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Abstract

We present two methods to validate our new �lter orbit covariance function QF (tk+1; tk).
The �rst validation method derives from an ensemble of simulations to accumulate and propa-
gate an orbit sample covariance function QS (tk+1; tk) for comparison to QF (tk+1; tk). Sample
covariance QS (tk+1; tk) is driven only by a potential function covariance matrix P . Consistency
of QF (tk+1; tk) with QS (tk+1; tk) implies consistency of QF (tk+1; tk) with P . The second vali-
dation method derives from processing real tracking data with our sequential �lter-smoother to
perform rigorous consistency tests. Test success validates QF (tk+1; tk) and P , but test failure
indicates �lter modeling problems or an unrealistic potential function covariance matrix P .

INTRODUCTION

This is the second of three interrelated papers. The �rst paper[4], titled Orbit Gravity Error Covari-
ance, is prerequisite to this paper, and the third paper[5], titled Orbit Covariance Inner Integrals with
Polynomials, presents our new method to calculate and store the inner covariance integral. References
to the �rst and third papers are given herein. All other references for this paper can be found in the
�rst paper.
In the �rst part of this paper we describe techniques used in the validation of our new method to

calculate the �lter orbit error covariance function QF (tk+1; tk) that is derived from gravity modeling
errors. First, we present a new and independent orbit error sample covariance function QS (tk+1; tk) to
quantify e¤ects of approximations in the orbit error �lter covariance function QF (tk+1; tk), identi�ed
in the �rst paper. The sample covariance function QS (tk+1; tk) was constructed from an ensemble of
one thousand numerical trajectory integrations from gravity acceleration variations that were derived
from the covariance matrix P on potential function coe¢ cient estimation errors. The sample covari-
ance function QS (tk+1; tk) is free of the approximations identi�ed for QF (tk+1; tk). The potential
function covariance matrix P is represented with high �delity in QS (tk+1; tk). Thus the comparison
of the sample orbit error covariance function QS (tk+1; tk) to the �lter orbit error covariance function
QF (tk+1; tk) quanti�es the relation between QF (tk+1; tk) and P .
In the second part of this paper we provide test results, from McReynolds��lter-smoother con-

sistency test, due to processing real tracking data. These tests are e¤ective in detecting signi�cant
modeling errors during the �lter-smoother orbit estimation process.

SAMPLE COVARIANCE FUNCTION

Let Cnm and Snm denote the coe¢ cient values for degree n and order m of the potential function
of interest, and let P denote the covariance matrix on estimation error random variables �Cnm and
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�Snm . A spectral (eigenspace) decomposition of P was performed and used to create 1000 sets of
simulated coe¢ cient estimation errors �Cjnm and �Sjnm , j 2 f1; 2; : : : ; 1000g, from P and standard
normal variates. Given initial orbit conditions for a low altitude orbit of interest, we performed
1001 numerical orbit propagations across a time interval [t0; tF ] where tF � t0 = 2P , and P = orbit
period. The �rst propagation created a simulated reference ephemeris due to use of gravity �eld
for Cnm and Snm with no other forces modeled. Using the same initial orbit conditions, we created
1000 perturbed ephemerides using Cnm + �Cjnm and Snm + �S

j
nm , j 2 f1; 2; : : : ; 1000g, with no other

forces modeled. We di¤erenced each of the 1000 simulated perturbed ephemerides with the simulated
reference ephemeris to derive an ensemble of 1000 variations in position and velocity ephemerides to
form a sample mean and sample covariance function QS (tk+1; tk) about the mean.

POTENTIAL FUNCTIONS

Potential function covariance matrix cross-correlations are used (when available) in the calculation
of the sample covariance function QS (tk+1; tk), but they are not used in the calculation of the �lter
covariance function QF (tk+1; tk). Only the diagonal variances are used in QF (tk+1; tk).

EGM96 Geopotential

The EGM96 geopotential function coe¢ cient covariance matrix is available as a full matrix. The
EGM96 is complete through (deg,ord) = (70,70).

Covariance Matrix Cross-Correlations

There are 4 cross-correlations in the EGM96 geopotential coe¢ cient errors whose magnitudes are
greater than 0:95. For these cross-correlations, 1 of them is between longitude-dependent tesseral har-
monic coe¢ cients, and 3 of them are between global zonal harmonic coe¢ cients. Three of these cross-
correlations are negative. The positive cross-correlation is between zonals. These cross-correlations
are used in the calculation of QS (tk+1; tk).

Lunar-Prospector Potential

The Lunar-Prospector potential function coe¢ cient covariance matrix is available as a full matrix,
so cross-correlations are known. The Lunar-Prospector potential function version we have used is
complete through (deg,ord) = (100,100).

Covariance Matrix Cross-Correlations

There are 102 cross-correlations between Lunar-Prospector potential coe¢ cient errors whose magni-
tudes are greater than 0:95. For these cross-correlations, 99 of them are between longitude-dependent
tesseral harmonic coe¢ cients, and 3 of them are between global zonal harmonic coe¢ cients. All
cross-correlation values here are negative except for 2. Tesseral harmonic coe¢ cients are longitude-
dependent, and those not visible to the Earth are unobservable from range and Doppler measurements.
So the negative cross-correlations are presumed to be explained by the absence of tracking data for
the far-side of the Moon. These cross-correlations are used in the calculation of QS (tk+1; tk).

GRACE Geopotential

We have used the GRACE geopotential function identi�ed as GGM02C for all GRACE work reported
on here. The GGM02C is complete in coe¢ cient values through (deg,ord) = (90,90).



Covariance Matrix Cross-Correlations

The GRACE geopotential function coe¢ cient covariance matrix is available only as a diagonal matrix,
so cross-correlations are unknown. John Ries at University of Texas has been quoted as saying that
GRACE cross-correlations are negligible.

ORBITS

JASON

At epoch 31 Aug 2003, 23h59m47:0s UTC:26666664
semi-major axis
eccentricity

true argument of latitude
inclination
node

argument of perigee

37777775 =
26666664
a
e
u
i


!

37777775 =
26666664

1:21051 er
0:000369594
346:088 deg
66:0654 deg
145:850 deg
332:458 deg

37777775
Dependent orbit element values:�

orbit period
true anomaly

�
=

�
P
v

�
=

�
112:527 min
13:6298 deg

�
JASON vs Typical-LEO Gravity Errors

The JASON semi-major axis aJASON = 1:2 earth radii. The semi-major axis for a typical LEO is
closer to aLEO = 1:1 earth radii; e.g., aCHAMP = 1:07 earth radii. Thus the JASON height is 0:1
er higher (637:8 km higher) than height for the typical LEO. Gravity acceleration degree-variances
scale1 with

�
1=a2n+4

�
for degree n. Table 1 quanti�es2 a comparison for gravity acceleration degree-

variance scale between JASON semi-major axis and the semi-major axis for a typical LEO. Conclude
that gravity acceleration errors for JASON are signi�cantly less than for a typical LEO, and note
that position errors are double integrals of acceleration errors with time.

Scale
�
1=a2n+4

�
1=a8 1=a12 1=a20 1=a36 1=a68 1=a132

Degree n 2 4 8 16 32 64
JASON a = 1:2 er 0:23 0:11 0:026 0:0014 4:1� 10�6 3:5� 10�11
typical a = 1:1 er 0:47 0:32 0:149 0:0323 1:5� 10�3 3:4� 10�6

Table 1: Degree-Variance Scale Factors

CHAMP

At epoch 20 May 2001, 00h00m00:0s UTC:26666664
semi-major axis
eccentricity

true argument of latitude
inclination
node

argument of perigee

37777775 =
26666664
a
e
u
i


!

37777775 =
26666664

1:0675 er
0:00405705
38:2835 deg
87:2768 deg
34:6279 deg
178:547 deg

37777775
1See the subsection Kaula-Pechenick Gravity Auto-Correlation of the �rst paper for the detailed presentation of

this scale factor.
2Units are obtained on inspection.



Dependent orbit element values:�
orbit period
true anomaly

�
=

�
P
v

�
=

�
93:1864 min
219:737 deg

�

LUNAR-PROSPECTOR

Values used for the lunar radius aM and lunar gravitational constant �M :�
aM
�M

�
=

�
1738000:0 (m)

4902800238000:0 (m3/s2)

�
(1)

Kepler Element Values

Initial orbit conditions in Kepler elements for Epoch 28 Feb 1999 0H :0M :0.0S UTC:26666664
a
e
u
i


!

37777775 =
26666664
1:017031 (LR)
0:000000

115:949 (deg)
89:4808 (deg)
195:078 (deg)
0:000000 (deg)

37777775 (2)

Dependent orbit element values: �
P
v

�
=

�
111:1431 (min)
115:9491 (deg)

�
(3)

The true argument of latitude u is well de�ned because [0 < i < 180] (deg). But the true anomaly v
and argument of perifocus ! are unde�ned for zero eccentricity. Set ! = 0:0 arbitrarily for e = 0:0.

FILTER COVARIANCE VS SAMPLE COVARIANCE

The orbit gravity error process noise covariance function QF (tk+1; tk) for the �lter was compared with
the sample covariance function QS (tk+1; tk), in Gaussian-frame position coordinates, to establish the
consistency, or lack thereof, of QF (tk+1; tk) with QS (tk+1; tk). This provides a method to establish
the consistency, or lack thereof, of QF (tk+1; tk) with P . All acceleration errors other than gravity
modeling errors were ignored.
The �lter process-noise covariance function QF (tk+1; tk) was calculated according to the Kaula-

Pechenick-Wright algorithm, driven by the covariance matrix P . This algorithm averages gravity
acceleration perturbations over a sphere, thereby integrating out the e¤ects of the local trajectory.
Filter process-noise covariance calculations for QF (tk+1; tk) are performed quickly, for use in real-time
performance.
Sample error covariance calculations for QS (tk+1; tk) are very time consuming. QS (tk+1; tk) was

calculated from 1000 separate ephemeris integrations, with gravity acceleration perturbations derived
from a spectral decomposition of the full non-diagonal covariance matrix P . We assume here that the
sample error RMS values represent the true orbit covariance, and we know that the �lter process-noise
1-sigma values incur errors due to approximations invoked[4] for construction of the fast-running �lter
covariance QF (tk+1; tk). Ideally we would prefer the �lter process-noise 1-sigma values to be the same
as, or slightly larger than, the sample error RMS values so as to minimize �lter estimation errors and
guarantee �lter stability.



JASON-EGM96

JASON-EGM96 Figures 2, 3, and 4 present radial, intrack, and crosstrack position error curves
for sample error root-mean-square (RMS) functions, overlaid with �lter process-noise root-variance
(1-sigma) functions.
The JASON-EGM96 sample covariance function QS (tk+1; tk)

EGM96 and the JASON-EGM96 �l-
ter covariance function QF (tk+1; tk)

EGM96 both use the full non-diagonal EGM96 covariance matrix
PEGM96 values, but aside from this their calculations are independent and very di¤erent.
Inspection of Figures 2, 3, and 4 reveals that the sample variances are dominated by the �lter

variances in all three position components for the JASON two-orbit propagation times (225 minutes),
except for the last 40 minutes of the intrack component. When not equal we prefer that the sample
variances be dominated by the �lter variances.

LUNAR-POSPECTOR

Lunar-Prospector (LP) results are presented in Figures 5, 6, and 7. We used the Lunar-Prospector
gravitational potential function identi�ed as LP100K in all work reported on here. For LP we show
that our �lter covariance function QF (tk+1; tk)

LP , derived from PLP via Kaula theory, is not con-
sistent across the propagation interval [t0; tF ] with our sample covariance function QS (tk+1; tk)

LP ,
derived from PLP via numerical ephemeris propagation. Propagation of our sample orbit covariance
function QS (tk+1; tk)

LP reveals agreement between QS (tk+1; tk)
LP and QF (tk+1; tk)

LP for time t
early in the propagation interval [t0; tF ], but as t is increased, the non-zero variance in the radial
component of QS (tk+1; tk)

LP approaches zero, while that of QF (tk+1; tk)
LP increases. Covariance

functions QS (tk+1; tk)
LP and QF (tk+1; tk)

LP diverge. The divergence may be explained by approxi-
mately one-hundred negative cross-correlations in the potential function covariance matrix PLP whose
magnitudes are greater than 0:95. A potential explanation derives from the fact that the moon is
gravity gradient stabilized �does not rotate with respect to an Earth observer, so that estimated
tesseral harmonic coe¢ cients local to the far-side3 of the moon are not directly observable.
To repreat, as t is increased, the non-zero variance in the radial component of QS (tk+1; tk)

LP

approaches zero. This behaviour of the sample orbit covariance function QS (tk+1; tk)
LP makes a

statement about PLP : Covariance matrix PLP is unrealistic.

JASON-GRACE

JASON-GRACE Figures 8, 9, and 10 present radial, intrack, and crosstrack position error curves
for sample error root-mean-square (RMS) functions, overlaid with �lter process-noise root-variance
(1-sigma) functions. Most noticeable, both error curves have very small magnitudes in all three
components.
The �lter process-noise covariance function QF (tk+1; tk)

GRACE is calculated according to the
Kaula-Pechenick-Wright algorithm, driven by the diagonal GRACE covariance matrix PGRACE . This
algorithm averages gravity acceleration perturbations over a sphere, thereby integrating out the ef-
fects of the local trajectory. Filter process-noise covariance calculations for QF (tk+1; tk)

GRACE are
performed quickly, for use in real-time performance, whereas the sample error covariance calcula-
tions for QS (tk+1; tk)

GRACE are calculated from 1000 separate ephemeris integrations, with grav-
ity acceleration perturbations derived from the diagonal GRACE covariance matrix PGRACE . Thus
QS (tk+1; tk)

GRACE provides a more accurate representation of PGRACE than doesQF (tk+1; tk)
GRACE .

Inspection of Figures 8, 9, and 10 reveals good visual agreement for 20 minute propagations in
the radial component, and for 40 minute propagations in the intrack and crosstrack components. The
�lter variance dominates the sample variance in the radial component after 64 minute propagations
(preferred), but the sample variances dominate the �lter variances in the intrack and crosstrack
components after 40 minutes (not preferred).

3The Japanese mission Selene may provide tracking data for the far-side of the moon to enable observability of
associated tesseral harmonic coe¢ cients.



Periodicity

Figure 1 presents a cartoon depicting edge-on the true orbit plane and the �lter estimated orbit
plane, intersecting at Earth center of mass. The crosstrack component of spacecraft estimation error
can be de�ned by di¤erencing position errors in three components, referred to an appropriate vector
basis. Figure 1 suggests that crosstrack postion errors have two cycles per JASON orbit period
(112:5 minutes) roughly. Figure 10 seems to agree with Figure 1 in periodicity for both the sample
covariance and the �lter covariance. As time evolves the acceleration errors integrate with lag into
an accumulation of position errors. Thus the amplitudes of both periodic curves increase secularly
with propagation time.
Figures 8 and 9 present radial and intrack postion errors with one cycle per JASON orbit period,

and secular increase with propagation time. Periodicity is initiated at the epoch for propagation time,
with the small JASON orbit eccentricity (0:0037).

COMPARISONS BASED ON QS (tk+1; tk)

Table 2 presents and compares spacecraft position maximum error RMS (1�) values derived from prop-
agation of QS (tk+1; tk) from 0:0 minutes to 112:5 minutes (one orbit period for JASON) with zero
initial condition values. These values were derived from the sample covariance functions QS (tk+1; tk)
presented above, and thus present sharp propagation bounds that depend directly on potential co-
variance matrices PGRACE , PEGM96, and PLP . They do not include initial condition estimation
errors, and they do not include e¤ects due to acceleration modeling errors other than gravity.

max position error RMS JASON-GRACE JASON-EGM96 LUNAR-PROSP
Radial 0:26 cm 2:7 cm 7 m
Intrack 1:30 cm 14:0 cm 20 m
Crosstrack 0:33 cm 1:5 cm 2 m

Table 2: 220-Minute Propagation Position Error Bounds

COMPARISONS BASED ON QF (tk+1; tk)

Here we present the results of a covariance analysis derived from use of the �lter covariance function
QF (tk+1; tk). Simulated-true 11-day spacecraft trajectories were created for JASON and CHAMP, al-
ternately using geopotential functions GRACE-GGM02C (deg,ord) = (90,90) and EGM96 (deg,ord) =
(70,70) for acceleration modeling. This produced four truth ephemerides JASON-GRACE, CHAMP-
GRACE, JASON-EGM96, and CHAMP-EGM96. Four sets of simulated GPS pseudo-range and
carrier-phase measurements were generated from these four true trajectories for day one. Gravity er-
ror perturbed trajectories, and associated process noise covariance functions QF (tk+1; tk) were then
used to create four one-day �lter runs. For each �lter run the GPS measurements were processed by
the ODTK sequential �lter across the �rst day, and then the �lter estimated orbit was propagated for
ten days. The ten day propagation was used to magnify propagation error covariance. Maximum 2�
values were derived from variances (�2) for each ten day covariance propagation. The simulated and
estimated trajectories were di¤erenced and graphed with �2� �lter covariance boundaries overlaid.
Each of the three RIC position error component root-variance boundaries for each of the four �lter
runs, across the ten day propagation, are monotonically increasing, each with maximum values at the
end of the ten day propagation. Maximum 2� value position errors at the ten day propagation time
are presented in Table 3.
The use of the sample covariance function QS (tk+1; tk) for accuracy analysis provides sharp lower

bounds for propagation, but these bounds do not re�ect the existence of estimation errors. Our use



of sample size requiring 1000 numerical ephemeris integration runs prohibits exhaustive sampling of
the analysis parameter space.
The use of the �lter covariance function QF (tk+1; tk) for accuracy analysis generates pessimistic

results, but these results represent an in�nite sample size, are obtained quickly, and they provide the
combined e¤ects of propagation errors and estimation errors.

(max 2�)10d (m) Radial Intrack Crosstrack
JASON-GRACE 0:07 7:50 0:08
CHAMP-GRACE 0:28 35:00 0:34
JASON-EGM96 1:10 120:00 1:28
CHAMP-EGM96 9:50 1200:00 10:50

Table 3: 10-Day Propagation Position Error Bounds

JASON vs CHAMP

Use Table 3 to compare JASON-GRACE to CHAMP-GRACE, and to compare JASON-
EGM96 to CHAMP-EGM96, to see the e¤ect of spacecraft height on position accuracy improve-
ment of JASON relative to CHAMP at the ten-day propagation time. JASON is 0:1 earth-radii higher
(637:8 km higher) than CHAMP, so JASON position errors are much smaller than those of CHAMP
from gravity acceleration modeling errors at all propagation times. See Table 1 for an explanation of
height dependence in terms of gravity acceleration modeling errors.

GRACE vs EGM96

Use Table 3 to compare JASON-GRACE to JASON-EGM96, and to compare CHAMP-
GRACE to CHAMP-EGM96, to see the apparent accuracy improvement of GRACE relative
to EGM96 for a ten-day propagation following optimal �ltering for one day.

PESSIMISTIC QF (tk+1; tk) PROPAGATION

Figures 11, 12, and 13 present position errors in radial, intrack, and crosstrack components for the
CHAMP spacecraft using the EGM96 geopotential function and geopotential covariance matrix with
simulated GPS data. Acceleration perturbations are derived from a spectral decomposition of the
EGM96 geopotential covariance matrix. Filtering of simulated GPS data is performed for the �rst
day (1440 minutes). Following this a ten-day (14400 minutes) propagation is performed using the last
�ltered estimate as initial conditions. The x-axis for each �gure thus spans 15840 minutes. The y-axis
unit is meters. The interior red line on each graph presents the di¤erence between the simulated true
spacecraft positions and �ltered and propagated positions. The exterior black envelope presents �2�
boundaries derived from the �lter covariance function QF (tk+1; tk).
The estimation errors in red appear to be consistent with the covariance �2� boundaries in black

during the one-day �lter processing interval. But the most noticeable graphical feature here is the
contrast in magnitude between estimation error propagations in red and covariance propagations in
black: The propagated error variances are large as compared to the propagated estimation errors.
Several hypotheses have been advanced to explain this apparent dichotomy.

Filter Aliasing

On inspection, the semi-major axis (energy parameter) estimate presented in Fig. 14 appears to be
negatively biased, particularly near the end of the one-day �lter interval. Absorption of geopotential
estimation error into the orbit semi-major axis estimate would be an aliasing of geopotential error



into orbit error. Could it be that potential energy estimation error is aliased from EGM96 into the
orbit semi-major axis estimate? Might this explain the small propagated errors (red) in radial and
intrack position components?

Cross-Correlations in P

Lunar-Prospector (LP) results presented in Figures 5, 6, and 7 may explain the e¤ect of signi�cant
negative cross-correlations in P on the divergence between estimation error propagations in red and
covariance propagations in black.

Constant I1 Integral Scalars

Covariance Approximation 7, presented in the �rst paper[4], is responsible for in�ating QF (tk+1; tk)
�lter values as compared to QS (tk+1; tk) truth values.

FILTER-SMOOTHER CONSISTENCY TESTS

The �lter-smoother consistency test theorem was derived by McReynolds[1][2][3] in 1980. The �lter
and smoother state estimate errors are assumed to be multi-dimensional Normal. Each component of
the state estimate error is serially correlated, but is considered separately4 here of other components.
Calculate the N �N di¤erence matrix �PkjL between the �ltered covariance matrix P̂kjk and the

smoothed covariance matrix ~PkjL for time tk:

�PkjL = P̂kjk � ~PkjL (4)

for each k 2 f0; 1; 2; : : : ; Lg. The di¤erence matrix �PkjL should have no negative eigenvalues. Denote
the square root of the ith main diagonal element of the N �N di¤erence matrix �PkjL as �ikjL. Also

calculate the N � 1 di¤erence matrix �XkjL between �ltered state estimate X̂kjk and smoothed state
estimate ~XkjL for time tk:

�XkjL = X̂kjk � ~XkjL (5)

Denote the ith element of the N � 1 di¤erence matrix �XkjL as �Xi
kjL. Now calculate and graph the

ratio :

RikjL =
�Xi
kjL=�

i
kjL (6)

for each i 2 f1; 2; : : : ; Ng and for each k 2 f0; 1; 2; : : : ; Lg.

Test

If for each i 2 f1; 2; : : : ; Ng and for each k 2 f0; 1; 2; : : : ; Lg we have:���RikjL��� � 3 (7)

with probability 0:99, then McReynolds��lter-smoother test is satis�ed for all state components. If
for each i 2 f1; 2; : : : ; Ng and for each k 2 f0; 1; 2; : : : ; Lg we have:���RikjL��� > 3 (8)

then McReynolds��lter-smoother test is failed for all state components. For each i for which inequality
7 is satis�ed McReynolds��lter-smoother test is satis�ed for that state estimate element, and for each i
for which inequality 8 holds McReynolds��lter-smoother test is failed for that state estimate element.

4When all state estimate error components are considered jointly and simultaneously, coupled state estimate error
component test acceptance thresholds would be required. Since large error cross-correlation magnitudes are observed,
this could provide a useful state component coupled �lter-smoother consistency test.



Results

Figs. 17, 15, and 16 present our �lter-smoother consistency test results due to processing real tracking
data. The JASON-EGM96 �lter-smoother consistency test passes in all position components. The
LUNAR-PROSPECTOR �lter-smoother consistency test passes in all position components.
The JASON-GRACE �lter-smoother consistency test fails in the crosstrack position component,

but passes in the radial and intrack components. The �lter-smoother consistency test is very sensi-
tive to any and all modeling errors. Modeling error candidates include (but are not limited to) an
inadequate solar pressure model for JASON, lack of a thermal venting model for JASON, and an opti-
mistic GRACE geopotential function covariance matrix. Fig. 18 presents our JASON �lter-smoother
estimate (blue) and 2� bounds (black) for solar pressure correction after processing real GPS pseudo-
range and carrier-phase tracking data. We modeled CP = 0:42 for the �lter input, but the corrections
are periodic with the JASON orbit period and have amplitude equal to CP = 0:42. The spherical
body model with two-cone shadowing for solar pressure is clearly inadequate, and explains, in part,
the �lter-smoother consistency test failure.
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Figure 1: Periodic Crosstrack Position Error Cartoon
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Figure 2: JASON-EGM96 Radial Position Error
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Figure 3: JASON-EGM96 Intrack Position Error
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Figure 4: JASON-EGM96 Crosstrack Position Error
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Figure 5: Lunar-Prospector Radial Position Error
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Figure 6: Lunar-Prospector Intrack Position Error
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Figure 7: Lunar-Prospector Crosstrack Position Error

0 20 40 60 80 100 120 140 160 180 200 220
Time (minutes)

0.000

0.001

0.002

0.003

0.004

R
ad

ia
l E

rr
or

 (m
et

er
s)

Sample Error RMS
Process Noise 1 Sigma

JASON and GRACE
GGM02C Commission (deg,ord) = (90,90), No Omission

Figure 8: JASON-GRACE Radial Position Error
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Figure 9: JASON-GRACE Intrack Position Error
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Figure 10: JASON-GRACE Crosstrack Position Error
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Figure 11: Radial Position Errors CHAMP-EGM96
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Figure 12: Intrack Position Errors CHAMP-EGM96
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Figure 13: Crosstrack Position Errors CHAMP-EGM96
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Figure 14: Semi-major Axis Filter Errors
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Figure 15: JASON-EGM96 Filter-Smoother Consistency Test 3
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Figure 16: LUNAR-PROSPECTOR Filter-Smoother Consistency Test
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Figure 17: JASON-GRACE Filter-Smoother Consistency Test 3
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Figure 18: JASON Solar Pressure Error Smoother Estimate


