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COVARIANCE REALISM 

David A. Vallado* and John H. Seago† 

Covariance information from orbit determination is being relied upon for space 
operations now more than ever. There have been scattered claims and discus-
sions of realistic covariance, but not enough detailed studies to demonstrate the 
actual performance against independent references using real data. This paper 
discusses some statistical tests that could be used to help study predicted covari-
ance accuracy. To illustrate the methods, the authors estimate prediction error by 
comparing predictions to a precision orbit estimated after the fact. The predicted 
covariance is analyzed relative to the sample error estimates using the methods 
described. 

INTRODUCTION 

The covariance matrix from the solution of orbit determination problems has relevance as a measure of 
parameter uncertainty under rather restrictive assumptions. The use of covariance to assess confidence in 
astrodynamical operations, such as tracking acquisition for scheduling operations, conjunction probability, 
relative motion operations, etc. will be of limited value when the assumptions are unrealistic. The notion of 
covariance realism is not without precedent, but a clear definition has been often out of reach. Most often, 
covariance realism is synonymous with covariance accuracy, gauged by comparing the propagated covari-
ance with positional differences found after an accurate reference (“truth”) orbit is generated over the time 
interval of interest. 

Estimates of satellite-location uncertainty, by way of the covariance matrix, are particularly useful for 
computing the probability of collision between two orbiting bodies. For example, for the operational 
SOCRATES-GEO program producing conjunction probability calculations for many geosynchronous-
satellite owner-operators, the use of an accurate covariance becomes a significant differentiator to limiting 
unnecessary maneuvers and thereby has the potential to extend the operational lifetimes of spacecraft.1 Or-
bital safety may then be the most significant driver for realistic covariance. 

Linear combinations of independently distributed standard Gaussian variates are also Gaussian distrib-
uted.2 Once the approximate normality of observation errors can be assumed, then appropriately weighted 
linear combinations of these errors are also approximately normal. However, Junkins et al., Alfriend et al., 
and others, suggest that whenever satellite positions are forecast for very long, or if the errors are very 
large, error mappings become more non-linear through time, and thus the error distributions should no 
longer be supposed Gaussian. For this reason, there is a theoretical expectation that orbit errors will eventu-
ally become abnormally distributed in some situations.3, 4, 5, 6, 7 In particular, if the covariance is propagated 
in rectangular coordinates, then the disparity between the covariance and the propagated errors grows more 
rapidly due to the nonlinearity of the dynamics, preventing the covariance from being a good indicator of 
the orbit-error uncertainty. 
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In contrast, propagation studies using orbits computed from US Space Surveillance Network (SSN) 
tracking data have concluded that, with few exceptions, propagated error distributions are normally distrib-
uted, although the scale (volume) of the covariance may be incorrect.8, 9 When this is the case, “covariance 
realism” only needs to address the scale differences of the propagated covariance, rather than the shape. 

This paper suggests several statistical tests that could be used to help assess the accuracy of covariance. 
It also provides a glimpse into the behaviors of covariance matrices using real satellite data to lay the foun-
dation for additional study of covariance realism for predicted satellite states. One goal is to see if predicted 
covariance tends to match the sample error estimates (based on post-priori estimates of “truth”) for the 
SOCRATES conjunction-analysis program. Another goal is to see if specific populations of satellites have 
covariance-accuracy behaviors that are similar enough to reliably categorize them into special classes. 

MATHEMATICS OF COVARIANCE MATRIX 

Vallado shows a mathematical description of the covariance matrix.10 The notation uses P as the covari-
ance, A as the partial-derivative matrix (partial derivatives of the observations with respect to the estimated 
parameters), and W as the measurement-noise matrix: 

 P = (ATWA)-1 (1) 

State errors are advanced through time using the state-error transition matrix Φ, and the process noise 
(Q) which is mathematically defined for sequential estimators, such as the Kalman Filter. The covariance is 
then propagated in time with the following equation: 

 1
T

k kP P Q+ =F F +  (2) 

A key to covariance realism may be the process noise Q, the implementation of which can often invoke 
vigorous discussion (and is taken to be zero in many applications). One method of specifying Q is by trial 
and error to see what “works best” within a given estimation system. This is the traditional approach but it 
can be prone to failure. The second approach approximates the process-noise matrix using the uncertainty 
of parameters within the acceleration / force model.11, 12, 13 This technique has been successfully imple-
mented and operationally used for many years, and is the process-noise method used for this paper.14 

Covariance propagation for sequential estimators is also a function of the update processing (the Ex-
tended Kalman filter application being most common for orbit determination). The update equation is 
shown below, where K is the Kalman gain, and H is the measurement-state partial matrix (analogous to A 
above): 

 1 1 1 1 1k̂ k k k kP P K H P+ + + + += -  (3) 

The differences between a batch-least-squares estimator and a Kalman filter are well known.15, 16 Unlike 
the ability to align numerical propagation methods between programs, aligning entire orbit determination 
processes is more difficult, if for nothing else, due to mathematical differences in the approaches.17 There-
fore, different programs will arrive at different orbital state with covariance estimates that would propagate 
to a different outcome in different programs.* 

STATISTICAL TESTS OF HYPOTHESES 

To assess the “realism” (accuracy) of uncertainty measures such as covariance matrices, we sometimes 
rely on statistical tests of hypotheses that can be used to reject specific assumptions about sample data. A 
                                                        
* The covariance matrices will be different when they arise from different software models. Different force models will 
result in different accelerations and state estimates. However, even if the force models are identically programmed, the 
software may generate different answers for the final state due to the particular implementation choices of the user. 
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common example related to orbit determination is the practice of outlier rejection. In this situation, if an 
individually observed measurement m is exceedingly far away from its expected value, then the measure-
ment is ignored. However, “exceedingly far away” is a subjective notion that will vary from one analyst to 
the next, so this approach is made more objective by introducing a statistical test. Specifically, if the magni-
tude of an individual residual |Δm| divided by its uncertainty σ is greater than some threshold, say, C = 3, 
observation m is ignored.18 

The rejection threshold C, or critical value, is chosen presuming that an outcome |Δm| / σ  <  C would 
be highly improbable. If the distribution of the residual ratios Δm / σ is known, then the probability of acci-
dental rejection can be established at this critical value. If the assumption of normality holds, and C = 3, the 
probability of |Δm| / σ  <  C is Pr{C} = 99.932%, and the probability of accidental rejection is 1 - Pr{C} = 
0.068%. Therefore, the analyst may feel quite justified in concluding that the measurement should be re-
jected because the probability of rejecting a valid datum is quite low for the critical value C = 3. 

Testing Hypotheses 

The basic elements of a statistical hypothesis test were established in the preceding example: 

1. The measurement is not tested directly, but rather a proxy test statistic is computed based on the 
value of the measurement (in the previous example, Δm / σ). 

2. The test statistic is chosen because it has a testable distribution under the operating assumptions (in 
the previous example, normality). 

3. The analyst chooses an appropriate critical value which corresponds with an improbable outcome 
for the distribution. The probability of a successful test outcome at this critical value C is called the 
confidence level of the test (Pr{C}), and the probability of accidental failure at this critical value is 
called the significance level of the test (1 - Pr{C}). 

4. A value of the test statistic is computed from the sample and compared to the critical value; if the 
test statistic exceeds the critical value, then the analyst rejects the hypothesis being tested (in the 
previous example, that m was a valid measurement); otherwise, he embraces the assumptions due 
to the lack of evidence that they are untrue.* 

The set of status-quo conditions underlying the test is known as the null hypothesis (null implying “no-
change”). For the outlier example, the null hypothesis is that every value of Δm / σ will be normally dis-
tributed with zero mean and unit variance, which is equal to saying that Δm will be normally distributed 
with zero mean and variance σ2. Whenever an outcome does not pass the test, the analyst will usually ques-
tion the experimental outcome (m), but he may also question the status-quo conditions underlying the test 
statistic (e.g., the correctness of assuming normality, zero mean, and unit variance). 

Most Powerful Statistical Tests 

One way to obtain insight into the validity of a statistical test is to repeatedly evaluate samples from a 
known distribution. For an assigned critical value C, in the long run, one can expect Pr{C} successes and 
1 - Pr{C} failures because the null hypothesis always holds for the simulation case. For example, if one 
were testing random outcomes at the 1 - Pr{C} = 5% significance level, he would expect a “most powerful” 
statistical test to reject 5% of the outcomes should the null hypothesis be true.† Rejection rates much less 
than 5% would provide evidence that the test may be unable to reasonably reject the null hypothesis; that is, 
the test “lacks power against” the null hypothesis and may be inappropriate to use. 

                                                        
* A limitation of statistical hypothesis testing is that it doesn’t actually prove anything; it can only give evidence for 
rejecting claims based on the improbability of their occurrence under the working assumptions. 
† A significance level of 5% is quite common is statistical testing. 
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COVARIANCE REALISM 

For the forecasted position covariance to be considered “realistic”, the mean error should be close to 
zero (unbiased) and the error spread in all directions should be consistent with the covariance volume. Be-
cause tests of bias and scale are most powerful when distributional assumptions hold, the condition of nor-
mality should be satisfied foremost. Thus, it is desirable to test at least three hypotheses to assess covari-
ance realism: 

1. whether the distribution of predicted satellite location tends to be normal, 

2. whether the mean error of the predicted satellite location tends to be zero, and 

3. whether the spread of the error in predicted satellite locations is consistent with the predicted co-
variance. 

TESTS OF NORMALITY BASED ON EMPIRICAL DISTRIBUTION FUNCTIONS 

Although there are many tests for normality, the Kolmogorov-Smirnov D statistic (or, KS test) seems to 
be commonly used for testing the normality of predicted orbital deviations.19 Foster and Frisbee (1998) 
used the KS test to assess the normality of predicted orbit errors, and Jones and Beckerman use the same 
test for a similar purpose.8, 9 Sinclair et al. suggests using the KS test of normality to gauge the nonlinearity 
of estimation systems, citing orbit determination as the case of interest.20 

Kolmogorov-Smirnov Test-of-Fit 

The Kolmogorov-Smirnov Dn statistic belongs to a wider class of test statistics based on the empirical 
distribution function (EDF). The statistic measures the discrepancy between a continuous distribution func-
tion F(x) and a supposed estimate Fn(x) based on a sample of size n.21 A benefit of the KS test is that it al-
lows the construction of error bounds about a distribution function, and thereby lends itself to graphical 
methods of testing distributional assumptions which are easy to apply and interpret. For example, the criti-
cal value Dn may be added and subtracted from every value of a distribution to form a set of error bounds; 
should the sample cumulative distribution of size n remain with in these error bounds, then the analyst ac-
cepts the hypothesis that the empirical distribution came from the theoretical distribution. 

Another potential advantage is that the KS test is “nonparametric” This means that the validity of the 
test statistic is not limited to a particular distribution being tested. Critical values of the KS test may there-
fore be used to compare any empirical sample against any theoretical distribution, not just the normal dis-
tribution. However, this flexibility turns out to be a significant shortcoming for the KS test, because non-
parametric tests are notorious for lacking statistical power.22 Again, lack of power implies that the test will 
unreasonably favor the null hypothesis (e.g., the test is more prone to indicate normality even when it is not 
true). 

Another significant disadvantage is that the KS test assumes that the location, scale, and/or shape pa-
rameters of the theoretical distribution have not been estimated from the empirical distribution being tested. 
Comparing an empirical distribution to a normal distribution whose mean and variance equals the sample 
mean and variance of the empirical distribution is a misapplication of the KS test. Monte Carlo studies have 
shown that standard critical values of the KS test should be reduced by approximately 50% if the popula-
tion mean and variance are estimated from the test sample.23 

To illustrate the lack of power of the KS test, Figure 1 plots the empirical distribution functions of thir-
teen simulated normal samples, each of size n = 30. Included in the figure is the continuous normal distri-
bution function through the center of the data, about which Dn error bounds are drawn and labeled “Lower 
– KS” and “Upper – KS”. From standard statistical tables, we find that the critical value Dn for sample size 
n = 30 and probability level 80% is D30 = 0.190 (two-tailed).24, 25 To implement the test, we therefore add 
0.190 above and subtract 0.190 below the normal distribution curve. The KS test fails for a given sample if 
its empirical distribution function crosses either bound (thus the term “two-tailed” test). In this figure, each 
sample has been normalized by its empirical mean and variance as estimated from its n = 30 members. 

Lack of power is illustrated in at least two basic ways in Figure 1. First, the upper bound is undefined 
toward the right-hand portion of the figure, while the lower bound is undefined toward left-hand portion. 
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Therefore, it becomes practically impossible for the KS test to reject certain abnormal tail behaviors, par-
ticularly “heavy” tails. Because Winsor’s principle (an empirical analogue of the CLT) suggests that the 
centers of “real-data” distributions tend to appear Gaussian more often than the tails, this implies that the 
KS test lacks statistical power where it is most needed - in the tails.26 
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Figure 1. Empirical Distribution Function for Thirteen Normally Distributed Samples. Each 
sample set contains 30 variates. Also included in this figure are the continuous normal distribution 
function and the KS-test critical values for probability level 80%. 

Another illustration of lack of power is that there are no failures in these simulated samples. The prob-
ability that thirteen independent samples from the same population would all pass a (powerful) statistical 
test at 80% confidence level is (0.8)13, or ~ 5%, a rather improbable outcome. This fact becomes more sig-
nificant once it is noticed that none of the simulated sample distributions come close to crossing the 80% 
KS-test error bounds. 

Examples of the Kolmogorov-Smirnov Test-of-Fit to Orbital Analyses 

Jones and Beckerman (1999) provide a somewhat comprehensive analysis of predicted orbit errors with 
tracking data from the US space surveillance network.9 Their sample histograms of predicted-orbit-error 
estimates (Figure 2) appear somewhat unusual in the sense that longer predictions seem to provide visual 
evidence of more abnormal behavior, particularly in the radial and transverse (in-track) directions. The 
transverse error estimates also seem to be rather significant, approaching the one-kilometer level after 36 
hours. 

Their application of the KS test statistic at the 80% confidence level suggested the normality of every 
histogram in Figure 2. A 20% significance level was used “to construct conservative tests that reject the 
null hypothesis as easily as possible” and “confidence limits constructed in this manner provide the greatest 
opportunity for our a priori notions regarding the distribution of data to be demonstrated incorrect.” How-
ever, there are some concerns with the conclusions from the ORNL study . 

1. The study cites a large-sample approximation for Dn ≈ 1.07/√n for testing at 80% confidence level, 
which is appropriate only if location, scale, and/or shape parameters of the theoretical distribution 
have not been estimated from the empirical distribution being tested. However, the report tests 
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normalized residual ratios, where the population variances are presumably estimated from the sam-
ples. Monte Carlo studies by Lilliefors show that the true 80% confidence level for the KS test is Dn 
≈ 0.736/√n for normally distributed data.23 Our extrapolation of Lilliefors’ tables suggests that the 
1.07/√n critical value probably corresponds to only ~0.2% significance level, not 20% as reported. 
The normality conclusions of the ORNL study are therefore not very significant, because the 
adopted error bounds used would likely allow for quite a bit of variation from the normal distribu-
tion without ever failing the test. 

2. Use of a 20% significance level is a highly unusual convention for statistical hypothesis testing, be-
cause such a high level of significance tends to cause unreasonable false alarms if the hypothesis 
were indeed true. The adoption of a high significance level, coupled with a lack of failures, pro-
vides compelling evidence that the results are unrealistically good. This, plus the additional fact 
that the large-sample histograms “look” abnormal, lends credence to the belief that the test used 
may not have enough power to reject the null hypothesis of normality. 

 

Figure 2. Histograms of Predicted Satellite Position Errors (from Jones and Beckerman, 1999) 

KS testing at an 80% confidence level was also used by Foster and Frisbee (1998) for testing the nor-
mality of predicted-orbit-error estimates. The means and variances of the theoretical normal distributions 
were also estimated from the samples being tested, such that all the prior caveats regarding the ORNL test-
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ing procedure apply. Of additional note is that a supposed outlier was deleted when estimating the radial, 
in-track, and cross-track population means and variances; however, the outlier was not deleted from the 
samples tested for normality and the three contaminated empirical distributions still passed the KS test of 
normality. This described behavior again points to an apparent weakness of the KS test for testing normal-
ity and raises the possibility that the null hypothesis of normality might have been rejected had a more 
powerful test been used. 

More Powerful EDF Test-of-Fit for Normality 

The KS test likely is employed for orbital analyses because of its ease of use. However, ease of use is 
not a characteristic of the KS test alone; it generally applies to EDF test-of-fit statistics. Therefore, this pa-
per proposes the use of Michael’s DSP test statistic as an alternative to the KS test.27 Michael’s DSP is simi-
lar to Dn in that it enables significance limits to be drawn directly onto a normal probability plot instead of 
the empirical density function plot. An attractive feature of the normal probability plot is that DSP accep-
tance regions become straight lines on the figure by means of a so-called variance-stabilizing transforma-
tion to the EDF test-of-fit statistic. A similar transformation is also applied to the order statistics (sorted 
data) of the empirical sample to be tested. The transformed data and DSP critical values make up the so-
called stabilized probability plot.28 

Functionally, the DSP test is assessed the same way as the KS test: should the plotted data contact or ex-
ceed the plotted confidence limits implied by Michael’s DSP statistic, the hypothesis of normality is re-
jected. DSP is more powerful than Dn, particularly in the tails where outliers reside, and is reportedly sur-
passed in power only by the Shapiro-Wilk W test and the Anderson-Darling A2 tests of normality.29 Roys-
ton’s method for computing DSP critical values was adopted for this study.30 
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Figure 3. Stabilized Probability Plot. Thirteen samples of size 30 are tested at the 80% confidence level for 
both Michael’s DSP and the KS Dn. Only DSP demonstrates power against the null hypothesis. 

An example of the stabilized probability plot is given in Figure 3. Thirteen samples of size 30 were 
drawn from a normal population and tested at the 80% confidence level, or, 20% significance level, the 
same level adopted by the ORNL study. The DSP critical values are black lines in the figure labeled “Up-
per” and “Lower”. At this significance level, one would expect a 20% failure rate if the null hypothesis 
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were true, or 2.6 failures out of 13 samples. In this figure, two of the thirteen samples exceeded the critical 
values, which is not unexpected if DSP were powerful. 

To further illustrate the lack of power of the KS test for normality, a variance-stabilizing transformation 
was also applied to the Dn critical value at the 80% confidence level and labeled “Upper - KS” and “Lower 
- KS” in Figure 3. Two characteristics seem to confirm what has already been discussed. 

1. The distance between the transformed-Dn bounds is much greater than that between the DSP 
bounds, even though both are supposedly testing at the same significance level. The conclusion is 
that Dn critical values are optimistic compared to DSP. Comparisons suggest that Dn critical values 
of 80% confidence correspond to DSP critical values of ~ 98% over the central portion of the distri-
bution. 

2. The transformed-Dn critical values curve away from the transformed data near the tails and termi-
nate prematurely, such that there is no correspondence between the transformed-Dn and DSP statis-
tics in the tails, reinforcing the notion that the KS test especially lacks power in the tails of the dis-
tribution. 

 

Figure 4. Test of Normality on Contaminated Normal Data. Three sets of 1500 N(0,1) random deviates 
were contaminated with 75 N(0,2) random deviates and tested for normality. DSP at 5% significance cor-
rectly rejected all three samples based on tail behavior (insets), but the KS Dn at 20% significance) did not. 

Figure 4 carries the comparison of tail power further. Three random samples of size 1500 were drawn 
from a normal population, and then 5% (75) of these values were replaced with random draws from a nor-
mal population having twice the standard deviation (four times the variance). This “5% contaminated nor-
mal mixture” is no longer a normal distribution, but has just slightly heavier tails than a regular normal 
distribution. Two sets of critical values were added to Figure 4: 95% confidence level for Michael’s DSP 
test, and 80% confidence level for the KS test. The insets of Figure 4 magnify the tail behavior of the stabi-
lized probability plot, showing that all three contaminated distributions were rejected by the DSP test at 
95%. The probability of three accidental failures in a row at 5% significance is (0.05)3 ~ 0.013%, an ex-
tremely rare outcome if normality were indeed true. Therefore, DSP seemingly has power to reject slight 
distributional abnormalities where Dn cannot. 
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One concern not addressed by Michael’s original paper is whether DSP maintains its power when the 
mean and variance are estimated from the empirical distribution. The authors therefore conducted a small 
study that repeated the 80% confidence test of Figure 3 where the population means and variances were 
estimated from the sample distributions. After testing 78 samples of size 30 at 20% significance, we found 
the rejection rate to be 19.2%, leading us to conclude that Michael’s DSP seems to have excellent power 
even when the sample size is relatively small and the mean and variance are initially unknown. 

NORMALITY-BASED STATISTICAL TESTS FOR COVARIANCE ASSESSMENT 

Multivariate normality tends to be difficult to test; however, a sample that is truly multivariate normal 
will also be marginally normal in all dimensions. Therefore, it is common to assess the univariate normality 
of all components in order justify the assumption of multivariate normality.31 

As it relates to testing covariance realism, one expects propagation errors to have a mean of zero, and 
the ratio of sample variance to population variance to be unity (where population variance comes from the 
diagonal elements of the covariance matrix). If the assumption of normality is not rejected for a sample, it 
is reasonable to perform additional statistical hypothesis tests on the sample that assume normality. 

One Sample T-Test of the Equal Means 

A test of equal means determines whether the value of the mean of a sample distribution is significantly 
far away from an independently assumed value (i.e., a “one-sample” test).25 The t-test of equal means is 
reasonably powerful under the assumption of normality and is often used for this purpose when the sample 
data are normal and the population variance is estimated from the sample. 

Chi-Square Test of Equal Variances 

A test of equal variances determines whether the value of the mean of a sample distribution is signifi-
cantly far away from an independently assumed value (i.e., a “one-sample” test).25 This is equal to testing 
whether the ratio of the sample variance over the assumed variance is significantly far from unity. The chi-
square test of equal variances (two-tailed test) is reasonably powerful under the assumption of normality 
and is often used for this purpose when the data are normal. 

Filter-Smoother Consistency Test 

The filter-smoother consistency test is useful for model validation in estimation problems, and basically 
serves as a type of goodness-of-fit test for orbit determination. McReynolds (1984) proved that the differ-
ence between a filtered state and a smoothed state is normally distributed in k dimensions, where k is the 
size of the state-difference vector.32 He also showed that the variances and correlations of the state-
difference vector are equal to the filter error-covariance minus the smoother error-covariance. This leads to 
the following theorem and test statistic.33. 

Filter-Smoother Consistency Theorem. Let the array xf(t) be an n × 1 filtered estimate at time t having 
k × k error-covariance Pf(t), and let the array xs(t) be its smoothed estimate at time t having error-covariance 
Ps(t). Then, assuming the state-estimate errors of xf(t) and xs(t) are multivariate normal: 

• The k × 1 statistic Δx(f-s)(t) = xs(t) − xf(t) is multivariate normal at time t, and has k × k co-
variance ΔP(f-s)(t) = Pf(t) − Ps(t). 

• The time sequence of z(f-s)(t) = [Δx(f-s)(t)]T[P(f-s)(t)]-1[Δx(f-s)(t)], t = {t0, t1, t2 …} provides an 
(auto-correlated) sample population over the estimation interval upon which the null hy-
pothesis of multivariate normality can be tested. 

Filter-Smoother Consistency Test. If the sequence of z(f-s)(t) supports the null hypothesis of multivariate 
normality, then the hypothesis of consistency between the filter and smoother models is accepted. If the 
sequence z(f-s)(t) does not support the null hypothesis of multivariate normality, then the hypothesis of con-
sistency between the filter and smoother models is rejected. 

There are at least two difficulties in accessing the test statistic z(f-s)(t). First, z(f-s)(t) is multivariate nor-
mal, which is harder to test than a univariate normal statistic. More critically, z(f-s)(t) is not independently 



 

 10 

distributed, but is strongly correlated; therefore, any statistical test assuming the independence of z(f-s)(t) 
will tend to fail. 

In practice, the normality of z(f-s)(t) is accessed in a very heuristic way that nevertheless seems rather ef-
fective. First z(f-s)(t) is replaced by a subset of its k univariate components: 

 Δx(f-s)  / σ(f-s) = (xfilter – xsmoother) / (σfilter – σsmoother) (4) 

where x is the parameter estimate and σ is the element of the covariance corresponding to that x. Usually 
the parameter x is the radial, transverse (in-track), and cross-track components of the Cartesian position 
difference. Next, a time series of the univariate filter-smoother consistency test statistic Δx(f-s) / σ(f-s) is plot-
ted and examined by an analyst. Filter-smoother consistency is claimed when the scatter of this metric stays 
within ± 3 over the fit interval (Figure 5). If the spread seems too large or too small, then the multivariate 
normality of z(f-s)(t) must be questioned. Note that normality of the filter estimate is one of the presump-
tions; if z(f-s)(t) is considered normal, then there is no evidence to question the normality of the parameter 
estimates or the general correctness of the scale of the filter covariance. 

Satellite(s): Sat27704
 Target: Filter
 Reference: Smoother

Time of First Data Point:
31 Dec 2008 23:59:45.000 UTCG
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Figure 5. GPS Satellite 27704 Filter-Smoother Consistency Test Statistic. 

AN INVESTIGATION OF COVARIANCE REALISM USING NON-SIMULATED DATA 

The overall approach for examining results based on actual tracking data follows essential elements of a 
previous paper which serves as a starting point for some of the analyses in this paper.34 Satellites were first 
grouped in major orbital populations; only the results of the GPS (MEO) satellites are presented in this pa-
per. The GPS satellites have long, precise ephemerides which made testing quite simple. Independently 
generated reference orbits, in the form of Precision Orbit Ephemerides (POE’s), provide an excellent means 
by which to test the accuracy of propagated results. The reference orbits are considered to be accurate to 
within ~10 cm or better; for the analysis of prediction error they are considered “truth”. 

The analyses used Analytical Graphics, Inc. Orbit Determination Toolkit (ODTK).14 Each GPS satellite 
required the estimation of additional parameters solar radiation pressure coefficients. Measurement-residual 
ratios were examined to determine the variability of the input data, and plots of estimated position uncer-
tainty were examined to understand of how close the filter matched either the observations or the input 



 

 11 

ephemeris. Filter-smoother consistency tests were used to determine whether the solution was adequately 
parameterized. Some studies have developed extensive algorithms to test and ensure the fit span is ade-
quate, but because the underlying technique for ODTK is a real-time filter, there is no fit-span. Thus, no 
investigation for “optimal” fit span was required. 

The propagation span for each ephemeris was kept to fourteen days. This excessive prediction span was 
done out of thoroughness (owner-operators MAY make decisions about four to seven days in advance). 
Differences between the prediction and the “truth” ephemerides are computed at several times along the 
prediction span to provide the analyst with time-varying trends. 

Experimental Parameters 

The population of GPS satellites permitted an analysis at about thirty satellites. Some of the following 
software settings were used for this study: 

• Satellite mass = 1100 kg 
• 70×70 EGM-96 gravity 

o Variational Equations of Degree 8 
o Solid and time dependant tides 

• Sun and Moon third-body perturbations 
• Solar radiation pressure(SRP) ROCK model with dual cone shadow-boundary mitigation 

o Solve-for Solar radiation pressure scale and y-bias coefficients 
o Parameter half-life of 240 min 

• RK 7/8 Integrator, relative error of 1×10-15, 1-360 sec step sizes 
• Additional radial velocity sigma process noise = 0.0001 cm/s 
• Initial R/I/C uncertainties: 5 / 10 / 2 m position and 0.006 / 0.004 / 0.002 m/s velocity 
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Figure 6. GPS Satellite 27704 Positional Error Estimate. A positional error estimate is found by dif-
ferencing the precision orbit ephemeris and the predicted ephemeris after the filter has run.  
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The filter fit fourteen days of POE ephemeris positions as observations. Using this general setup, and it-
erating on the SRP scale and y-bias values, all the satellites showed very similar results. Satellite 27704 is 
shown as an example. The filter-smoother consistency test statistic in three directions was almost com-
pletely within ±3; this is considered as being a sufficient outcome for this test (Figure 5). 

To create a population of position error estimates, the final filter state prediction is forecast for fourteen 
days and differenced from the GPS POE throughout the prediction interval (Figure 6). As a point of com-
parison, the one-sigma covariance elements generally demonstrate the same growth pattern as the filter 
propagation, growing to about 400 m at the end of the analysis interval considered in Figure 6. These error 
estimates were computed across the available satellite population to create a sample of thirty orbital error 
estimates at various forecasts spans. 

Test of Normality 

The first goal was to test the normality of prediction error samples, because other tests are based on this 
assumption. Thirty GPS satellites were included in the samples of the initial analysis. The results for the 
test of normality are shown in Figure 7, Figure 8, and Figure 9. Departures from a straight line through the 
center of the bounds indicate a lack of fit of the data relative to a normal distribution. Lack of fit was con-
sidered excessive if a given sample distribution exceeded 95% confidence / 5% significance critical values 
of the DSP test. The various populations represent estimated prediction error sampled at various prediction 
times, e.g., 3 hours, 6 hours, etc. 

The lack of normality in these tests prompted us to reexamine our general filtering diagnostics. We de-
termined that the filter-smoother consistency test was excessively irregular across our population of fitted 
ephemerides, which caused us to refine the parameterization of our orbit-determination runs. Ultimately, a 
small amount of process noise was added in the radial direction, and the individual scale and y-bias coeffi-
cients for solar radiation pressure were iterated additional times for each satellite. After limiting ourselves 
to the twenty satellites that best demonstrated filter-smoother consistency (for the sake of time), the nor-
mality of resulting sample distributions improved greatly, as shown in Figure 10, Figure 11, and Figure 12. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Lower Upper 0 hr 3 hr 4 hr 5 hr 6 hr 12 hr 18 hr 1 day 2 day 3 day 7 day 14 day

0 hr

14 day

D sp  Bound

 

Figure 7. Stabilized-Probability-Plot Test of Normality for Radial Orbit Errors. Based on a sample 
of thirty satellites with poor filter-smoother consistency. 
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Figure 8. Stabilized-Probability-Plot Test of Normality for Transverse (In-track) Orbit Errors. 
Based on a sample of thirty satellites with poor filter-smoother consistency. 
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Figure 9. Stabilized-Probability-Plot Test of Normality for Cross-Track Orbit Errors. Based on a 
sample of thirty satellites with poor filter-smoother consistency. 
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Figure 10. Stabilized-Probability-Plot Test of Normality for Radial Orbit Errors. Based on a sub-
sample of twenty satellites with excellent filter-smoother consistency. 
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Figure 11. Stabilized-Probability-Plot Test of Normality for Transverse (In-track) Orbit Errors. 
Based on a sub-sample of twenty satellites with excellent filter-smoother consistency. 
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Figure 12. Stabilized-Probability-Plot Test of Normality for Cross-Track Orbit Errors. Based on a 
sub-sample of twenty satellites with excellent filter-smoother consistency. 

 

Tests of Bias and Scale 

With tests of normality generally satisfied for a sub-sample of the original population, we used the t-test 
for the equality of mean and chi-squared test for the equality of variance to determine if the location and 
scale of the covariance elements were correctly scaled and unbiased. We tested at both the 95% and 99% 
confidence levels, seeing that a larger-than-expected number of radial samples were marginally rejected at 
the 95% level. 

Radial Component. Results of the estimated errors for the radial component are listed in Table 1. Gen-
erally speaking, the test results indicate that the mean is significantly biased and the variance scale gener-
ally becomes too large for the GPS samples under consideration after just a few hours. 

Transverse (In-Track) Component. Results of the estimated errors for the in-track component are listed 
in Table 2. Generally speaking, the test results indicate that the mean is not significantly biased and the 
variance ratio changes significantly from unity for the GPS samples under consideration, although seem-
ingly the change is not as great as what was experienced in the radial and cross-track directions.  

Cross-Track Component. Results of the estimated errors for the cross-track component are listed in 
Table 3. Generally speaking, we conclude that the mean is not significantly biased yet the variance scale 
changes significantly from unity for the GPS samples under consideration. 
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Table 1. Radial Deviations Compared to Truth Ephemeris 

Prediction 
interval 

Mean 
Error 

σ 
Ratio 

DSP 
of Normality 

t-test of Mean  ψ2 test of σ 

R (m) (m) 95% 99% 95% 99% 95% 99% 

0 hr 1.28 0.97 + + × × + + 
1 hr 0.43 0.96 + + + + + + 
2 hr 0.40 1.40 + + + + × + 
3 hr 0.55 1.84 + + × + × × 
4 hr 0.76 2.17 × + × × × × 
5 hr 0.93 2.28 + + × × × × 
6 hr 0.99 2.15 × + × × × × 

12 hr -0.42 0.91 + + + + + + 
18 hr 0.81 1.75 × + × × × × 
1 day -0.60 1.21 + + × + + + 
2 day -0.87 1.62 + + × × × × 
3 day -1.10 1.91 + + × × × × 
4 day -1.29 2.17 + + × × × × 
5 day -1.48 2.39 + + × × × × 
7 day -1.80 2.77 + + × × × × 
14 day -2.60 3.43 + + × × × × 

 

Table 2. Transverse (In-track) Deviations Compared to Truth Ephemeris 

Prediction 
interval 

Mean 
Error 

σ 
Ratio 

DSP 
of Normality 

t-test of Mean  ψ2 test of σ 

I (m) (m) 95% 99% 95% 99% 95% 99% 
0 hr 0.91 1.65 + + × × × × 
1 hr 0.91 1.35 + + × × × + 
2 hr 0.62 1.00 + + × + + + 
3 hr 0.37 1.10 + + + + + + 
4 hr 0.15 1.44 + + + + × × 
5 hr -0.09 1.76 + + + + × × 
6 hr -0.34 2.01 × + + + × × 

12 hr -0.33 1.09 + + + + + + 
18 hr -0.22 1.13 + + + + + + 
1 day -0.32 1.03 + + + + + + 
2 day -0.24 1.08 + + + + + + 
3 day -0.21 1.18 + + + + + + 
4 day -0.19 1.28 + + + + + + 
5 day -0.17 1.37 + + + + × + 
7 day -0.14 1.55 + + + + × × 
14 day -0.03 2.04 + + + + × × 
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Table 3. Cross-track Deviations Compared to Truth Ephemeris 

Prediction 
interval 

Mean 
Error 

σ 
Ratio 

DSP 
of Normality 

t-test of Mean  ψ2 test of σ 

C (m) (m) 95% 99% 95% 99% 95% 99% 
0 hr 0.06 2.29 + + + + × × 
1 hr 0.10 2.39 + + + + × × 
2 hr 0.12 2.42 + + + + × × 
3 hr 0.16 2.39 + + + + × × 
4 hr 0.20 2.42 + + + + × × 
5 hr 0.04 2.38 + + + + × × 
6 hr -0.20 1.88 + + + + × × 

12 hr -0.24 0.85 + + + + + + 
18 hr -0.04 1.08 + + + + + + 
1 day -0.29 1.09 + + + + + + 
2 day -0.24 1.31 + + + + + + 
3 day -0.30 1.59 + + + + × × 
4 day -0.39 1.68 + + + + × × 
5 day -0.43 1.79 + + + + × × 
7 day -0.45 1.93 + + + + × × 
14 day 0.28 2.81 + + + + × × 

CONCLUDING OBSERVATIONS 

The authors have proposed that, for the forecast position covariance to be considered “realistic” (accu-
rate), the mean error should be close to zero (unbiased), the error spread in all directions should be consis-
tent with the covariance volume, and the errors should be normally distributed. These three characteristics 
can be evaluated using statistical hypothesis tests. However, the ability of sample data to pass a statistical 
test of normality does not necessarily mean the data are normally distributed if the statistical test lacks 
power. 

In this study, the authors have noted that the Kolmogorov-Smirnov D test statistic (KS test), which has 
been previously used to support the hypothesis of the normality of orbit errors, lacks statistical power 
against abnormality in the tails and is not suited for testing normality when the true population means and 
variances are initially unknown. We are therefore unsure that prior studies relying on the KS test reach the 
proper conclusions about the normality of orbit errors. However, the stabilized probability plot is a more 
powerful test than the KS test and offers the same advantages in terms of ease of use and graphical interpre-
tation; therefore, it can be recommended in place of the KS test in analysis situations that require a graphi-
cal presentation of test outcomes. 

The ability of our small-sample satellite population to demonstrate a tendency toward normal-error 
propagations appeared to be somewhat correlated with the quality of the orbit determination as assessed 
using the filter-smoother consistency test statistic. Our experience suggested that normality of predictions 
may be sensitive to incorrect scaling of this statistic. In situations where the filter-smoother consistency test 
statistic greatly exceeded a ±3 limit, solutions especially seemed to demonstrate a lack-of-fit that ultimately 
affected the normality of the error predictions We tentatively conclude that rather high quality OD methods 
and tracking data may be necessary to be confident that predicted orbital error estimates will tend to be 
normally distributed. 
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Even with normality testing satisfied, the covariance scale may be too large or the mean error may be 
biased. This is not a new conclusion, and the covariance scale problem may be improved by more attention 
to satisfying the filter-smoother consistency test statistic. Due to constraints of time, we were also unable to 
process additional satellite classes, nor assess the impact of including the process noise in the covariance 
propagation, but more work is planned in these areas. 
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