameter makes the 
quartic function perform even better. Note that optimal value computed analytically as a 
root of the cubic polynomial in p  (Eq. 25) is in an excellent agreement with the sampled 
data (Fig. 14). Finally, the integrand of the metric, the magnitude of the angular 
acceleration is shown to demonstrate the differences of its evolutions with different 
blending functions (Fig. 15). 

CONCLUSIONS 

The paper demonstrated how a closed-form slew trajectory designed via blending 
of two simple spins can be linearized and used for defining closed-form performance 
metrics. Linearization leads to partitioning of the slew trajectory into a linear 
combination of 6 constant basis vectors and 6 time dependent basis coordinates. This 
representation eases formulation, computation and optimization of various integral 
metrics. Examples demonstrate viability of the linearization and optimization even for 
moderately large angle slews. 
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Figure 7 Angular velocity components using cubic blending 

 

Figure 8 Approximation errors in angular velocity components using cubic 
blending  
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Figure 9 Angular acceleration components using cubic blending 

 

Figure 10 Approximation errors in angular acceleration components using cubic 
blending  
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Figure 11 Eigen-angle relative to initial orientation using cubic blending 

 

Figure 12 Eigen-angle between departure and arrival spins using cubic blending 
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Figure 13 Angular acceleration performance metric with various blending  

 

Figure 14 Details of parametric optimization with quartic blending 
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Figure 15 Integrand of angular acceleration performance metric including optimal 
quartic blending 
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APPENDIX 

A detailed formulation for the blended slew in terms of quaternions is presented 
below along with some helpful intermediate variables:  

3
122121 ),,,,,,( SCCqqtttD ∈⊗=21 ωω ,     (27) 

{ } RDpartscalarqqtttDs ∈=),,,,,,( 2121 21 ωω ,    (28) 

{ } 3
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2
2121 1),,,,,,( sv DqqtttD −== v21 Dωω ,     (30) 

sDffqqttts arccos),,,,,,,( 2121 =21 ωω ,     (31) 
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{ } REpartscalarfqqtttEs ∈=),,,,,,,( 2121 21 ωω ,    (32) 

{ } 3
2121 ),,,,,,,( REpartvectorfqqttt ∈=21v ωωE ,    (33) 

sfqqtttEs cos),,,,,,,( 2121 =21 ωω ,      (34) 

sfqqttt sinˆ),,,,,,,( 2121 v21v DωωE = ,     (35) 

12121 ),,,,,,,( CEfqqtttq ⊗=21 ωω .      (36) 

A straightforward differentiation of the equations above with respect to time t  
leads to the following formula for the angular velocity:  
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Then, another differentiation leads to the following formula for the angular 
acceleration:  
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1112121 2),,,,,,,( CECECEfqqtttq &&&&&&&& ⊗+⊗+⊗=21 ωω ,   (51) 

{ }qqpartvectorfqqttt ⊗×= &&& 2),,,,,,,( 2121 21 ωωω .   (52) 

Linearized expressions for the angular velocity and acceleration can be presented 
as a linear combination of the following basis vectors and basis coordinates:  

1221 ),( qqqqqd ⊗= ,        (53)   

{ }dqpartvectorqq ×= 2),,,( 21 211 ωωQ ,     (54)   

{ } 1212 ωωωQ =⊗×= 1121 2),,,( qqpartvectorqq & ,    (55)   

{ } { }dqpartvectorqqpartvectorqq ⊗=⊗×= 2213 ωωωQ 1221 2),,,( & , (56)   

{ } { }dqpartvectorqqpartvectorqq ⊗=⊗×= 121 ωωωQ 21214 2),,,( & , (57)   

{ } 2215 ωωωQ =⊗×= 2221 2),,,( qqpartvectorqq & ,    (58)   
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qqpartvectorqq &&
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12 ttT −= ,         (60)   

ftttfF &=),,,( 211 ,        (61)   

( ) TftttfF /1),,,( 2
212 −= ,       (62)   
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( ) ( )[ ] TttffftttfF /1),,,( 2213 −+−= & ,     (63)   

( ) ( )[ ] TttffftttfF /1),,,( 1214 −−−= & ,     (64)   

TftttfF /),,,( 2
215 = ,       (65)   

( )( ) ( ) TffTttttftttfF /1/),,,( 2
21216 −+−−= & ,    (66)   

ftttfF &&& =),,,( 211 ,        (67)   

( ) TfftttfF /12),,,( 212 −−= && ,      (68)   

( ) ( )[ ] TffttftttfF /12),,,( 2213 −+−= &&&& ,     (69)   

( )[ ] TttffftttfF /2),,,( 1214 −+−= &&&& ,      (70)   

TfftttfF /2),,,( 215
&& = ,       (71)   

( )( ) ( )( )[ ] 2
1221216 /12),,,( TftfttfttttftttfF −−−+−−= &&&& .  (72)   

Finding optimal quartic blending function requires solving for the optimal quartic 
parameter, which is the root of a cubic polynomial with the following coefficients: 
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