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Over a quarter century ago, the United States Department of Defense (DoD) released the
equations and source code used to predict satellite positions through SpaceTrack Report
Number 3 (STR#3). Because the DoD's two-line element sets (TLES) were the only sour ce of
orbital data, widely available through NASA, this code became commonplace among users
needing accurate results. However, end users made code changes to correct the
implementation of the equations and to handle rare cases encountered in operations. These
changes migrated into numerous new versions and compiled programs outside the DoD.
Changes made to the original STR#3 code have not been released in a comprehensive form
to the public, so the code available to the public no longer matches the code used by DoD to
produce the TLEs. Fortunately, independent efforts, technical papers, and source code
enabled us to synthesize a non-proprietary version which we believe is up-to-date and
accurate. This paper provides source code, test cases, results, and analysis of a version of
SGP4 theory designed to be highly compatible with recent DoD versions.

[. INTRODUCTION AND HISTORY

he Simplified General Perturbations (SGP) model series began development in the 1960s (Lane 1965), and

became operational in the early 1970s (Lane and Cranford, 1969). The original release of the refined Simplified

General Perturbations-4 (SGP4) propagator source code was Spacetrack Report Number 3 (Hoots and Roehrich,
1980). That release resulted from a user compatibility survey of space surveillance operational sites and official
users. The magnitude of the resulting variations spurred an effort to promote better compatibility for users. The
intent was to get the operational community, as well as ordinary users, synchronized with respect to the
implementation. The best vehicle for this was a technical report, including the computer source code. It was
designed for the widest possible dissemination. Although most of the equations were given, the use of the source
code became common practice for using Two-line Element (TLE) sets.”
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Foacetrack Report Number 3 officially introduced five orbital propagation models to the user community—SGP,
SGP4, SDP4, SGP8 and SDP8—all “generally” compatible with the TLE data. At the time, SGP had just been
replaced by SGP4/SDP4 (the latter having included deep-space perturbations). The SGP8/SDP8 model was
developed to alleviate deficiencies of SGP4/SDP4 for the special cases of orbital decay and reentry. The approach
provided a closed-form solution based on the general trends of orbital elements as they neared reentry, and was quite
successful. However, there is no evidence to suggest that SGP8/SDP8 was implemented for operational TLE
formation.

After STR#3, Spacetrack Report Number 6 (Hoots, 1986) was publicly released by North American Aerospace
Defense Command (NORAD). Some researchers initially assumed this release was intended to update portions of
the SDP4 deep-space routines, but the actual intention was to document HANDE" and had little to do with
SGP4/SDP4. Nevertheless, it provided amateur satellite trackers and researchers with a confirmation of identified
deficiencies in the original validation and verification efforts. This report has not been as widely circulated as
STR#3, which benefited from its early electronic availability (Kelso, 1988).

In the early 1990s, the NASA Goddard Space Flight Center (GSFC) obtained a copy of the 1990 standalone
SGP4 code’ from project SpaceTrack as part of a study on orbit propagation models for the SeaWiFS Mission (Patt
et al., 1993). In 1996-7 they released the unrestricted code on the Internet and to numerous organizations around the
world involved in the SeaWiFS Mission. It confirmed changes already discovered by many independent researchers,
and we refer to it simply as the “GSFC version.”

In 1998, Hoots published a history of the equations, background, and technical information on SGP4. In 2004,
Hoots et al. published a complete documentation of all the equations (including the deep-space portion). These
publications cover the incorporation of resonances, third-body forces, atmospheric drag, and other perturbations into
the mathematical technique. We note that all published reports on SGP4 have suggested only improvements in the
code used to implement it, and not any changes to the underlying theory. Thus, the equations in Hoots (2004) should
be representative of the current mathematical theory. This is a fundamental and essential assumption we use in this
paper.

Outside the DoD, perhaps the most comprehensive external version of the software resided with Paul Crawford.
His “Dundee code” kept track of the many changes inferred by real-world observations by independent researchers,
and those confirmed by DoD releases. Many of the results contained in the code pre-date matters that were later
confirmed in the DoD standalone releases. We use the change history from the Dundee in this analysis.

A. Motivation

Fpacetrack Report Number 3 noted the importance of using the specific equations and data input to ensure
proper operation and we repeat it here. “The most important point to be noted is that not just any prediction model
will suffice... The NORAD element sets must be used with one of the models described in this report in order to
retain maximum prediction accuracy.” The numerous releases and modifications to the original SGP4 standalone
code have made it virtually impossible to satisfy that direction today. For instance, using element sets generated
with the operational SGP4 code will not reproduce the same ephemeris as the original STR#3 code (without
modifications) would. Similarly, using this TLE data in another general perturbations propagator will result in
completely erroneous results. Simply converting the orbital elements to an osculating state vector and propagating
with a numerical propagator is equally invalid. These are consequences of the model-based parameter estimation
technique of orbit determination, and are most noticeable when using general perturbation techniques.

In fact, one may infer that none of the public releases meet this criterion because Kaya, et al. (2004) says “ Air
Force Space Command (AFSPC) developed Astrodynamic Standard Software to emulate the operational
astrodynamic algorithms used by the Space Control Center (SCC) in the Cheyenne Mountain Operations Center
(CMOC)” by “extracting desired algorithms from the larger programs in the Space Defense Operations Center
(SPADOC) within the SCC.” Thus, there are multiple versions of the SGP4 code even within the DoD. We must
recognize that the true official code is inextricably linked and embedded within the operational computer system at
CMOC (we designate it as the “operational” version). CMOC uses this operational version to produce all the TLE
data that are distributed daily to worldwide users. A similar “standalone” version of the official code is maintained

" The HANDE model was intended to replace the analytical SGP4/SDP4 model. It incorporated the effects of the Jacchia
dynamic atmosphere models for the average solar flux during the propagation interval, while retaining the speed and character of
an analytic general perturbations model. It also included the full Brouwer gravity solution, much of which had been dropped for
the SGP4 simplification. The code was implemented in the operational system, but its use is unknown.

"1t appears that the merged SGP4/SDP4 models were now referred to simply as ‘SGP4’ from this 1990 code onwards.
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by technical offices within AFSPC, which, under various organizational names,” published the Spacetrack series of
reports. The mention of emulating the operational codes leads us to think that AFSPC routinely tests and aligns
these two versions for compatibility. Spacetrack Report Number 3 report contained a snapshot of this standalone
code in 1980 and is the basis for our discussion.

Kaya et al. (2001) note the lack of enforcement for early AFSPC instructions (publicly available administrative
documents) concerning the use of their standalone code, and discusses changes in AFSPC policy about releasing
code. We see this in the evolution of Air Force Space Command Instructions. These documents imply that models
and computer codes have been extracted from larger programs, modified frequently, and that those modifications are
not promulgated or available to the broader user community.’

Perhaps the best motivation for the paper came from a 1998 version of AFSPCI 33-105, which stated,

The need for this instruction was identified by the lack of any HQ AFSPC procedures for releasing a certain set of
software, commonly called the "astrodynamics algorithms," used in the Space Defense Operations Center system
(SPADOC 4C) for the space control mission. With no configuration control in place, various versions of executable and
source code of the "astrodynamics algorithms" have been used for certain contracts and research projects.

1.1. Over the past 15 years or so, various commercial companies have produced and marketed products that these
companies claim contain some of AFSPC's astrodynamics algorithms. Not only are these claims very difficult to confirm,
very few of these claims, if any, have ever been confirmed. Also, in many cases, AFSPC has no documentation that states
why, when, and from whom the contractor obtained the command's code. Consequently, AFSPC and other DoD units
may have purchased their own software, often unknowingly.

1.2. Frequently, the algorithms and code contained in these products were outdated versions or had even been modified
without consultation and certification from AFSPC. Additionally, the contractor rarely provides source code of their
proprietary system to AFSPC so AFSPC cannot confirm whether the system's software actually contains the AFSPC
"astrodynamics algorithms." Consequently, AFSPC cannot perform verification and validation that the astrodynamics
algorithms have been utilized correctly in decision support systems, potentially critical to the space support provided to
other combat units. Because of the severity of the problem with AFSPC's astrodynamics algorithms, an overall
instruction for all of the command's software is required.

Thus today, there are perhaps more versions in use than at the time of original publication and compatibility and
interoperability for users has been impacted. Many organizations routinely use a “version” of SGP4 that they
received from “someone” at “sometime”. Precise documentation is often scarce. Thus, a primary motivation for this
paper is to bring the community up to speed with respect to the current implementation of SGP4 and the TLE data
released by NORAD.

B. Purpose

The technical community has increasingly sought more information about SGP4 because its TLE data set
continues to be widely disseminated even today and represents the only ‘public’ source of data covering the majority
of orbiting objects. Although many of today’s most important operations have switched to numerical processing
methods, the analytical approach still has value, especially when dealing with large numbers of satellites. Examples
of these include:

e Rapid searches for satellite visibility for ground stations, and generation of communication schedules.

e Programmed tracking of medium beamwidth antennas (or initial acquisition for narrow beamwidth
auto-track systems) using limited CPU power embedded devices.

e Investigations into initial orbit design based on low-precision requirements, such as general sensor
and/or ground station visibility statistics.

" We provide background information on some of the organizational acronyms used within this paper in the Appendix as they
may be confusing.

T In the late 1990’s AFSPC formalized the STR#3 advice and implemented regulations mandating procedures pertaining to the
use and distribution of the standalone code stating in a 1998 version of AFSPCI 33-105 that, “ AFSPCI 60-102, Space
Surveillance Astrodynamics Standards, requires that legacy government astrodynamics software be used in new systems to
ensure interoperability with Space Defense Operations Center system (SPADOC 4C) orbital data and to reduce acquisition costs
by using verified and validated standard astrodynamics algorithms that are Government Off-The Shelf (GOTS) software’ . The
2004 version of AFSPCI 33-105, says, “AFSPCI 60-102, Space Surveillance Astrodynamic Standards, mandates that only
standard constants, physical models and astrodynamic algorithms will be used in all AFSPC systems requiring space vehicle
trajectory data from or providing space vehicle trajectory data to the Space Control Center (SCC),” implying that standards at
that time were not “legacy ... software.”
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e Rapid assessment of close conjunctions (http://CelesTrak.com/SOCRATES) (Kelso and Alfano, 2005)
can be made computationally efficient by pre-processing with analytical techniques, and then applying
numerical techniques only to those cases that appear to warrant additional consideration.

This paper provides source code, test cases, results, and analysis of a version of SGP4 designed to be similar to
the standalone code. Because the complete equations for SGP4/SDP4 are given in Hoots et al. (2004), they are not
repeated here. Instead, the focus is more on the actual code development, testing methodology, and results. The
references at the end of the paper attempt to list the various papers that document the SGP4 theory and practice. This
will establish a consistent new baseline and permit improved accuracy of operations for worldwide users that
routinely process TLE data. The TLE are routinely available from CelesTrak (http://CelesTrak.com) and AFSPC
(www.space-track.org). The basic format for the data has not changed much over the years and is described in many
places and we have included a discussion in the Appendix.

[I. PROGRAM INTERFACE ISSUES

A few technical questions and comments are necessary to effectively integrate these analytical solutions into
today’s environment.

A. Theoretical | ssues

TLE data support a mix of coordinate systems and analytical theories. The SGP theory was largely based on
Kozai (1959), while the SGP4 theory was primarily based on Brouwer (1959). The two theories are rather different,
but both are still in use today. Neither the Kozai nor Brouwer theory originally included drag effects, so different
treatments of atmospheric drag are in use. SGP approximates drag via rate changes of mean motion (Hilton and
Kuhlman, 1966), while SGP4 uses power density functions (Lane and Cranford, 1969; Lane and Hoots, 1979) that
require a term that encapsulates the ballistic coefficient, Bstar (see Vallado, 2004: 113-116). Simplified force
modeling and the batch-least-squares processing of observational data often yield a Bstar that has “soaked up” force
model errors. Occasionally, one finds negative Bstar values, indicating erroneously that energy is being added to the
system, but this is simply a consequence of the limited SGP4 force modeling with respect to the actual dynamical
environment.

B. Configuration Control

TLE data do not reveal which version of SGP4 was employed to estimate the orbital parameters. Different
definitions of the so-called True Equator Mean Equinox (TEME) coordinate system and time systems may also have
been used at different times. Without a list of dates to synchronize these changes with historical TLE data, the user
must decide which version of the SGP4 propagator might be consistent. Because the accuracy of the propagator is
generally in the kilometer-level range (Hartman, 1993), this may not be a problem for most cases, but as we’ll see
shortly, some of the technical modifications can cause results to differ by hundreds of kilometers. This topic is
perhaps the least likely to have a simple solution, but could potentially account for significant differences in
ephemeris generation.

C. Data Formats

The TLE format appears to have changed slightly over the years, and numerous TLE data were disseminated
with missing or erroneous values. Some of these cases simply test the error handling of the code and its ability to
handle premature ending of the propagation.

The TLE Element Type is always set to zero for distributed data, although STR#3 suggests the following
assignments: 1 = SGP, 2 = SGP4, 3 = SDP4, 4 = SGP8, 5 = SDP8. The TLE sets also use differing formats (e.g., use
of leading zeros, or not). Sometimes, parameters are omitted within the TLE data (e.g., a second time derivative of
mean motion or Bstar drag term equal to zero). These variations can confound fixed-read implementations in a
computer program. The parsing of the TLE files is a bigger problem in languages such as C where the fixed-position
approach (common in FORTRAN) is unusual, and where the ‘NUL’ (zeroth in the ASCII collating sequence) has a
special end-of-string significance. Additionally, there are possible differences between DOS-formatted text files
(CR/LF for end of line) and UNIX format (LF only). Attention is paid in the conversion utility to account for these
discrepancies and the parsing routine is kept separate from the SGP4 routines to permit users the option of tailoring
their parsing needs for a particular operation.

The TLE format has a simplistic form of error checking by having a checksum character for each line; however,
it is prudent to check for other ‘fixed’ aspects (such as the “1” and “2” for each line, matching satellite numbers on
the two lines, variable ranges, etc.) since the modulo-10 checksum only provides a 90% detection rate for uniformly
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random errors. Even with the checksum, there has been some ambiguity over the value assigned to the characters
(the + sign in particular, which we believe should be zero), some additional explanation can be found on the web.

D. Coordinate System

The actual SGP4 model has little need for any specific coordinate or time system (€.g., the near-Earth part is
rotationally symmetric about the pole), but when used for propagating TLE generated by DoD it becomes important
to use the same coordinate system as the DoD orbit determination routines use. The commonly accepted output
coordinate system is that of the “true equator, mean equinox” (TEME) (Herrick, 1971:325, 338, 341). An exact
operational definition of TEME is very difficult to find in the literature, but conceptually its primary direction is
related to the “uniform equinox” (Seidelmann, 1992:116, and Atkinson and Sadler, 1951). The intent was to provide
an efficient, if approximate, coordinate system for use with the AFSPC analytical theories. Technically, the direction
of the uniform equinox resides along the true equator “between” the origin of the intermediate Pseudo Earth Fixed
(PEF) and True of Date (TOD) frames (Vallado, 2004:211, 221). It is found by observing that 0gssrs; may be
separated into its components. Thus,

Moo = ROT3(=Ogasrs2 )Tper @A Ogasrsy = Oomsrs, + Edesn
reve = ROT3(=Ocmisrs2 )Mper (1)
Tper = ROT3(9(3MST82)rTEME

We recommend converting TEME to a truly standard coordinate frame before interfacing with other external
programs. The preferred approach is to rotate to PEF using Greenwich Mean Sidereal Time (GMST), and then rotate
to other standard coordinate frames. Conversions are well documented from this point. To implement, you simply
apply a sidereal rotation about the Z-axis by GMST (using UT1 as we discuss later). Because polar motion has been
historically neglected for General Perturbation (GP) applications, we assume that the pseudo Earth-fixed frame is
the closest conventional frame."

If a rotation is made to TOD using the equation of the equinoxes, several approximations are introduced with the
calculation of the nutation of the longitude (A¥) and the obliquity of the ecliptic (¢). There are at least three possible
sources of uncertainty with this method: the number of terms to include in the nutation series, the inclusion of the
post-1996 "kinematic correction" terms to the equation of the equinoxes, and small angle approximations. After
choosing the length of the IAU 1980 nutation series (4, 10, and 106 terms are popular choices with 4 being most
common), the transformation is sometimes further reduced by assuming that A¥ = 0, e = £, and Ae = 0. This results
in a nutation matrix that is significantly simpler than the complete nutation matrix, although the complete form is
more common today. The equation of the equinox may be approximated by ignoring the "kinematic correction”
terms starting in 1997 [such that EQeqero80 = A¥COS(€)]. Finally, because some of the multiplicative quantities are
small, second-order terms may be neglected.

However, you should be aware of an additional nuance, specifically the ‘of date’ and ‘of epoch’ formulations.

e TEME of Date—With this option, the epoch of the TEME frame is always the same as the epoch of the
associated ephemeris generation time. The transformation to ECEF is done by first finding the
conversion from TEME to TOD (third equation in Eq. (1)). Next the standard transformation from TOD
to ECF is computed. We could have gone directly to PEF without the TOD frame (second equation in
Eq. (1)), but this implementation enables comparison with the TEME of Epoch approach. All
transformations are found using the complete IAU-76/FK5 formulae, including nutation.

e TEME of Epoch—In this approach, the epoch of the TEME frame is held constant. Subsequent rotation
matrices must therefore account for the change in precession and nutation from the epoch of the TEME
frame to the epoch of the transformation. This is accomplished by finding a static transformation from
TEME to J2000—this includes the equation of the equinoxes, the nutation, and the precession which are
all calculated at the epoch of the TLE. This static transformation is applied at each time requested in an

" The data available on CelesTrak undergoes extensive testing prior to publication. This includes checksum, individual column
checking (e.g., a number field can only have 0 — 9, a decimal field only a period), and range checking, where appropriate (€.g.,
inclination between 0 and 180). Not all archive sources of TLE have had such checks performed, and end users are advised to
consider this aspect before using those TLE. Additional information can be found at the CelesTrak website.
http://celestrak.com/NORAD/documentation/checksum.asp

T We assume that CMOC orbit detemination approximates the reference frames of radar and optical differently, and that
numerical and analytical orbit determination methods use different techniques due to the differences in TEME, ECI, and the
uncertain use of polar motion in coordinate systems.
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ephemeris generation. Once the J2000 vector is found, standard techniques can convert this to other
coordinate systems, at the appropriate time. This is computationally intensive, and introduces error into
the subsequent solutions. All transformations, after the initial static calculations, are computed using the
complete TAU-76/FK5 formulae, including all terms of the nutation theory.
Researchers generally believe the ‘of date’ option is correct, but confirmation from official sources is uncertain,
and others infer that the ‘of epoch’ is correct. To be complete, we provide the equations and an example problem of
both in the Appendix.

E. Time System Issues

Time accounting within SGP4 is referenced to the epoch of the TLE data. This practice makes individual
satellite ephemeris generation and use relatively easy, although it can complicate multiple satellite analyses. The
time system is assumed here to be UTC, but no formal documentation exists and UTC, as currently defined, was
only introduced in 1972. UT1 is needed to calculate GMST for the coordinate transformations discussed in the
appendix, but it is unknown whether UT1 or UTC is what is required by the software, although we assume UT1 for
this paper. The error associated with approximating UT1 with UTC is within the theoretical uncertainty of the SGP4
theory itself. Except for the GMST calculation, this paper and code assumes time to be realized as UTC.

Time accounting also affects how the year of epoch values are handled within a system. This feature is only
peripherally related to SGP4, and not part of the mathematical definition. It appears in the epoch calculations and
affects how the two-digit year of the TLE is treated. Several possibilities exist. If the year is less than 50, 57, or
some other value, one can add 2000, otherwise, 1900 is added. Of course, these are only temporary fixes with the
correct option to be the use of a 4-digit year, Julian Date, Modified Julian Date, etc. During the so-called "Y2K"
millennial rollover, some attention was focused here although nothing apparently changed.

It is doubtful that a leap-second capability was implemented into the peripheral software for SGP4 since the
historical source code uses relative “time since epoch”. Any such addition is clearly outside the mathematical
formulation of SGP4, but necessary for programs to interface with other agencies. As some software libraries have
no support for the ‘61 second’ minute that is needed to properly represent or convert UTC time at the point of leap-
second insertion, we suspect this is simply ignored for the majority of non-critical users, and a 1-second timing
difference will occur sometime during the period between TLE updates where the leap second is added or
subtracted. Although this is outside the direct scope of SGP4, it is part of many System Acceptance Tests for large
programs, and is included here as a reminder of those operations.

F. GHA Calculation

The Greenwich Hour Angle is usually calculated using the Julian Date. However, you can also find expressions
using the elapsed time from some epoch. Among the versions of SGP4 that are available today, several epochs arise:
1950 Jan 1 0", 1970 Jan 0 0", and 1970 Jan 1 12", UT1. The various combined constants illustrate the potential for
error when using this approach. As new timing systems are developed, the associated timing parameters change
slightly. The precision of these parameters also change slightly. Consider the following examples from various

versions:
Jan 1, 1950 0 hr (original STR#3)
THETA = 1.72944494D0 + 6.3003880987D0*DS50
Jan 0, 1970 0 hr
Ccl = 1.72027916940703639D-2
THGR70 = 1.7321343856509374D0

FKS5R = 5.07551419432269442D-15
C1lP2P = Cl+TWOPI
THGR = DMOD(THGR70+C1*DS70+C1P2P*TFRAC+TS70*TS70*FK5R, twopi)

These approaches yield “essentially” the same values. A series of calculations were constructed to test these
against the AU convention (Vallado, 2004:191) using the Julian centuries of UT1 (Ty)).

BOcmsrioss = 67,310.54841° + (876,600 +8,640,184.812866°)T,r, +0.093104T%, —6.2x10 ° T3y, @)

The results showed comparisons of about 10 degrees difference. This is well below the level that the answers
would be affected. We have chosen to implement the conventional approach of Eq (2).

I11. COMPUTER CODE DEVELOPMENT

The revised computer code developed in this paper is provided in C++, FORTRAN, MATLAB, and Pascal to
permit reasonable flexibility for applications (C++ is given in the appendix as this language is becoming
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commonplace). Conversion to other languages should be aided by the re-structuring effort that has been performed
on the code.

There can be large variations between the numerous implementations of SGP4—hence the need to establish a
newer baseline that is compatible with CMOC as closely as possible to provide enhanced compatibility. Where
obvious updates and corrections have been made and verified, we account for each in our revised code. For other
improvements that appeared “obvious” to us, we tried to determine if these changes might be present in today’s
standalone version.

Our starting point was the 1980 version from STR#3. From this point, STR#6, the Dundee modifications, and the
GSFC code release verified several suspected code changes. There were too many changes in this update to describe
them all—we list a few of the major ones below. Note that all satellite numbers refer to examples in the test case
file (sgp4-all.tle). Also, all element plots are osculating values.

e A primary change from STR#3 was the merging of SGP4 and SDP4 code. A large number of
researchers had noticed the commonality of the two models and simplified the code in this manner,
however, not all had recognized and simplified the initialization code. Due to this simplification, most
now refer to the merged SGP4/SDP4 models simply as ‘SGP4’.

e Although ultimately STR#6 has little relevance for TLE use, one notable change was the move to
double-precision code throughout (rather than the mix of single and double in the original) and
corresponding increase in accuracy for certain astrodynamic constants, all made practical by the
improvement in computing power since STR#3. Such changes do not improve the “accuracy” of the
model as such, but they lead to “smoother” behavior which helps with some tasks (such as differential
correction), and to greater consistency of results on differing computer systems and/or compilers.

e Solving Kepler’s equation was updated, but not completely fixed. The solution of Kepler’s equation
continues to present challenges in astrodynamics hundreds of years after its introduction. The original
1980 version of SGP4 had a fixed limit of 10 iterations and a tolerance of 107, but contained no code to
prevent certain high-eccentricity orbits from failing to converge. Spacetrack Report Number 6 changed
the tolerance to the tolerance to 10" (commensurate with double-precision work) and the GSFC
version tried to solve the convergence problem by removing the iteration limit. However, these are
incomplete approaches and can still result in infinite loops. The revised version code includes an
updated SGP4 routine following the Dundee version that allows realistic controls on the iterations.
Figure 1 shows the impact of this practice.

e The practice of only computing the lunar-solar terms if propagation time changes by more than 30
minutes to save CPU effort was dropped, thus resulting in smoother behavior for deep-space orbits with
small time steps. This was the only function of the SAVTSN variable in the original DPPER subroutine.
This resulted in ‘choppy’ behavior in some ephemerides from the STR#3 version.

e The application of periodic lunar-solar perturbations was updated. There are actually three problems
relating to the application of the periodic lunar-solar perturbations. The first of these, sometimes known
as the “Lyddane bug” (because it was first noted in independent investigations of the Lyddane
modifications in DPPER), is due to the jump in the actan/atan2 output where the perturbed value due to
the discontinuity of this function at either 90°/270° or £180° (respectively). In the STR#3 code, the
actan discontinuity occurred at 270°. Spacetrack Report Number 6 tried using the atan2 function, but
that simply moved the discontinuity to 180°. The GSFC code (the IF statements at the end of the ‘apply
periodics’ section in DPPER) confirmed the suspicions of several researchers about the need to evaluate
the relative quadrant of the resulting angle and to correct accordingly. A similar problem exists with the
modulo 27 reduction of the XNODE variable. The effect of not correcting the quadrant is illustrated in
Fig. 2. This problem also occurs when intrinsic functions (mod, atan, etc.) are used instead of the
STR#3 versions. We feel intrinsic functions are better suited for the program, but that full envelope
testing of the Lyddane implementation is probably in order.

e The second difficulty with the lunar-solar perturbations was the initialization of deep-space terms based
on perturbed values. This was corrected in the DPPER and SGP4 routines of the Dundee and GSFC
versions. In STR#3, the terms computed during initialization assumed fixed epoch values for
inclination, etc., but of course they are perturbed by the deep-space terms. The approach used by the
Dundee and GSFC versions includes any terms based on the Keplerian orbit being re-computed based
on the new perturbed values.
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Figure 1. Solving Kepler’s Equation for Satellite 23333. The mean anomaly (bottom) illustrates
the severe discrepancy in incorrectly solving Kepler’s equation after about 200 minutes. The effect
also shows up in the inclination (top). The problem existed in the STR#3 version, shown here, but
corrections were attempted in STR#6 and the GSFC version, with a better approach in the Dundee
version. The inclination plot also shows the choppy (but smaller) behavior of the 30 minute
updating of the lunar-solar terms in the STR#3 version before about 200 minutes. Notice that the
effect goes away after about 1400 minutes.
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Figure 2. Lunar-solar modificationsfor Satellite 23599. The argument of perigee and positional
components illustrate the discrepancy in incorrectly updating the lunar-solar perturbations, and not
accounting for the proper quadrant in the periodic calculations. The problem existed in the STR#3
version, shown here, and an attempted correction was made in STR#6, but it was mostly corrected
in the GSFC version.

e The third area of confusion with the lunar-solar perturbations is the decision for when to use the
Lyddane modification, and we refer to it as the “Lyddane choice” (Satellites 14128, 20413). Lyddane
(1963) reformulated the Brouwer expansions (done in Delaunay variables) in Poincare variables. Both
are canonical, and the Poincare variables were intended to be non-singular for small eccentricity and
inclination values. Because this was a reformulation, its use was intended for all computations, and
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remains that way today in the Navy Position Partials and Time (PPT3) (Hoots et al., 2004). During the
development of SDP4 equations, some SIN(inclination) divisor problems were noted and the Lyddane
formulation was examined. Because it also exhibited singularities, an alternate formulation was sought,
ultimately resulting in new parameter choices. The decision was made to use these variables when the
inclination was less than 11.4592° (0.2 rad).

Thus, the code implementation introduced two methods of applying the lunar-solar perturbations in the deep-
space code, with the Lyddane modification used with smaller inclinations to avoid a divide-by-zero type of
computation problem. In the STR#3 version, the choice was based on the unperturbed epoch inclination proximity to
11.4592°. In STR#6 (and the GSFC code subroutine DPPER), the test used the perturbed inclination (XIP, with the
secular term applied, unlike the XQNCL common term used in STR#3). This approach leads to a potential for the
model switching lunar-solar methods as a function of propagation time, which is clearly undesirable. Note that the
difference is usually small and relies on positional differences rather than the actual positional values. However, the
results can be greatly magnified in some orbits (satellite 20413 which is a multi-day orbit). The basic effect can be
demonstrated by satellite 14128 after about 2000 minutes from epoch when the perturbed inclination emerges above
11.4592° as shown in Fig. 3.
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Figure 3. Lyddane Choice Modification for Satellite 14128. The difference in positional
components illustrates the discrepancy in applying the Lyddane modification using the perturbed
inclination rather than the original inclination. The effect exists when comparing the GSFC and
STR#3 versions. Note the differences diminish once the inclination crosses the 11.4592° threshold
(after 2000 min).

A few comments are necessary on the Lyddane choice. This case occurs exceedingly infrequently as the satellite
inclination must be very close to the 11.4592° limit, and it must be a deep-space satellite. Without carefully crafted
test cases, this (like several of the problems we discuss) is not easy to detect in normal operation. At the time of
coding the STR#3 version, this form of software testing was not a commonly taught practice.” We can consider
several methods of resolving the situation, such as (a) going back to the STR#3 practice of testing the unperturbed
epoch inclination at t = 0 and using that as a fixed decision for the TLE, (b) testing the perturbed inclination at each
propagation time (as in the GSFC version), or (¢) making more significant code changes to find a smoother way of

" In 1980, the limitations of computer memory and storage space often dictated stringent code length requirements. Code that
would only be exercised once or twice, if a small effect, could be safely omitted in deference to more critical techniques,
applicable to numerous satellites. The testing philosophy of the time also influenced the outcome. Using a single set of test cases
for all analyses was quite common. The notion of targeted test cases for individual loops and constructs in the code itself didn’t
arise until many years later. Thus, this small nuance could easily have been missed by the testing of the time, or by code
limitations themselves.
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blending the two lunar-solar perturbation methods. Although a rare case, we think some fix should be included and
hope that AFSPC will confirm the current state of the code so users can be compatible in all cases. For the present
paper, we have included Option (b) in the code with qualifiers to assist in location and potential future resolution.
However, we note that there is probably a better “crossover” point to apply the Lyddane modification (Option c) that
will not result in such large discrepancies in the two ephemerides, but time did not permit a thorough investigation
and recommendation for such a change.

Next, the following changes were made to comply with modern programming standards, and to facilitate any
changes in the future. With the exception of the variable precision and the integrator issues (discussed later), none of
these changes affected the technical performance of the program and could be considered “cosmetic”.

Implicit typing in FORTRAN was replaced by comprehensive variable declarations. This was a critical step
before conversion to C++ and others. Modern compilers can generally sort out the variable names, but the
possibility of mistaken variables, variables being set to zero and used in calculations, etc., was too great. In
addition, knowing which variables were calculated and set assisted the process of forming structures.
Finally, this also eliminated much of the need for the FORTRAN SAVE command to hold values between
function calls with certain compilers.

Structures were created to pass the large amounts of data between functions. Numerous variables were
passed between functions in the original code. With no typing in the original code, this approach proved
relatively easy, but it was difficult to gain an understanding of the underlying structure. The structures were
set up to support integrated near-earth and deep-space functionality provided in the code. This change also
supported processing multiple satellites at one time. While processing a single satellite is illustrative for
simple scenarios, it is unrealistic for many modern applications. For instance, the SOCRATES effort uses
TLE data to generate potential conjunction information. During these runs, one must have two or more
satellites in memory at one time.

GOTO statements in FORTRAN were eliminated, using more modern constructs. This old programming
construct is often seen in legacy programs, but completely unnecessary with modern programming
techniques and tools. Looping and decision constructs were inserted, as appropriate.

Intrinsic functions replace user-written routines. Trigonometric and exponential routines should use
intrinsic calls within the programming language. The only exception should be in cases where a specific
quadrant, ordering, etc. is required. None of these were deemed necessary within the SGP4 routines.
Initialization functions were separated for better organization. The code was modularized, keeping
initialization functions separate from routine function use. Although modern compilers can generally sort
these differences out, the code is easier to maintain if the functions are isolated for a particular operation.
The reorganization of the computer code simplified the processing flow. In addition, simple timing studies
performed during the original development demonstrated increased processing speed of about 10%. The
basic program structure is illustrated in Fig. 4.

Variable names were changed to better conform to the variables they represent. Many variable names were
limited to conform to the former FORTRAN limitation of six (6) characters. This is no longer necessary
and has been dropped. Variable names were changed to match “standard” nomenclature, such as that used
throughout Vallado (2004). Constants were kept as constants in the code, and not assigned as variables with
limited precision.
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IV. SAMPLE TEST CASES

The original STR#3 included several test cases and sample outputs, but only for two sample satellites. Given the
number of branches possible in the deep-space case, many more tests are needed to fully test the code. The original
cases have been extended over the years as users have encountered real-world situations. The only other official test
cases are referenced in AFSPCI 60-102. No publishing information is given in the AFSPCI.

Because the theory is based on analytical expressions, comparisons are relatively simple because the output
should be the same from each program. Different programming languages (C++, FORTRAN, MATLAB, or Pascal)
and compilers produced very small differences, but these were well below the accuracy of two-line element sets that
are commonly used, and below the comparison between differing implementations.

For analysis, the computer code was set up with three primary execution paths. First, there is a “verification”
path in which the program accepts an input TLE file that includes start and stop dates and time steps. Mechanizing
this step was important to quickly review any changes against “known” test results. The second mode processed the
entire space object catalog from one day before to one day after the epoch time. The negative time propagation was
chosen to highlight any difficulties in the secular integrator part of the deep-space code—a most convoluted
example of programming in the official versions. Several space object catalogs (having about 9000 satellites in
them) were tested from the historical database. This provided a quick-look at performance for each of the programs
against a wide range of satellite orbits. The third mode of operation is the standard mode whereby input element sets
are read, and some operation takes place with the data. We separated the driver and TLE-conversion function from
the SGP4 code, to permit a user to modify the driver as needed, without having to change the underlying SGP4 code.

The test cases were divided into two categories. First, there were verification runs that tested the basic algorithm
implementation. The second set of tests demonstrates cases that we believe indicate additional technical
considerations that AFSPC may have incorporated in their models, or should consider in the future.

V. VERIFICATION TEST CASES

Essentially, these cases allowed several features of SGP4 to be tested, but the answers were generally agreed
upon during the testing phase of research for this paper. Cases for which there were technical questions about how
the code was implemented are discussed in a subsequent section. The element sets were sorted numerically in the
computer file to aid location of specific test cases, but are grouped here by effect. Comments were added to indicate
what each test was accomplishing. The original SGP4 model had two types defined in the code, normal (near Earth)
and ‘simplified drag’, while the original SDP4 had three types, normal (deep space), resonant (12" Molniya style)
and synchronous (24" GEO). Table 1 shows a sample. The file (sgp4-ver.tle) is on the Internet at the web site listed
at the end of the paper, and in the Appendix.

Table 1. SGP4 Verification Test Cases. These satellites highlight the primary test cases used for
analysis and verification of the SGP4 code. A few other satellites are included in the full test set.
The satellites used for the figures are also included, but at a reduced ephemeris density. The file
gives the applicable time range in minutes from epoch (MFE). The original STR#3 tests are kept
for continuity.”

Satellite | Category Comments

00005 Near Earth TEME example satellite.

28129 Deep Space A GPS navigation satellite in a near circular 12" orbit.

26975 Resonant Molniya style debris launch. Exercises the 0.5 to 0.65 eccentricity branches in deep space.

08195 Resonant Molniya launch. Exercises the 0.65 to 0.7 eccentricity branches of the deep-space code.

09880 Resonant Molniya launch. Exercises the 0.7 to 0.715 eccentricity branches of the deep-space code.

21897 Resonant Molniya launch. Exercises the eccentricity branches above 0.715, with a negative Bstar value.

22674 Resonant Rocket body, similar to 21897 (e > 0.715) but positive Bstar

28626 Synchronous | Low-inclination (< 3 deg) geostationary orbit that shows the problems in premature correction
of negative inclination at around 1130 minutes from epoch.

25954 Synchronous | Low-inclination GEO case like 28626, shows negative inclination problem at around 274

* All TLE data given in this paper is representative of actual satellites and can be obtained from www.CelesTrak.com except for
the original Report #3 test cases which do not appear in the archives.
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Satellite | Category Comments
minutes from epoch.

24208 Synchronous Geostationary orbit above 3 deg.

09998 Synchronous | Relatively high eccentricity for GEO (e= 0.027) shows secular integrator problem clearly.

14128, Synchronous Geostationary orbit close to 0.2 radian inclination. Shows Lyddane choice problem at about
04632 2080 minutes and about —5000 minutes from epoch.

20413 Deep Space Long period orbit (~4 days) shows Lyddane choice at 1860 minutes from epoch.

23333 Deep Space Very high eccentricity, shows Kepler solution problems in Report #3 code.

28623 Deep Space Deep-space object with low perigee (135.75 km) that uses the branch (perigee < 156 km) for
modifying the ‘s4’ drag coefficient.

16925 Deep Space Deep-space object with very low perigee (82.48 km) that uses the second branch (perigee <
98 km) for limiting the ‘s4” drag coefficient to 20

06251 Near Earth Near Earth normal drag case. The perigee of 377.26 km is low, but above the threshold of 220
km for simplified equations, so moderate drag case.

28057 Near Earth Near Earth normal drag case but with low eccentricity (0.000 088 4) so certain drag terms are
set to zero to avoid math errors / loss of precision.

29238 NE/S Near Earth with perigee 212.24 km, thus uses simplified drag branch (perigee < 220 km) test.

28350 NE/S Near Earth low perigee (127.20 km) that uses the branch (perigee < 156 km) for modifying

the ‘s4’ drag coefficient. Propagation beyond approximately 1460 minutes should result in
error trap (modified eccentricity too low).

22312 NE/S Near Earth with very low perigee (86.98 km) that uses the second branch (perigee < 98 km)
for limiting the ‘s4’ drag coefficient to 20. Propagation beyond approximately 2840 min
should result in error trap (modified eccentricity too low).

28872 NE/S Sub-orbital case (perigee —51 km, lost about 50 minutes from epoch) used to test error
handling.

23177, Deep Space Lyddane bug at less than 70 min and 380 min respectively, with atan2(), but no quadrant fix
23599

26900 Deep Space Lyddane bug at 37,606 min, negative inclination at 9313 min

29141 Near Earth Last stages of decay. Crashes before 440 min

11801/ Deep Space, Original STR#3 report test cases
88888 Near Earth

VI. EXPECTED CODE UPDATES

Although we searched many locations to obtain the latest openly available documentation on official AFSPC
practice, a few topics remain unknown. The primary areas of discussion are those giving the largest differences in
results—specifically negative inclinations, integrator problems, and solution of Kepler’s equation. If the reader is
aware of other corrections, we would appreciate learning about them. The intention is to produce a new baseline that
is as close as possible to the current operational version to enhance compatibility for the external user. While we
could not verify these, we felt the changes were so obvious that AFSPC has already made them, thus we have
included the options in the code. We used a comment (keyword “sgp4fix” in the codes) by each change to make any
future retraction or addition easier. For official users who are constrained by the AFSPCI 33-105 restrictions and
have only an executable version of the current code, it should be a simple matter to confirm these fixes."

" The AFSPC instructions have applied to different entities over time. By August 2004, AFSPCI 33-105 states the instruction
“ applies to Headquarters Air Force Space Command (HQ AFSPC), subordinate units, supporting activities and contractors who
develop, acquire, maintain or deliver computer software, including all systems that require astrodynamic algorithms. It also
appliesto Air Force Reserve Command (AFRC) and Air National Guard (ANG) units gained by HQ AFSPC.” Previous versions
incrementally added each of these groups, so it would appear that the scope of the intended audience is increasing with time.
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A. Error Checking

We increased the amount of error checking in our code to handle cases such as decayed satellites, or satellites
having inconsistent values. CelesTrak employs a significant amount of error checking on the TLE data, but
programs allowing the user to enter data could result in values that would cause errors. Inclination values near 180.0
degrees can cause divide-by-zero problems in the initialization and the routine operation. This is fixed by setting a
tolerance in both routines. The decay condition simply checks the position magnitude on each step.

B. Constants

Kaya et al. (2001, 2004) focuses on the difficulties encountered when mixing WGS-72 and WGS-84 constants.
Because the SGP4 codes contain references to WGS-72, AFSPC may have updated the constants to WGS-84, but
there is no other documentation supporting this so we present the development in case new official documentation is
released. However, because many operational sites may still have embedded software containing a version of SGP4
using WGS-72, and the fact that the accuracy of the theory would not really be impacted, AFSPC may well have
chosen to retain the older set of constants to better maintain interoperability with its internal resources. We use
WGS-72 as the default value. As with other changes we discuss, this is only necessary to interface with external
programs, but it will cause a difference in ephemeris results. The proper sequence to form the constants for WGS-72
is shown below. Note that we determined | from the SGP4 code value of XKE because it is not specified directly in
the code, and this makes future revisions easier. We also provide TUMin because XKE is simply the reciprocal of
this quantity. TUMin is possibly more familiar as it is the number of minutes in one time unit—a necessary
conversion when using canonical constants.

Table 2. WGS-72 Constants. The fundamental and derived constants are shown below. Notice
that XKE and TUMin are reciprocal values. The original STR#3 listed XKE as 0.074 366 916.

Symbol Calculation Value
M 398,600.8 km’/s
R, 6378.135 km
J 0.001 082 616
J —0.000 002 538 81
Js —0.000 001 655 97
XKE 60/sqrt(R, /1) 0.074 366 916 133 17 /min
TUMin sqrt(R,* /1)/60 13.446 839 696 959 31 min

If we use WGS-84 values, we find the following values.

Table 3. WGS-84 Constants. The fundamental and derived constants are shown below. The
zonal harmonic values are converted from the normalized values.

Symboal Calculation Value

i 398,600.5 km”/s®

R, 6378.137 km

J C,0=-0.000 484 166 850 00 | 0.001 082 629 989 05

J; C;so= 0.000 000 957 063 90 | —0.000 002 532 153 06

Jy Cyo= 0.000 000 536 995 87 | —0.000 001 610 987 61

XKE 60/sqrt(R, /1) 0.074 366 853 168 71 /min

TUMin sqrt(R,’ /W)/60 13.446 851 082 044 98 min

Other constants may not be familiar at first. For example, XPDOTP is a conversion from rev/day to rad/min.
XPDOTP = 1440.0/2m = 229.183 118 052 329 3.
RPTIM is simply the rotational velocity of the earth in rad/min. Note this does not use the GRS-80 defining

parameter for the rotation of the Earth, 2*m / (86,400/1.002 737 909 350 795) * 60.0 = 7.292 115 855 3x10~, but
rather the GRS-67 value that Aoki et al. (1982) used in the definition of time.

RPTIM = 7.292 115 146 7x10” * 60.0 = 0.004 375 269 088 02 rad/min.

Other constants are combined with other values, or use the values mentioned previously in their formulation. We
do not believe any update has occurred to any of the embedded constants in the deep-space portions as no
documentation has ever suggested this.
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C. NegativeInclination Orbits (Satellite 25954, 28626)

Deep-space orbits with low-inclination values (typically geosynchronous orbits) can, due to the effects of lunar
and solar gravity, result in a negative inclination with time. This can create a step-function discontinuity in the
positional components. Normally this is resolved by shifting the ascending node longitude by 180°. In the computer
code, we corrected this by removing the quadrant check from DSINIT before the ‘initialize resonance terms’
section, but kept the check in SGP4 before the ‘long period periodics’ section.

Satellites 25954 (at times beyond 274 minutes) and 28626 (at times beyond 1130 minutes) illustrate the effect of
correcting negative inclination prematurely. The bottom graph in Fig. 5 of z-position reveals a discontinuity around
this time in incorrect implementations of the code.
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Figure 5. Negative Inclination Performance for Satellite 25954. The inclination and z-
component of the position vector show the step function discontinuity of the previous SGP4
versions. The STR#3 and GSFC versions exhibits the problem while the Dundee version does not.
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D. Integrator Problems (Satellite 09880)

The original FORTRAN codes contained a generous mix of GOTOs and other structures that made accurate
debugging nearly impossible. One area that appears to have suffered from this practice was the secular integrator
used for 12" and 24" resonant cases. In particular, several satellites show difficulties when propagated ‘backwards,’
that is going to some time away from epoch (either positive or negative time) and then taking time steps towards the
epoch again. The problem seems to be with the setup of the positive and negative steps (stepp and stepn) with values
of 720 minutes in the DSPACE routine (SREZ in the older programs). It appears that ‘cleaning up’ the code has
fixed the problem. The original STR#3 style of logic would integrate from epoch to the required time using a Taylor
series approximation:

2 3
F(x+h):F(x)+%F’(x)+%F”(x)+--- @

where the integral at epoch F(0) is defined as zero. If the time (h) from epoch was greater than 720 minutes, it would
step in 720 minute intervals (X = 720, 1440, ...), recalculating the 1** and 2" derivatives each time and saving the
current (multiple of 720 minute) values for future use. Integrator resets occurred only when crossing the epoch. This
was correct and efficient provided the model was only called with increasing time steps (either positive or negative),
but it gives inconsistent results if you go to a time far from the epoch and return ‘backwards’ towards the epoch. The
code from this paper always integrates from the epoch to the required time, and restarts each time the model is called
with a ‘backwards’ step. This is slightly less CPU efficient but leads to repeatable results.” Satellite 09998
demonstrates this symptom quite clearly as it is propagated from one day before the epoch until one day after the
epoch, though all of the resonant and synchronous cases show it to some extent. Consider Fig. 6.

E. Solving Kepler’s Equation (Satellite 23333)

The partial fix discussed earlier handles a majority of the problem cases one would encounter in operations.
However, additional robustness could be handled via several alternative methods. A simple but very effective fix for
this is covered in Crawford (1995) where it is noted that the difference between mean and eccentric anomaly is
never more than te radians, so if you limit the first Newton-Raphson correction to somewhere around this, it
converges reliably for all cases. As this problem only applies to very high eccentricity orbits, an even simpler option
fixes a limit of 0.9 — 1.0 for the maximum correction. Another option is that of Nijenhuis (1991), who examines the
problem for eccentricities of 0.999 and 0.9999 and also examines the overall CPU load as well as the iteration count.
Note that this iteration is not the ‘traditional’ iteration to find eccentric anomaly discussed in the literature (e.g.,
Vallado, 2004: 72—85). Results for this change were shown in Fig. 2.

A series of tests were run to determine the number of iterations for a complete satellite catalog, and the
satellite tests we have included with this paper. For an example case of e= 0.9 the STR#3 version took an average of
5.685 iterations with a maximum of 8. The corrected Dundee version had an average of 3.984 iterations, with a
maximum of 5. As with the Lyddane choice mentioned earlier, this change affects only a very small number of
satellites.

" The ProjectPluto code had a variation on this method. It always integrates in the “shortest path” (improving CPU
use slightly over both the STR#3 logic and our ‘repeatable’ logic) but did not keep to the 720 minute step size for
re-computing terms, leading to discrepancies.
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Figure 6. Propagation Problems for Satellite 09998. The integrator problem is shown by
looking at the semimajor axis (top) and the positional component differences (bottom). The scale
is small, but the semimajor axis clearly shows the jump caused by incorrect integrator
performance near 720 minutes prior to the epoch. The problem appears in all older versions.

VII. COMPARISON ANALYSES

Many versions of SGP4 are available in code today, although most are initially from STR#3. Virtually none have
been re-worked to restructure the code or to provide multiple computer programming languages and test results. Our
aim is to correct that situation. Note that the basic structure of the computer code given in this paper has been
available for several years in FORTRAN, Pascal, Ada, and C++ on the following web site
(http://CelesTrak.com/software/vallado-sw.asp), although there has been extensive analysis to update the code for
this paper. There are only three known “official” versions with which we could make comparisons. These include:
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STR#3 (FORTRAN)
Both the original single/double mix, and a double-precision version (just by adding the IMPLICIT DOUBLE
statement) of STR#3 code were used. The electronic code was released to all users who asked for it. T. S.
Kelso released an electronic package of the 1980 report in December 1988.

GSFC  (FORTRAN)
http://seawifs.gsfc.nasa.gov/SEAWIFS/SOFTWARE/src/bobdays/sgp4sub.f (original)
Note this version is no longer available at this website although numerous downloads are known by
organizations and countries. In addition, the code is still easily found on archive pages throughout the
internet. A current site is similar, but potentially confusing as the subroutine name is the same, but the
module is clearly labeled as a Brouwer—Lyddane model.
http://www.icess.ucsb.edu/seawifs/seadas/src/utils/bobdays/sgp4sub.f (new, but different file)

JPL (FORTRAN)
ftp://maif.jpl.nasa.gov/pub/naif/toolkit/FORTRAN/PC_Linux/packages/toolkit.tar.Z
An additional source of SGP4 implementations is the JPL NAIF ‘spicelib’ toolkit, with source files ev2lin.f
(basically SGP4.FOR equivalent), dpspce.f (basically SDP4.FOR) and zznrddp.f (basically the DEEP.FOR).

A few other codes were examined to determine what other researchers had done with the code. Examples that were
tested but not included in the results presented here were:

ProjectPluto (C++)
http://www.projectpluto.com/sat_code.htm
Not an official version, but it is one of the more interesting and intelligent conversions to C++ available.

TrakStar (Pascal)
http://CelesTrak.com/software/tskelso-sw.asp
This is a very well known example, but is essentially a direct conversion of STR#3 and so it can be expected
to behave in a manner similar to the STR#3 double-precision case.

Dundee (C)
http://www.sat.dundee.ac.uk/~psc/sgp4.html
The original translation into C by Paul Crawford and Andrew Brooks was virtually identical in behavior to
STR#3, but with much better code structuring. Then many of the other fixes included such as the Kepler’s
equation solution and secular integrator were added. The update over the last year for this paper had all of the
corrections discussed and agreed with the authors, resulting in virtually identical results to the paper’s
versions.

Because our version of SGP4 does not claim to be the official version, it was important to compare the results
over a wide range of test conditions, and to compare with the released official versions. Specifically, the verification
and stressing test cases provided a technical look at the performance, but these comparison tests were intended to
show the robustness of the calculations under full-catalog simulations. Tests were run on several complete catalogs
for varying dates. Each satellite was propagated from —1440 minutes to 1440 minutes at 20-minute time steps. The
results were then compared between programs. The C++, FORTRAN, MATLAB, and Pascal versions gave virtually
the same results, as shown in Fig. 7.
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Figure 7. SGP4 Full-Catalog Comparisons. Maximum differences between ephemerides
generated for two days are shown. Note the small scale for the C++ and FORTRAN comparison
(top). The Pascal comparison (bottom) shows very small additional variations and these are from
the 8-byte versus 10-byte precision in the language.

Comparisons were then run between the versions. Each figure shows the largest difference between the
simulations, and each satellite is plotted against the orbital period. The scales are kept constant within each figure to
permit rapid assessment of the differences. Figure 8 shows the results compared to the GSFC version. This was
important to illustrate the similarity with the last known release.
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Figure 8. SGP4 Full-Catalog Comparisons. Maximum differences between ephemerides
generated for 2 days are shown. The top plot shows the paper C++ version against the GSFC code,
while the bottom plot shows the comparison to the GSFC code, but only for propagations positive
from the epoch. The differences are all related to the integrator problems before 720 minutes prior
to epoch with geosynchronous and semi-synchronous orbits.

As Fig. 8 shows, the GSFC version is very close to our revised version, and nearly identical to the performance
between languages for the revised versions. The minor differences (usually a few meters) in the resonant cases (718-
minute Molnyia and 1436-minute geostationary orbits) only show up with time steps that ‘go backwards’ in time (a
problem in the secular integrator). In these tests, we begin at —1440 minutes and then step towards zero, before
going ‘forwards’ towards +1440 minutes. In our revised version, the direction of propagation is not important. The
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GSFC version also has larger errors with the direct/Lyddane choice, and the inclination going negative during
propagation, but these are not shown in Fig. 8 (it requires rare or ‘difficult’ TLEs to show up). Those differences
were discussed earlier.

The comparisons with results from STR#3 show significantly larger differences for almost all satellites. Note
that both (mixed) single and double-precision results are given in Fig. 9.
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Figure 9. SGP4 Full-Catalog Comparisons. Maximum differences between ephemerides
generated for 2 days are shown. The top plot shows the single-precision STR#3 version against the
paper C++ version, while the bottom plot shows the STR#3 double-precision version comparison.
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Both versions of STR#3 (single/double and double only) show similar results, with agreement to reasonable
accuracy (sub-km) for near-Earth orbits (limited by the precision of specifying the astrodynamic constants). This is
less in deep space, where some of the limited precision (e.g., Kepler’s equation tolerance), the re-computing of
perturbed terms, and the possibly the ‘Lyddane bug’ behavior show up more strongly. The differences between the
GSFC version and the STR#3 versions are nearly identical to those in Fig. 9 for this catalog snapshot. This is
important because many “correct” implementations of SGP4 in use are based on the STR#3 version (e.g., TrakStar),
but this comparison shows the typical additional errors that users can expect as compared to the standalone AFSPC
code.

Despite a rigorous attempt to review the fundamental constructs of the code, the JPL case is not particularly good
in its original form. For near-Earth satellites, there is clearly some problem with the implementation (drag equations
perhaps?) as it is much worse than STR#3 code in mixed precision. The deep-space cases have other problems, one
of which is the choice to zero the LS offsets at epoch” (which does not appear to be correctly implemented in any
case). It also shares the negative inclination problem. These are unfortunate, as it is an interesting attempt to order
and modernize the FORTRAN code, showing some insight into improving things, but missing others (such as the
commonality of the SGP4/SDP4 codes) completely. The Project Pluto code (not shown) compared favorably to the
revised code version but its lack of ‘official heritage’ made it difficult to accept changes based solely on its presence
in this version. Results for the JPL code are shown in Fig. 10.

" It appears that JPL made the same change as several other authors who assumed that the zeroing of the Lunar-Solar
perturbations at epoch mentioned in STR#6 and the GSFC code also applied to the code when used in the deep space part of the
merged SGP4 model. This is not the case, and the reader is reminded that what matters most for accuracy, if the theory is not
completely documented, is to use the same code for propagating the elements as was used in generating them.
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Figure 10. SGP4 Full-Catalog Comparisons. Maximum differences between ephemerides
generated for 2 days are shown. The plot shows the paper C++ version against the original JPL
code (plot on the top). Note that by changing the DOPERT variable in the JPL code, the results
can be improved by about two orders of magnitude (plot on the bottom).

VIII.  AVAILABILITY

The primary computer source code discussed in this paper has been available on the Internet for nearly six years,
but was re-worked for this paper with inputs from many people and organizations. The current code is available in
C++, FORTRAN, MATLAB, and Pascal as these appear to be the most common languages for operations today.
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The appendices contain definitions and examples of TLE data and TEME conversions, the C++ code, along with the
input TLE data, and results. The code for debugging the software is not included as it was not pertinent to the
discussion. The files have ‘include’ statements which are commented out where these lines of code would be
inserted. All the necessary files are located on the Internet for convenience. They are available from the Center for
Space website:"

http://www.centerforspace.com/downloads/

IX. CONCLUSIONS

This paper has re-examined the Spacetrack Report Number 3 formulation of analytical propagation. By
incorporating changes posted over the last quarter century, a unified and improved version is presented for general
use. Structural changes to the code have been completed permitting the ability to process multiple satellites at one
time. We chose to omit the Lyddane choice change for certain inclinations to maintain as close a performance to
what we believe AFSPC is doing today. However, we also included comments in the source code to facilitate
location of any updates now, or at a future time. Test cases are included to demonstrate verification of operation
with the branches in the code, for difficult orbits, as well as cases encountered throughout the years. The results
show that continued use of the STR#3 version, and to a lesser extent some of the more recent versions, can result in
potentially large errors when producing ephemerides. We also noted the difficulty with aligning a particular version
of SGP4 with a particular TLE as the data formats and processing have changed throughout the years. Finally, we
hope this form of documentation will motivate similar efforts for additional analytical theories in a similar fashion,
along with satellite data to use with each theory. Any questions, comments, additions, etc. may be addressed to
David Vallado at dvallado@centerforspace.com.
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Appendix A — Organizational Nomenclature

Tracing the reports, documents, and files back to the original release may present some confusion to users that
are not familiar with the various organizational structures that have been in place over time. We have tried to use the
appropriate organizational names when referencing information, but the following information may help associating
those references. We use DoD, AFSPC, NORAD, CMOC, etc. The following quotes were assembled from the
Cheyenne Mountain website: https://www.cheyennemountain.af.mil.

“The original North American Air Defense Command (NORAD) Combat Operations Center ... has evolved into the
Cheyenne Mountain Operations Center (CMOC). The original requirement for an operations center in Cheyenne
Mountain was to provide command and control in support of the air defense mission against the Soviet manned bomber
threat ... In the early 1960s, the advent of an Intercontinental Ballistic Missile (ICBM) attack against North America
became a top priority. Missile warning and air sovereignty were the primary missions in the Mountain throughout the
1960s and 70s. During a brief period in the mid 1970s, the Ballistic Missile Defense Center was installed within the
Mountain. ... In 1979, the Air Force established a Space Defense Operations Center [SPADOC] to counter the emerging
Soviet’s anti-satellite threat ... The evolution continued into the 1980s when Air Force Space Command [AFSPC] was
created and tasked with the Air Force Space mission ... In April 1981, Space Defense Operations Center crews and their
worldwide sensors, under the direction of Air Defense Command [ADC], supported the first flight of the space shuttle ...
Oct. 1, 2002 marked the welcoming of two new commands, U.S. Northern Command and U.S. Strategic Command, to
Cheyenne Mountain. CMOC is responsible for providing support to USNORTHCOM's mission of homeland defense and
USSTRATCOM's mission of space and missile warning, formerly associated with U.S. Space Command.

Today, the Cheyenne Mountain Complex is known as Cheyenne Mountain Air Force Station (CMAFS). CMAFS is host
to four commands: North American Aerospace Defense Command (NORAD), United States Northern Command
(USNORTHCOM), United States Strategic Command (USSTRATCOM), and Air Force Space Command (AFSPC).
CMOC serves as the command center for both NORAD and USNORTHCOM. It is the central collection and
coordination center for a worldwide system of satellites, radars, and sensors that provide early warning of any missile,
air, or space threat to North America. Supporting the NORAD mission, CMOC provides warning of ballistic missile or
air attacks against North America, assists the air sovereignty mission for the U.S. and Canada, and if necessary, serves as
the focal point for air defense operations to counter enemy bombers or cruise missiles. In addition, CMOC also provides
theater ballistic missile warning for U.S. and allied forces. In support of USSTRATCOM, CMOC provides a day-to-day
picture of precisely what is in space and where it is located. Space control operations include protection, prevention, and
negation functions supported by the surveillance of space. ... Operations are conducted in seven centers manned 24 hours
a day, 365 days a year. The centers are the Air Warning Center, Missile Correlation Center, Space Control Center
[JSPOC], Operational Intelligence Watch, Systems Center, Weather Center, and the Command Center ... The Joint Space
Operations Center (JSPOC) supports United States Strategic Command (USSTRATCOM) missions of surveillance and
protection of U.S. assets in space. The JSPOC’s primary objective in performing the surveillance mission is to detect,
track, identify, and catalog all man-made objects orbiting earth. ... The JSPOC maintains a current computerized catalog
of all orbiting man-made objects, charts preset positions, plots future orbital paths, and forecasts times and general
location for significant man-made objects reentering the Earth’s atmosphere.”

The organizational names identify whether they are joint (international), or not. For generic applications, we use
DoD because this is the broadest identification for all the organizations. We generally use NORAD when referring
to the TLE data because their formation was begun under NORAD. Today, the JPSOC [a.k.a. Space Control Center]
within the CMOC produces the TLE data, but we retain the historical name due to its familiarity in the community.
Regulations and documentation have generally come from AFSPC and are identified as such.
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Appendix B — Two Line Element Set Format

The format for the TLE is shown in Fig. 11 with sample data.

. Mean motion §

E Satellite § International Epoch Mean motion derivative| | second derivative | | Elem 2

S Number |O Designator Yr | Day of Year (plus fraction) (rev/day /2) (rev/day2 /6) Bstar (/ER & | num [S
[Yea| Lch# | Piece S S. S. S|E

1| [1]16] 6[0]9|U| [8]6]0f1|7]A 91313]5]2].15|3|5]0]2]9(3]|4 .|ofojofo[7]|8]|8]9 ojojojojof-fo 11015{2(9]-13| |0 314{ 2

Right Ascension of] Arg of Perigee Mean Anomaly Epoch | .,

Inclination (deg) the Node (deg) Eccentricity (deg) (deg) Mean Motion (rev/day) Rev |5

2| [1]6[6[0]9 5(1].16]1]9|0 113 .[3]13[4[0] |ofolo|5]7|7]0] [1{o]2[.[5]|6[8|0f [2]5]7|.|5]9[5]0f |1[5].]5[9]1|1]4[0]7]0]4|4]|7|8|6]9

Figure 11. Two-line Element Set Format. An example TLE is shown, with descriptions and
units of each field. Note that the eccentricity, mean motion second derivative, and Bstar have
implied decimal points before the first numerical value. The mean motion derivative is already
divided by 2, and the second derivative is already divided by 6. Shaded cells do not contain data.
The signs may be blank, “+” or “=". A classification field is sometimes included after the satellite
number.

There are several notes.

1. The maximum accuracy for a TLE is limited by the number of decimal places in each field (Vallado,
2004:116). In general, TLE data is accurate to about a kilometer or so at epoch and it quickly degrades (Hartman,
1993). We note that the SGP4 theory is capable of much better accuracy through additional modeling and sufficient
observational data. Cefola and McClain (1987) noted that certain low-inclination geosynchronous orbits exhibited
large discrepancies from numerical simulations due to oversimplifications in the node rate calculations. Cefola and
Fonte (1996) showed that the addition of additional terms to the theory could improve the overall accuracy by
almost an order of magnitude. Cappellucci (2005) showed that using numerically generated state vectors and
performing an SGP4 orbit determination on the resulting ephemerides produced errors representative of a numerical
technique. This is not unexpected as additional (continuous) observations provide the needed observability over a
simple “3-obs per pass” approach (Vallado and Alfano, 1999). However, the results diverge very rapidly once
outside the fit span of the orbit determination. We do not address orbit determination here.

It is also worth noting that there are numerous other analytical orbital theories that have been developed for a
wide range of applications, but unfortunately, no comprehensive source of data for those theories exists. SGP4 is
interesting because it tries to satisfy many orbital regimes. The Russians developed a series of analytical
propagators, each tuned for a specific satellite regime. The narrower focus permits additional attention to detail, and
higher resulting accuracy. It is hoped that some of these analytical routines can eventually be documented for
general use in the same manner as this paper.

2. The satellite number consists of any numeric value 0 — 99999. Discussions have hinted at a lengthening of the
field size to 7 or 9 characters to accommodate future satellites.

3. Sometimes additional assignments are made — signs = 0; minus signs = 1.

4. The International designator is broken up into the last two digits of the lunch year, the launch number for that
year (3 digits), and the piece of the launch (3 digits). Kelso (2004) also indicates:

[The] International Designator of the object [ ] is an additional unique designation assigned by the World Data Center-A
for Rockets and Satellites (WDC-A-R&S) in accordance with international treaty (1975 Convention on Registration of
Objects Launched into Outer Space). The WDC-A-R&S works together with NORAD and NASA's National Space
Science Data Center (NSSDC) in maintaining this registry. Although there have been some changes in format since it
was first used back in the late 1950s (see "Space Surveillance" in Satellite Times Volume 4 Number 1), the International
Designator indicates the year of the launch (field 1.4 only gives the last two digits), the launch of that year (field 1.5), and
the piece of that launch (field 1.6) for each object. These three fields can be left blank, but all must be present if any is.
Finally, field 1.6 can be either right or left justified—the latter is preferred.

As an aside, there are some significant differences between NORAD's Catalog Number and the International Designator.
For example, NORAD assigns a catalog number based upon when the object was first observed, whereas the
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International Designator is always tied to the original launch. For example, the 81st launch of 1968 carried four payloads
into orbit: OV2-5, ERS 21 and 28, and LES 6. Together with the Titan 3C transtage rocket body, these objects were
assigned International Designators 1968-081A through E and Catalog Numbers 03428 through 03431. Just this past
October, however, NORAD cataloged two additional pieces associated with this launch as Catalog Numbers 25000 and
25001—they have the International Designators 1968-081F and G.

5. The mean motion rates are not used by SGP4 and are only valid for the older SGP model.

6. Bstar is an SGP4 drag-like coefficient. Usually, ballistic coefficients (BC) are used in aerodynamic theory.
The BC is m/CpA, or the reciprocal (A is cross-sectional area, Cp is the coefficient of drag, and mis mass). Bstar is an
adjusted value of BC using the reference value of atmospheric density, po=2.461 x 10™ kg/m?, at one Earth radius.

BC=R. p,/ (2Bstar) (B-1)

7. The Ephemeris type is not used external to CMOC. All TLE data is generated by SGP4.
8. From Kelso (2004):

The element set number. Normally, this number is incremented each time a new element set is generated. In practice,
however, this doesn't always happen. When operations switch between the primary and backup Space Control Centers,
sometimes the element set numbers get out of sync, with some numbers being reused and others skipped. Unfortunately,
this makes it difficult to tell if you have all the element sets for a particular object.”

The last column on each line represents a modulo-10 checksum of the data on that line. To calculate the checksum,
simply add the values of all the numbers on each line—ignoring all letters, spaces, periods, and plus signs—and
assigning a value of 1 to all minus signs. The checksum is the last digit of that sum. Although this is a very simple error-
checking procedure, it should catch 90 percent of all errors. However, many errors can still sneak through. To eliminate
these, all data posted on the CelesTrak WWW site not only pass the checksum test, but must also pass both format and
range-checking tests (as described in this article).

The final field on line 2, prior to the checksum, is the rev number. Since there are several conventions for determining rev
numbers, this field also bears some clarification. In NORAD's convention, a revolution begins when the satellite is at the
ascending node of its orbit and a revolution is the period between successive ascending nodes. The period from launch to
the first ascending node is considered to be Rev 0 and Rev 1 begins when the first ascending node is reached. Since many
element sets are generated with epochs that place the satellite near its ascending node, it is important to note whether the
satellite has reached the ascending node when calculating subsequent rev numbers.
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Appendix C - TEME Coordinate System

This section describes the equations necessary to implement the nutation equations for the TEME approach.
There are two approaches — using the GMST, and using the equation of the equinoxes.
For sidereal time, GMST is needed. GMST is found using UT1. From McCarthy (1992:30)

Ocmsriosy = 67,310.548 415 +(876,600" +8,640,184.812 866°)T 7, +0.093 104T %, —6.2x107°T3;,  (C-1)

The transformation to ITRF is found using the polar motion (X,, Yp) values and the GMST. Note that “PEF”
implies the pseudo-Earth-fixed frame, where polar motion has not yet been applied (Vallado, 2004: 217).

[W]irre—per = ROTI(y,)ROT2(x,)
Firre =[W]' [ROT3(@gusrios: )] Freme (C-2)
Vire =[W]' {ROT3(€GMSTI982 ) Vreme + @ X Foer }

If the equation of the equinox approach is taken, you must find the nutation parameters. The IAU-80 nutation
uses so-called Delaunay variables and coefficients to calculate nutation in longitude (4¥,4,,) and nutation in the

obliquity of the ecliptic (4g,yq,). (McCarthy, 1992:32)

M =134.962 981 39°+1,717,915,922.6330" Ty +31.31TH +0.064T7;

Mo =357.527 723 33°+129,596,581.2240" Ty —0.577T +0.012T3
f =93.271 910 28°+1,739,527,263.1370" T —13.257T —0.01 1T

(C-3)
Do =297.850 363 06°+1,602,961,601.3280" T+ —6.891T13r +0.019T1§r
Q =125.044 522 22°-6,962,890.5390" Ty +7.455T +0.008T;
The nutation parameters are then found using (McCarthy, 1992:33)
ap =ap, M+ A, Mg + Az, U +apy, Do + s, Q
106 106
Ay =" (A, + A, Trpg)sin(@, ) Ae =Y (A, + Ay Trpg) cos(@,, ) (C-4)

i=1 i=1

Corrections to the nutation parameters (dAY,q,, and dAE,qg,) supplied as Earth Orientation Parameters (EOP)

from the IERS are simply added to the resulting values in Eq. 4 to provide compatibility with the newer IAU 2000
Resolutions (Kaplan, 2005). These corrections also include effects from Free Core Nutation (FCN) that correct
errors in the TAU-76 precession and IAU-80 nutation. However for TEME, these corrections do not appear to be
used. The nutation parameters let us find the true obliquity of the ecliptic, €& (McCarthy, 1992:29-31)

AW 950 = AW + AW 105 A€ g0 = A&+ OAE 45
£ =84,381.448"-46.8150T; —0.000 59TZ +0.001 813T7; ©-5)

The equation of the equinoxes (EQege1980) can then be found. The last two terms in the EQeqer980 are probably not
included in AFSPC formulations. From McCarthy (1992:30)

EQuqeto50 = AW 1050 COS(E) +0.002 64"sin(Q ) +0.000 063 sin(2€2, )
Oauisrioss = 67.310.54841° +(876,600" +8,640,184.812 866°)Tyy, +0.093 104Tjr, ~6.2X10° Ty, ()
Ocastios2 = Ocmsriosz + EQegeroso

These relations let us form the transformation equations.
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[P1mop-32000 = ROT3({)ROT2(-©)ROT3(2)
[Nltop_mop = ROT1(—=&)ROT3(AY)ROT1(¢)
F12000 = [P][N][ROT3(— EQeqel980 )]FTEME

V32000 = [PIN] [ROT3(~EQeqei080)] Vrpwme

(C-7)

An example is useful to show the various options and their effect on the resulting vectors. Consider an initial
ECI (J2000.0, IAU76/FKS5) state vector.
June 28, 2000, 15:8:51.655 000 UTC
AUT1 =0.162 360°, AAT 21°, X, =0.098 700", y, = 0.286 000"
l'p000 = 3961.744 260 3 6010.215 6109 4619.362 575 8 km
D000 =—5.314 643 386 3.964 357 585 1.752 939 153 km/s
Converting to standard TOD, PEF via IAU 76/FKS5, without the nutation corrections (04, and dAg,,,), but using
the two additional terms with EQeqergs0,
JDym =2,451,724.131 155 293 40, Trr= 0.004 904 360 547
oo =3961.421 498 5 6010.475 268 8 4619.301 531 0 km
Urop =—5.314 833 569 3.964 181915 1.752 759 802 km/s
reer = 298.803 632 8 —=7192.314 622 9 4619.301 531 0 km
vpgr = 6.105 014 271 —0.131 824 177 1.752 759 802 km/s
For the TEME transformation, use equations (3) to (6) to find the approximate parameters (with 4 nutation terms
in Eq (4), no additional two terms in Eq (6), and no small angle approximations). Then, transform TOD or PEF to
TEME using Eq (7) or Eq (2) respectively.
reme =3961.003 549 8 6010.751 174 0 4619.300 930 1 km
vmeme =—5.315109 069 3.963 813 071 1.752 758 562 km/s
Notice this vector is “in between TOD and PEF, but much closer to the TOD value — a reason it is sometimes
[imprecisely] considered “inertial”. We consider these numbers are within a few mm of CMOC results.
The related issue for TEME ‘of date’ and TEME ‘of epoch’ can also be demonstrated with the following TLE

data at epoch and at 3 days into the future.
1 00005U 58002B 00179.78495062 .00000023 00000-0 28098-4 0 4753
2 00005 34.2682 348.7242 1859667 331.7664 19.3264 10.82419157413667

Some users have assumed comments in CMOC-produced computer outputs suggested TEME of epoch
(precession is used), but most users appear to assume “of date.” These headers often state: “ Ephemeris generated
by SGP4 using the WGS-72 earth model. Coordinate frame = true equator and mean equinox of epoch using the
FK5 mean of J2000 time and reference frame.” We believe this statement still exists today. There is no mention of
TEME in the FK5 theory and applicable documents. Analytical Graphic Inc.’s STK provides options for each with
the ‘of date’ option as the default, and we concur with the ‘of date’ position. Although the change between the two
over a week or so is small, it is something measurable if agreement to a centimeter or less is desired. Note that this
ignores the general accuracy of the TLE data being no better than a few kilometers. Using the TLE example data, we
find the TEME vector at a time 3 days in the future (day = 182.784 950 62) from the TLE epoch.

reme =—9060.473 73569 4658.709 52502  813.686 731 53 km
Ureme =—2.232 832 783 —4.110 453 490 —3.157 345 433 km/s
Next, find the nutation transformation matrix at this time.

0.999 999 999 56  0.000 000 000 00 0.000 029 505 95
[Rlteme =| —0.000 000 000 65 0.999 999 999 76 0.000 022 007 05

C-8
—0.000 029 505 95 0.000 022 007 05 0.999 999 999 32 (&)

Using Eq (7), we find the inertial (“J2000”) vector at the future time.
Foo0 =—9059.941 378 6 4659.697 2000 813.958 887 5 km
V000 =—2.233 348 094 —4.110 136 162 —3.157 394 074 km/s
For the future time using the "of epoch’ option, the nutation matrix is found at the epoch time as
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0.999 999 999 55  0.000 000 000 00 0.000 030 111 90
[Rlteme =| —0.000 000 00066 0.999 999 999 76 0.000 021 766 37 (C-9)
—0.000 030 111 90 0.000 021 766 37 0.999 999 999 31

and the resulting vector is
o0 =—9059.951 0799 4659.680 7556 813.945 045 1 km

U000 =—2.233336 111 —4.110 141 024 —3.157 396 220 km/s
This is a difference of 23.6 m in just 3 days.
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Appendix D —Test Case Listing
SGP4-VER.TLE —

Test cases include those used for the figures in the paper (with a keyword “## fig”), and those used for
verification to exercise various aspects of the code. The additional values on the second line were added to simplify
automatic processing of each test — the ephemeris starting minutes from epoch (MFE) to the ending MFE, and the
delta time step in minutes.

—————————————————— Verification test cases --—————————---"————————
# TEME example
00005U 58002B 00179.78495062 .00000023 00000-0 28098-4 0 4753
00005 34.2682 348.7242 1859667 331.7664 19.3264 10.82419157413667 0.00 4320.0 360.00
## fig show lyddane fix error with gsfc ver
04632U 70093B 04031.91070959 -.00000084 00000-0 10000-3 0 9955
04632 11.4628 273.1101 1450506 207.6000 143.9350 1.20231981 44145 -5184.0 -4896.0 120.00
DELTA 1 DEB # near earth normal drag equation
# perigee = 377.26km, so moderate drag case
06251U 62025E 06176.82412014 .00008885 00000-0 12808-3 0 3985

06251 58.0579 54.0425 0030035 139.1568 221.1854 15.56387291 6774 0.0 2880.0 120.00
MOLNIYA 2-14 # 12h resonant ecc in 0.65 to 0.7 range

08195U 75081A 06176.33215444 .00000099 00000-0 11873-3 0 813

08195 64.1586 279.0717 6877146 264.7651 20.2257 2.00491383225656 0.0 2880.0 120.00
MOLNIYA 1-36 ## fig 12h resonant ecc in 0.7 to 0.715 range

09880U 77021A 06176.56157475 .00000421 00000-0 10000-3 0 9814

09880 64.5968 349.3786 7069051 270.0229 16.3320 2.00813614112380 0.0 2880.0 120.00
SMS 1 AKM # show the integrator problem with gsfc ver

09998U 74033F 05148.79417928 -.00000112 00000-0 00000+0 O 4480

09998 9.4958 313.1750 0270971 327.5225 30.8097 1.16186785 45878 -1440.0 -720.00 60.0

# Original STR#3 SDP4 test
11801U 80230.29629788 .01431103 00000-0 14311-1 13
11801 46.7916 230.4354 7318036 47.4722 10.4117 2.28537848 13 0.0 1440.0 360.00

EUTELSAT 1-F1 (ECS1)## fig lyddane choice in GSFC at 2080 min
14128U 830582 06176.02844893 -.00000158 00000-0 10000-3 0 9627
14128 11.4384 35.2134 0011562 26.4582 333.5652 0.98870114 46093 0.0 2880.0 120.00
SL-6 R/B(2) # Deep space, perigee = 82.48 (<98) for
# s4 > 20 mod
16925U 86065D 06151.67415771 .02550794 -30915-6 18784-3 0 4486

16925 62.0906 295.0239 5596327 245.1593 47.9690 4.88511875148616 0.0 1440.0 120.00
SL-12 R/B # Shows Lyddane choice at 1860 and 4700 min

20413U 83020D 05363.79166667 .00000000 00000-0 00000+0 O 7041

20413 12.3514 187.4253 7864447 196.3027 356.5478 0.24690082 7978 1440.0 4320.0 120.00
MOLNIYA 1-83 # 12h resonant, ecc > 0.715 (negative BSTAR)

21897U0 92011A 06176.02341244 -.00001273 00000-0 -13525-3 0 3044

21897 62.1749 198.0096 7421690 253.0462 20.1561 2.01269994104880 0.0 2880.0 120.00
SL-6 R/B(2) # last tle given, decayed 2006-04-04, day 94

223120 93002D 06094.46235912 .99999999 81888-5 49949-3 0 3953

22312 62.1486 77.4698 0308723 267.9229 88.7392 15.95744531 98783 54.2028672 1440.0 20.00
SL-6 R/B(2) # 12h resonant ecc in the > 0.715 range

22674U 93035D 06176.55909107 .00002121 00000-0 29868-3 0 6569

22674 63.5035 354.4452 7541712 253.3264 18.7754 1.96679808 93877 0.0 2880.0 120.00
ARIANE 44L+ R/B # Lyddane bug at <= 70 min for atan2(),

# no quadrant fix
23177U 94040C 06175.45752052 .00000386 00000-0 76590-3 0 95

23177 7.0496 179.8238 7258491 296.0482 8.3061 2.25906668 97438 0.0 1440.0 120.00
WIND # STR#3 Kepler failes past about 200 min

23333U 94071A 94305.49999999 -.00172956 26967-3 10000-3 0 15

23333 28.7490 2.3720 9728298 30.4360 1.3500 0.07309491 70 0.0 1600.0 120.00
ARIANE 42P+3 R/B ## fig Lyddane bug at > 280.5 min for AcTan()

23599U 95029B 06171.76535463 .00085586 12891-6 12956-2 0 2905

23599 6.9327 0.2849 5782022 274.4436 25.2425 4.47796565123555 0.0 720.0 20.00
ITALSAT 2 # 24h resonant GEO, inclination > 3 deg

24208U 96044A 06177.04061740 -.00000094 00000-0 10000-3 0 1600

24208 3.8536 80.0121 0026640 311.0977 48.3000 1.00778054 36119 0.0 1440.0 120.00
AMC-4 ## fig low incl, show incl shift with

## gsfc version from 240 to 1440 min
25954U 99060A 04039.68057285 -.00000108 00000-0 00000-0 O 6847
25954 0.0004 243.8136 0001765 15.5294 22.7134 1.00271289 15615 -1440.0 1440.0 120.00
INTELSAT 902 # negative incl at 9313 min then
# 270 deg Lyddane bug at 37606 min
26900U 01039A 06106.74503247 .00000045 00000-0 10000-3 O 8290

26900 0.0164 266.5378 0003319 86.1794 182.2590 1.00273847 16981 9300.00 9400.00 60.00
COSMOS 1024 DEB # 12h resonant ecc in 0.5 to 0.65 range

26975U 78066F 06174.85818871 .00000620 00000-0 10000-3 0 6809

26975 68.4714 236.1303 5602877 123.7484 302.5767 2.05657553 67521 0.0 2880.0 120.00
CBERS 2 # Near Earth, ecc = 8.84E-5 (< 1.0e-4)

# drop certain normal drag terms
28057U 03049A 06177.78615833 .00000060 00000-0 35940-4 0 1836

P #HEF OPRPHFENORPFEHFDODRLHFEHENORLHFENODRHFENORLHFEODRHFEHFEORL,FENORPFHFENODRL,FENDRHFENORL,HFHFNOERLFEORFNOERFDNDREHFDNDEREFEDNDREHFFHDNDREFHFDNDPE 3
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FNOR FNOPRPFHFHFENDRPRFDNORFHFENOEPEFHFHFNOREFDDREFHEDDREFHED

28057 98.4283

247.6961 0000884 88.1964 271.9322 14.35478080140550 0.0

NAVSTAR 53 (USA 175)# 12h non-resonant GPS (ecc < 0.5 ecc)

28129U 03058A

28129 54.7298
COSMOS 2405

28350U 04020A

28350 64.9977
H-2 R/B

28623U 05006B

28623 28.5200
XM-3

28626U 05008A
28626 0.0019
MINOTAUR R/B

28872U 05037B
28872 96.4736
SL-14 DEB
29141U 85108AA
29141 82.4288
SL-12 DEB

29238U 06022G

29238 51.5595
88888U
88888 72.8435

06175.57071136 -.00000104 00000-0 10000-3 O 459
324.8098 0048506 266.2640 93.1663 2.00562768 18443 0.0
# Near Earth, perigee = 127.20 (< 156) s4 mod

06167.21788666 .16154492 76267-5 18678-3 0 8894
345.6130 0024870 260.7578 99.9590 16.47856722116490 0.0
# Deep space, perigee = 135.75 (<156) s4 mod
06177.81079184 .00637644 69054-6 96390-3 0 6000
114.9834 6249053 170.2550 212.8965 3.79477162 12753 0.0
# 24h resonant geo, incl < 3 deg goes
# negative around 1130 min
06176.46683397 -.00000205 00000-0 10000-3 0 2190
286.9433 0000335 13.7918 55.6504 1.00270176 4891 0.0
# Sub-orbital case - Decayed 2005-11-29
# (perigee = -51km), lost in 50 minutes
05333.02012661 .25992681 00000-0 24476-3 0 1534

157.9986 0303955 244.0492 110.6523 16.46015938 10708 0.0
# Last stage of decay - lost in under 420 min
06170.26783845 .99999999 00000-0 13519-0 O 718
273.4882 0015848 277.2124 83.9133 15.93343074 6828 0.0
# Near Earth, perigee = 212.24 < 220
# simplified drag eq
06177.28732010 .00766286 10823-4 13334-2 0 101
213.7903 0202579 95.2503 267.9010 15.73823839 1061 0.0
# Original STR#3 SGP4 test
80275.98708465 .00073094 13844-3 66816-4 0 87
115.9689 0086731 52.6988 110.5714 16.05824518 1058 0.0
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TCPPVER.OUT —

The results are given below for the verification TLE data in Appendix D. Note that this version includes the results of the Lyddane choice using the perturbed
inclination as indicated in the GSFC code, and also uses the WGS-72 constants. There is also a

conversion with minutes from epoch and UTC.

Appendix E — Test Case Results Listing

“true” time reference at the end of each line to facilitate the

Min from epoch position x km position y km position z km vel km/s vel km/s vel km/s year mon day hr min sec
5 xx
0.00000000 7022.46529266 -1400.08296755 0.03995155 1.893841015 6.405893759 4.534807250
360.00000000 -7154.03120202 -3783.17682504 -3536.19412294 4.741887409 -4.151817765 -2.093935425 2000 6 28 0:50:19.733571
720.00000000 -7134.59340119 6531.68641334 3260.27186483 -4.113793027 -2.911922039 -2.557327851 2000 6 28 6:50:19.733571
1080.00000000 5568.53901181 4492.06992591 3863.87641983 -4.209106476 5.159719888 2.744852980 2000 6 28 12:50:19.733571
1440.00000000 -938.55923943 -6268.18748831 -4294.02924751 7.536105209 -0.427127707 0.989878080 2000 6 28 18:50:19.733571
1800.00000000 -9680.56121728 2802.47771354 124.10688038 -0.905874102 -4.659467970 -3.227347517 2000 6 29 0:50:19.733571
2160.00000000 190.19796988 7746.96653614 5110.00675412 -6.112325142 1.527008184 -0.139152358 2000 6 29 6:50:19.733571
2520.00000000 5579.55640116 -3995.61396789 -1518.82108966 4.767927483 5.123185301 4.276837355 2000 6 29 12:50:19.733571
2880.00000000 -8650.73082219 -1914.93811525 -3007.03603443 3.067165127 -4.828384068 -2.515322836 2000 6 29 18:50:19.733571
3240.00000000 -5429.79204164 7574.36493792 3747.39305236 -4.999442110 -1.800561422 -2.229392830 2000 6 30 0:50:19.733571
3600.00000000 6759.04583722 2001.58198220 2783.55192533 -2.180993947 6.402085603 3.644723952 2000 6 30 6:50:19.733571
3960.00000000 -3791.44531559 -5712.95617894 -4533.48630714 6.668817493 -2.516382327 -0.082384354 2000 6 30 12:50:19.733571
4320.00000000 -9060.47373569 4658.70952502 813.68673153 -2.232832783 -4.110453490 -3.157345433 2000 6 30 18:50:19.733571
4632 xx
0.00000000 2334.11450085 -41920.44035349 -0.03867437 2.826321032 -0.065091664 0.570936053
-5184.00000000 -29020.02587128 13819.84419063 -5713.33679183 -1.768068390 -3.235371192 -0.395206135 2004 1 28 7:27:25.308584
-5064.00000000 -32982.56870101 -11125.54996609 -6803.28472771 0.617446996 -3.379240041 0.085954707 2004 1 28 9:27:25.308597
-4944.00000000 -22097.68730513 -31583.13829284 -4836.34329328 2.230597499 -2.166594667 0.426443070 2004 1 28 11:27:25.308611
-4896.00000000 -15129.94694545 -36907.74526221 -3487.56256701 2.581167187 -1.524204737 0.504805763 2004 1 28 12:15:25.308600
6251 xx
0.00000000 3988.31022699 5498.96657235 0.90055879 -3.290032738 2.357652820 6.496623475
120.00000000 -3935.69800083 409.10980837 5471.33577327 -3.374784183 -6.635211043 -1.942056221 2006 6 25 21:46:43.980124
240.00000000 -1675.12766915 -5683.30432352 -3286.21510937 5.282496925 1.508674259 -5.354872978 2006 6 25 23:46:43.980097
360.00000000 4993.62642836 2890.54969900 -3600.40145627 0.347333429 5.707031557 5.070699638 2006 6 26 1:46:43.980111
480.00000000 -1115.07959514 4015.11691491 5326.99727718 -5.524279443 -4.765738774 2.402255961 2006 6 26 3:46:43.980124
600.00000000 -4329.10008198 -5176.70287935 409.65313857 2.858408303 -2.933091792 -6.509690397 2006 6 26 5:46:43.980097
720.00000000 3692.60030028 -976.24265255 -5623.36447493 3.897257243 6.415554948 1.429112190 2006 6 26 7:46:43.980111
840.00000000 2301.83510037 5723.92394553 2814.61514580 -5.110924966 -0.764510559 5.662120145 2006 6 26 9:46:43.980124
960.00000000 -4990.91637950 -2303.42547880 3920.86335598 -0.993439372 -5.967458360 -4.759110856 2006 6 26 11:46:43.980097
1080.00000000 642.27769977 -4332.89821901 -5183.31523910 5.720542579 4.216573838 -2.846576139 2006 6 26 13:46:43.980111
1200.00000000 4719.78335752 4798.06938996 -943.58851062 -2.294860662 3.492499389 6.408334723 2006 6 26 15:46:43.980124
1320.00000000 -3299.16993602 1576.83168320 5678.67840638 -4.460347074 -6.202025196 -0.885874586 2006 6 26 17:46:43.980097
1440.00000000 -2777.14682335 -5663.16031708 -2462.54889123 4.915493146 0.123328992 -5.896495091 2006 6 26 19:46:43.980111
1560.00000000 4992.31573893 1716.62356770 -4287.86065581 1.640717189 6.071570434 4.338797931 2006 6 26 21:46:43.980124
1680.00000000 -8.22384755 4662.21521668 4905.66411857 -5.891011274 -3.593173872 3.365100460 2006 6 26 23:46:43.980097
1800.00000000 -4966.20137963 -4379.59155037 1349.33347502 1.763172581 -3.981456387 -6.343279443 2006 6 27 1:46:43.980111
1920.00000000 2954.49390331 -2080.65984650 -5754.75038057 4.895893306 5.858184322 0.375474825 2006 6 27 3:46:43.980124
2040.00000000 3363.28794321 5559.55841180 1956.05542266 -4.587378863 0.591943403 6.107838605 2006 6 27 5:46:43.980097
2160.00000000 -4856.66780070 -1107.03450192 4557.21258241 -2.304158557 -6.186437070 -3.956549542 2006 6 27 7:46:43.980111
2280.00000000 -497.84480071 -4863.46005312 -4700.81211217 5.960065407 2.996683369 -3.767123329 2006 6 27 9:46:43.980124
2400.00000000 5241.61936096 3910.75960683 -1857.93473952 -1.124834806 4.406213160 6.148161299 2006 6 27 11:46:43.980097
2520.00000000 -2451.38045953 2610.60463261 5729.79022069 -5.366560525 -5.500855666 0.187958716 2006 6 27 13:46:43.980111
2640.00000000 -3791.87520638 -5378.82851382 -1575.82737930 4.266273592 -1.199162551 -6.276154080 2006 6 27 15:46:43.980124
2760.00000000 4730.53958356 524.05006433 -4857.29369725 2.918056288 6.135412849 3.495115636 2006 6 27 17:46:43.980097
2880.00000000 1159.27802897 5056.60175495 4353.49418579 -5.968060341 -2.314790406 4.230722669 2006 6 27 19:46:43.980111
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8195 xx

0.00000000
120.00000000
240.00000000
360.00000000
480.00000000
600.00000000
720.00000000
840.00000000
960.00000000

1080.00000000
1200.00000000
1320.00000000
1440.00000000
1560.00000000
1680.00000000
1800.00000000
1920.00000000
2040.00000000
2160.00000000
2280.00000000
2400.00000000
2520.00000000
2640.00000000
2760.00000000
2880.00000000

9880 xx

0.00000000
120.00000000
240.00000000
360.00000000
480.00000000
600.00000000
720.00000000
840.00000000
960.00000000

1080.00000000
1200.00000000
1320.00000000
1440.00000000
1560.00000000
1680.00000000
1800.00000000
1920.00000000
2040.00000000
2160.00000000
2280.00000000
2400.00000000
2520.00000000
2640.00000000
2760.00000000
2880.00000000

9998 =xx

0.00000000
-1440.00000000
-1380.00000000
-1320.00000000
-1260.00000000
-1200.00000000

2349.89483350
15223.91713658
19752.78050009
19089.29762968
13829.66070574

3333.05838525

2622.13222207
15320.56770017
19769.70267785
19048.56201523
13729.19205837

3148.86165643

2890.80638268
15415.98410712
19786.00618538
19007.28688729
13627.93015254

2963.26486560

3155.85126036
15510.15191770
19801.67198812
18965.46529379
13525.88227400

2776.30574260

3417.20931586

13020.06750784
19190.32482476
11332.67806218
328.74217398
-10684.90590680
-17069.78000550
13725.09398980
19089.63879226
11106.41248373
72.40958621
-10905.89252576
-17044.61207568
14369.90303735
18983.96210441
10878.79336704
-184.03743100
-11125.12138631
-17004.43272827
14960.06492693
18873.46347257
10649.86857581
-440.53459323
-11342.45028909
-16948.06005711
15500.53445068

25532.98947267
-11362.18265118
309.25349929
11949.04009077
22400.45329336
30640.84752458

-14785.93811562
-17852.95881713
-8600.07130962
3107.89495018
13977.39999817
18395.31728674
-15125.15464924
-17777.32564586
-8458.65104454
3260.43223119
14097.70014810
18323.19841703
-15446.43952300
-17699.90714437
-8316.74570581
3412.85948715
14216.95401307
18243.85063641
-15750.70393364
-17620.71002219
-8174.33337167
3565.19666242
14335.15978787
18156.98538451
-16038.79510665

-2449.07193500
9249.01266902
16517.99124008
19554.92047380
18057.15728839
9944.86797897
-2180.70877090
9456.29670247
16627.60874079
19575.08054144
17965.41205111
9635.48491849
-1903.85601062
9661.12233804
16735.31433954
19593.09371709
17870.19488928
9316.53926351
-1620.68430805
9863.57004586
16841.14172669
19608.95524423
17771.44223942
8987.64254880
-1332.90981042

-27244.26327953
-35117.55867813
-36960.43090143
-35127.37816804
-29798.63236321
-21525.02340201

0.02119378
25280.39558224
37522.72921090
39958.14661370
32736.32082508
12738.25031238

474.51048398
25539.53198382
37624.20130236
39923.39143967
32547.52799890
12305.75195578

948.77010176
25796.19644689
37723.74539119
39886.66579255
32356.13706868
11868.25797486

1422.32496953
26050.43525345
37821.38577439
39847.97510998
32162.13236536
11425.73046481

1894.74934058

1.15896030
26596.71345328
38569.78482991
40558.26246145
33158.75253886
13885.91649059

863.29684523
27026.79562883
38727.35140296
40492.12544001
32850.07298244
13212.59462953

1722.15319852
27448.99557732
38879.23434264
40420.40606889
32534.21521208
12526.11883812

2574.96359381
27863.46574735
39025.48035006
40343.10675451
32211.12535721
11826.28284367

3419.72315308

-1.11572421
-5413.62537994
-4198.48007670
-2565.89806468

-677.91515122
1277.34808722

2.721488096
1.079041732
0.238105279
-0.410308034
-1.065096849
-1.882432221
2.688287199
1.064346229
0.229304396
-0.418015536
-1.074511043
-1.895271701
2.654407490
1.049818334
0.220539813
-0.425733568
-1.083991976
-1.908015447
2.620085624
1.035454678
0.211812700
-0.433459945
-1.093537945
-1.920632199
2.585515864

4.247363935
-0.624960193
-1.400974747
-1.593281066
-1.383205997

0.044133354

3.878478111
-0.656614299
-1.409722680
-1.593394604
-1.371396120

0.129244030

3.543393116
-0.687189304
-1.418239666
-1.593348925
-1.359116236

0.220330736

3.238634028
-0.716736981
-1.426527152
-1.593138597
-1.346344015

0.318007297

2.960917974

2.410283885
3.137861261
3.292429375
3.119942784
2.638533344
1.903464941

38

-3.256811655
0.875187372
1.546110924
1.640332277
1.279983299

-0.611623333

-3.078426664
0.892184771
1.550363884
1.639346953
1.270505211

-0.678343847

-2.909344895
0.908822332
1.554518900
1.638276809
1.260802347

-0.747870342

-2.748990396
0.925111006
1.558576937
1.637120585
1.250868256

-0.820370733

-2.596818146

1.597178501
1.324550562
0.710947006
0.126772913
-0.582328999
-1.853448464
1.656846496
1.309112636
0.698582526
0.113655142
-0.601706604
-1.903551430
1.701687176
1.293808870
0.686235750
0.100448697
-0.621413776
-1.955594322
1.734723385
1.278632817
0.673901057
0.087147884
-0.641464291
-2.009693492
1.758331634

2.194175683
-1.011678260
-0.002166046

1.012096444

1.922477736

2.634294312

4.498416672
2.485682813
0.986410447
-0.306873818
-1.760166075
-4.039586549
4.494979530
2.459822414
0.966993056
-0.326094840
-1.785099927
-4.086577951
4.486437362
2.434107329
0.947601047
-0.345353807
-1.810193903
-4.134004492
4.473527039
2.408534465
0.928231880
-0.364653213
-1.835451681
-4.181839232
4.456882556

4.956708611
2.495697637
0.923935636
-0.359627307
-1.744412556
-3.815303117
4.944867241
2.449371941
0.891383535
-0.390556063
-1.782817058
-3.884569098
4.913881358
2.403630759
0.858951848
-0.421571993
-1.821629856
-3.955058575
4.868880331
2.358448535
0.826632332
-0.452680559
-1.860864234
-4.026726648
4.813698638

0.545888526
0.267510059
0.402111628
0.497284100
0.542792913
0.534540934
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2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006

2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006

2005
2005
2005
2005
2005

AT I - - T I T e e - T T I I e e - T I I I W ) )

oA T - T I I I e e - T T I I e = - T I I I W ) )

uuuuu

9:58:18.143649
11:58:18.143622
13:58:18.143636
15:58:18.143649
17:58:18.143622
19:58:18.143636
21:58:18.143649
23:58:18.143622
1:58:18.143636
3:58:18.143649
5:58:18.143622
7:58:18.143636
9:58:18.143649
11:58:18.143622
13:58:18.143636
15:58:18.143649
17:58:18.143622
19:58:18.143636
21:58:18.143649
23:58:18.143622
1:58:18.143636
3:58:18.143649
5:58:18.143622
7:58:18.143636

15:28:40.058423
17:28:40.058396
19:28:40.058410
21:28:40.058423
23:28:40.058396
1:28:40.058410
3:28:40.058423
5:28:40.058396
7:28:40.058410
9:28:40.058423
11:28:40.058396
13:28:40.058410
15:28:40.058423
17:28:40.058396
19:28:40.058410
21:28:40.058423
23:28:40.058396
1:28:40.058410
3:28:40.058423
5:28:40.058396
7:28:40.058410
9:28:40.058423
11:28:40.058396
13:28:40.058410

19:
20:
21:
22:
23:

3:37.089777
3:37.089763
3:37.089790
3:37.089777
3:37.089763



-1140.00000000
-1080.00000000
-1020.00000000
-960.00000000
-900.00000000
-840.00000000
-780.00000000
-720.00000000

11801 xx

0.00000000
360.00000000
720.00000000

1080.00000000
1440.00000000

14128 xx

0.00000000
120.00000000
240.00000000
360.00000000
480.00000000
600.00000000
720.00000000
840.00000000
960.00000000

1080.00000000
1200.00000000
1320.00000000
1440.00000000
1560.00000000
1680.00000000
1800.00000000
1920.00000000
2040.00000000
2160.00000000
2280.00000000
2400.00000000
2520.00000000
2640.00000000
2760.00000000
2880.00000000

16925 xx

0.00000000
120.00000000
240.00000000
360.00000000
480.00000000
600.00000000
720.00000000
840.00000000
960.00000000

1080.00000000
1200.00000000
1320.00000000
1440.00000000

20413 xx

0.00000000

35899.56788035
37732.45438600
36045.92961699
31076.77273609
23341.26015320
13568.39733054

2628.58762420
-8535.81598158

7473.37102491
-3305.22148694
14271.29083858
-9990.05800009

9787.87836256

34747.57932696
18263.33439094
-3023.38840703
-23516.34391907
-37837.46699511
-42243.58460661
-35597.57919549
-19649.19834455
1431.30912160
22136.97605384
37050.15790219
42253.81760945
36366.59147396
20922.12287985
-23.77224182
-20964.17821076
-36401.63863057
-42298.30327543
-37125.62383511
-22250.12320553
-1563.06258654
19531.64069587
35516.53506142
42196.03535976
37802.25393045

5559.11686836
12339.83273749
-3385.00215658
12805.22442200

5682.46556318

7628.94243982
11531.64866625
-3866.98069515
13054.77732721

3496.91064652

9593.07424729
10284.79205084

-984.62035146

25123.29290741

1440.00000000 -151669.05280515
1560.00000000 -157497.71657495
1680.00000000 -162498.32255577

-11152.71158138
288.18821054
11706.61816230
22063.44379776
30460.88002531
36204.45930900
38840.10855897
38171.79073851

428.94748312
32410.84323331
24110.44309009
22717.34212448
33753.32249667

24502.37114079
38159.96004751
41783.13186459
34424.42065671
18028.39727170
-3093.72887774
-23407.91145393
-37606.11623860
-41982.04949668
-35388.19823762
-19537.23321425
1431.81867593
22023.54245720
36826.33975981
41945.51688402
36039.06206172
20669.75286162
-119.03351118
-20879.63058368
-36182.74736487
-42035.43179159
-36905.65470956
-22123.71916638
-1547.32646751
19433.57330019

-11941.04090781
-2771.14447871
7538.13955729
-10258.94667177
7199.30270473
-12852.72097492
-858.27542736
2603.73442786
-8707.92757730
8712.83919778
-13023.75963608
1487.89914169
-5187.03480813

-13225.49966286

-5645.20454550
-11884.99595074
-18062.99733167

3108.72535238
4643.87587495
5746.32646574
6325.93403705
6342.91707895
5806.79548733
4771.91979854
3331.00311285

5828.74846783
-24697.16974954
-4725.76320143
-23616.88515553
-15030.79874625

-1.32832986
4186.18304085
7273.03412906
8448.49867693
7406.25540271
4422.91711801

282.09554383
-3932.71525948
-7120.45467057
-8447.62393401
-7564.83463543
-4699.87621174

-601.47121821
3654.91125886
6950.29891751
8418.91984963
7677.19769359
4922.96388841

879.86971348
-3393.15365183
-6780.02161760
-8395.46892032
-7815.04516935
-5187.39401981
-1198.66634226

-19.41235206
18904.57603433
200.59008616
13780.16486738
15437.67134070
2902.87208981
19086.85993771
-4577.36484577
15537.63259903
12845.81838327
6250.46484931
18824.37381327
-5745.59594144

3249.40351869
-2198.51592118
-1061.44439402

81.00915253

0.997393045

0.016652226
-0.942409065
-1.794027976
-2.469409743
-2.919354203
-3.114400514
-3.043839958

5.107155391
-1.301137319
-0.320504528
-1.016674392
-1.094251553

-1.731642662
-2.744396611
-3.035574793
-2.529120477
-1.360069525
0.163110919
1.641405246
2.689647056
3.035263353
2.587624889
1.461844494
-0.049247334
-1.549681546
-2.644070068
-3.043358385
-2.642795221
-1.549488154
-0.052232768
1.456499841
2.583161226
3.034917506
2.693682199
1.646882125
0.166491841
-1.359930580

3.392116762
-0.871247614
-2.023512865

0.619279224
-2.474365406

2.748131081
-1.170071901

1.157257298

0.229846748
-2.782184997

2.072666376
-1.530335053

4.340271916

0.488683419
-0.869182889
-0.749657961
-0.638980378

39

3.079858548
3.225184410
3.069888941
2.642072476
1.990861658
1.178920217
0.276239109
-0.644462527

6.444680305
-1.151315600
2.679841539
-2.290267981
0.923589906

2.452772615
1.255583260
-0.271656544
-1.726186020
-2.725794686
-3.009980598
-2.506773678
-1.349150016
0.160882945
1.630097136
2.674654256
3.019518960
2.571788981
1.447521216
-0.057417440
-1.546099886
-2.627052310
-3.018152669
-2.619358421
-1.536647628
-0.052702046
1.446079999
2.568416058
3.019211549
2.677830903

-1.946985124
2.600917693
-4.261808344
1.821510542
2.087897336
-0.740084579
2.660311986
-8.453281164
2.119467054
1.552950644
0.278735334
2.663107730
-7.266811354

4.797897593
-0.870759872
-0.864016715
-0.853687105

0.474873291
0.371669746
0.236662980
0.083556127
-0.073612096
-0.221646814
-0.348926401
-0.445808894

-0.186133297
-0.283335823
-2.084054355

0.728923337
-1.522311008

0.608510081
0.528558932
0.309645251
0.009582303
-0.292555349
-0.517584362
-0.606963478
-0.537710698
-0.327993994
-0.032349004
0.272202191
0.505890058
0.607057418
0.548722983
0.346112094
0.052725852
-0.254079652
-0.493827331
-0.604081694
-0.556404555
-0.363395654
-0.075256054
0.232985912
0.480665780
0.602507466

4.250755852
0.581560002
-6.856385787
2.507365975
-2.583767460
4.125307943
0.096005705
-4.683959407
2.063396852
-3.554436131
3.778111073
-0.542205966
1.777668888

-0.961119693
0.156508219
0.157766101
0.158098992
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2005 5 28
2005 5 28
2005 5 28
2005 5 28
2005 5 28
2005 5 28
2005 5 28
2005 5 28
1980 8 17
1980 8 17
1980 8 18
1980 8 18
2006 6 25
2006 6 25
2006 6 25
2006 6 25
2006 6 25
2006 6 25
2006 6 25
2006 6 25
2006 6 25
2006 6 25
2006 6 25
2006 6 26
2006 6 26
2006 6 26
2006 6 26
2006 6 26
2006 6 26
2006 6 26
2006 6 26
2006 6 26
2006 6 26
2006 6 26
2006 6 26
2006 6 27
2006 5 31
2006 5 31
2006 5 31
2006 6 1
2006 6 1
2006 6 1
2006 6 1
2006 6 1
2006 6 1
2006 6 1
2006 6 1
2006 6 1
2005 12 30
2005 12 30
2005 12 30

0: 3:37.089790
1: 3:37.089777
2: 3:37.089763
3: 3:37.089790
4: 3:37.089777
5: 3:37.089763
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4:40:57.987539
6:40:57.987553
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20:40:57.987566
22:40:57.987539
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1800.00000000 -166728.76010920
1920.00000000 -169935.81924592
2040.00000000 -172703.07831815
2160.00000000 -174823.19337404
2280.00000000 -176324.63925775
2400.00000000 -177231.42142458
2520.00000000 -177563.73583232
2640.00000000 -177338.48026483
2760.00000000 -176569.65151461
2880.00000000 -175268.65299073
3000.00000000 -173444.53039609
3120.00000000 -171104.14813653
3240.00000000 -168252.31543803
3360.00000000 -164891.86832887
3480.00000000 -161023.71139825
3600.00000000 -156646.82136726
3720.00000000 -151758.21285737
3840.00000000 -146352.86521283
3960.00000000 -140423.60777444
4080.00000000 -133960.95961851
4200.00000000 -126952.91860010
4320.00000000 -119384.69396454

21897 xx

0.00000000
120.00000000
240.00000000
360.00000000
480.00000000
600.00000000
720.00000000
840.00000000
960.00000000

1080.00000000
1200.00000000
1320.00000000
1440.00000000
1560.00000000
1680.00000000
1800.00000000
1920.00000000
2040.00000000
2160.00000000
2280.00000000
2400.00000000
2520.00000000
2640.00000000
2760.00000000
2880.00000000

22312 xx

0.00000000
54.20286720
74.20286720
94.20286720

114.20286720
134.20286720
154.20286720
174.20286720
194.20286720
214.20286720

-14464.72135182
-19410.46286123
-12686.06129708
-2775.46649359

7679.87883570
14552.40023028
15302.38845375
19289.20066748
12376.21976437
-2400.55677665

8031.66819252
14559.48780372
16036.04980660
19156.71583814
12062.72925552
-2024.96136966

8379.80916204
14527.86748873
16680.12147335
19013.58793448
11745.76155818
-1648.81945070

8723.97652795
14452.25571587
17246.31075678

1442.10132912
306.10478453
3282.82085464
530.82729176
-3191.69170212
-1818.99222465
2515.66448634
2414.52833210
-1877.98944331
-3117.36584395

-24155.99648299
-31767.29787964
-37662.95639336
-43417.55605219
-49018.51958648
-54454.12699497
-59713.14859144
-64784.54644698
-69657.21976255
-74319.77625463
-78760.31560396
-82966.21323591
-86923.89363433
-90618.58225954
-94034.02398835
-97152.15370791
-99952.70098346
102412.70506284
104505.90799734
106201.98091318
107465.51906186
108254.71115372

-4699.19517587
-19143.03318969
-23853.75335645
-22839.64574119
-16780.50760106

-4819.50121461

-5556.43440300
-19427.04851118
-23893.38020018
-22698.62264640
-16455.77592085

-4238.43773813

-6372.51406468
-19698.89059957
-23925.82362911
-22551.56626703
-16123.95878459

-3646.33817120

-7149.80800425
-19958.93766022
-23951.19438627
-22398.50594576
-15784.99406275

-3043.42332645

-7890.72601508

6510.23625449
-5816.45655525
2077.46972905
6426.20790003
170.27219912
-6322.45146616
-2158.83091224
5749.10150922
3862.27848302
-4419.74773864

1222.84128677
2749.01540345
3883.60052579
5003.26312809
6104.85025002
7185.48661607
8242.48472591
9273.27220003
10275.33063459
11246.14177160
12183.13775212
13083.65278381
13944.87382716
14763.78794247
15537.12375729
16261.28409305
16932.26607548
17545.56394158
18096.04807097
18577.81121953
18983.96903112
19306.39581892

0.06681686
23114.05522619
35529.81733588
39494.64689967
34686.21815555
17154.70672449

1095.95088753
23759.45685636
35831.33691892
39482.75964390
34298.94391742
16079.23154704

2183.44834232
24389.29473934
36120.66680667
39458.50085787
33894.75123231
14960.74306518

3257.64227208
25003.81778666
36397.87676581
39421.83273890
33473.35215527
13796.84870805

4315.39410307

8.83145885
-2979.55846068
-5189.17988770

1712.37076793
5956.29807775
681.95247154
-5552.13320544
-1998.59693165
5112.48435863
3840.85960912

-0.535600687
-0.430050431
-0.338004891
-0.250258622
-0.166136613
-0.085067854
-0.006561730
0.069809946
0.144426878
0.217631370
0.289737325
0.361037779
0.431811396
0.502328269
0.572855321
0.643661538
0.715023254
0.787229695
0.860588979
0.935434758
1.012133628
1.091093313

-3.249312013
0.508602237
1.231633829
1.468963405
1.364171080
0.109201591

-2.838224312
0.552495087
1.246701529
1.472582922
1.351357426

-0.026409655

-2.485113443
0.594278133
1.261238798
1.475816889
1.337468254

-0.180035839

-2.178897351
0.634100431
1.275261813
1.478660174
1.322433593

-0.355190169

-1.910968458

-3.475714837
3.950663855
0.097342701

-3.837120395

-1.394956872
3.349795173
2.571979660

-2.681032960

-3.261489804
1.545479182

40

-0.840455444
-0.828904183
-0.810277487
-0.789828672
-0.767706262
-0.744001567
-0.718760309
-0.691990238
-0.663665876
-0.633731091
-0.602099929
-0.568655903
-0.533249797
-0.495695896
-0.455766412
-0.413183688
-0.367609561
-0.318630913
-0.265739987
-0.208307307
-0.145543878
-0.076447479

-3.281032707
-1.156882269
-0.221718202
0.489481769
1.211183897
2.176124494
-3.134231137
-1.112499437
-0.194294048
0.513555654
1.239633234
2.218938770
-2.994994355
-1.069418599
-0.167201856
0.537615764
1.268432783
2.261273515
-2.863927095
-1.027559823
-0.140425132
0.561671519
1.297602497
2.302485443
-2.740945672

0.997262768
3.415332543
7.375135692
-1.252430637
-7.438073471
-1.530140265
7.311930509
3.527589301
-6.026859137
-5.475416581

0.157680857
0.157812340
0.156020035
0.153764903
0.151092242
0.148033403
0.144608676
0.140829236
0.136698419
0.132212491
0.127361017
0.122126889
0.116486022
0.110406725
0.103848688
0.096761524
0.089082727
0.080734873
0.071621768
0.061623110
0.050587007
0.038319282

4.007046940
2.379923455
1.118440291
-0.023972788
-1.385151371
-3.854856805
3.992596326
2.325112654
1.074867282
-0.069306561
-1.448195324
-4.012628896
3.955891272
2.271152044
1.031478939
-0.114887472
-1.512473301
-4.179355590
3.904876943
2.218002685
0.988259441
-0.160733093
-1.578055493
-4.355767077
3.844722726

6.835860345
-5.879974329
2.900196702
6.561602577
-0.557553115
-6.831522765
-1.639865620
6.452951429
3.433254768
-5.207913748
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2005
2005
2005
2005
2005
2005
2005
2005
2005
2005
2005
2005
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006

2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
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Lo N

NN NN NN NS

1: 0: 0.000268
0.000282
0.000255
0.000268
0.000282
0.000255
0.000267
0.000281
0.000254
0.000267
0.000281
0.000254
0.000268
0.000282
0.000255
0.000268
0.000282
0.000255
0.000268
0.000282
0.000255
0.000268

: 0:
7: 0:

11: O:
13: 0:
15: 0:
17: O0:
19: 0:
21: O:
23: 0:
1: O:
3: 0:
5: 0:
7: 0:
9: 0:
11: O0:
13: 0:
15: 0:
17: 0:
19: 0:

2:33:42.834827
4:33:42.834800
6:33:42.834814
8:33:42.834827
10:33:42.834800
12:33:42.834814
14:33:42.834827
16:33:42.834800
18:33:42.834814
20:33:42.834827
22:33:42.834800
0:33:42.834814
2:33:42.834827
4:33:42.834800
6:33:42.834814
8:33:42.834827
10:33:42.834800
12:33:42.834814
14:33:42.834827
16:33:42.834800
18:33:42.834814
20:33:42.834827
22:33:42.834800
0:33:42.834814

12: 0:
12:20:

0.000000
0.000009
12:40: 0.000018
13: 0: 0.000027
13:19:59.999996
13:40: 0.000004
14: 0: 0.000013
14:20: 0.000022
14:40: 0.000031



234.20286720
254.20286720
274.20286720
294.20286720
314.20286720
334.20286720
354.20286720
374.20286720
394.20286720
414.20286720
434.20286720
454.20286720
474.20286720

22674 xx

0.00000000
120.00000000
240.00000000
360.00000000
480.00000000
600.00000000
720.00000000
840.00000000
960.00000000

1080.00000000
1200.00000000
1320.00000000
1440.00000000
1560.00000000
1680.00000000
1800.00000000
1920.00000000
2040.00000000
2160.00000000
2280.00000000
2400.00000000
2520.00000000
2640.00000000
2760.00000000
2880.00000000

23177 xx

0.00000000
120.00000000
240.00000000
360.00000000
480.00000000
600.00000000
720.00000000
840.00000000
960.00000000

1080.00000000
1200.00000000
1320.00000000
1440.00000000

23333 xx

0.00000000
120.00000000
240.00000000
360.00000000

815.32034678
3269.54341810
-10.18099756
-3320.58819584
-1025.48974616
3003.75996128
1731.42816980
-2582.52111460
-2440.56848578
1951.22934391
2886.50939356
-1276.55532182
-3181.54698042

14712.22023280
25418.88807860
21619.59550749
12721.50543331

1272.80760054
10058.43188619
10924.40116466
25332.14851525
22317.71926039
13795.68675885

2515.17145049
-9084.48602106

5647.00909495
25111.63372210
22961.47461641
14841.15301459

3750.70174081
-8027.30219489
-1296.95657092
24738.60364819
23546.85388669
15855.87696303

4976.44933591
-6909.20746210
-7331.65006707

-8801.60046706
-1684.34352858
12325.51410155
22773.66831936
26194.40441089

8893.50573448
-6028.75686537

8313.57299056
20181.29108622
26302.61794569
19365.07045602
-9667.81878780

4021.31438583

-9301.24542292
-44672.91239680
-67053.08885388
-85227.84253168

480.00000000 -100986.00419136

-5231.67692249
3029.00081083
6026.23341453

-1248.42679945

-6366.98945782
-413.85708003
6258.27676925
2024.19020680

-5702.77311877

-3423.59443045
4888.68626216
4553.26898463

-3831.29976506

-1443.81061850

9342.60307989
16125.24978864
19258.96193362
18458.41971897
11906.60764454
-2571.92414170

8398.91099924
15574.82086129
19088.83051008
18746.63776282
12982.62608646
-3293.90518693

7412.55109488
14985.74459578
18876.91439870
18978.57939698
13939.54436955
-2813.69369768

6383.41644019
14358.15602832
18624.05633582
19156.75504042
14790.44707042

-604.17323419

-0.03357557
-31555.95196340
-38982.15046244
-34348.02176606
-19482.94203672

5763.38890561
-25648.99913786
-38146.45710922
-36842.60674073
-25173.39539436

-2700.00490122
-16930.19112642
-36066.09209609

3326.10200382
-6213.11996581
-14994.69685946
-22897.08484471
-30171.19698695

-3760.04690354
-4704.67969713
2643.50518407
5563.06017927
-911.23559153
-5706.15591435
-409.32527982
5647.55650268
1934.81094689
-5121.67808201
-3096.29885989
4406.19787375
4096.80242787

0.83497888
23611.46690798
36396.79365831
40898.47648359
37044.74742696
21739.62097733
-2956.34856294
21783.90654357
35495.77144092
40803.69584385
37864.58088636
24045.63900249
-5425.85235063
19844.25781729
34511.09257381
40626.25901619
38578.11783220
26136.49045637
-5871.09587258
17787.27631900
33441.67679479
40367.13420574
39189.68603184
28034.46732222
-2723.51014575

-0.44522743
3888.99944319
4802.88832275
4228.77407391
2393.84774063
-713.69884164
3164.37107274
4697.80777535
4529.12568218
3084.65309986

317.42727417
2095.87469034
4442.91587411

2318.36441127
-1738.80131727
-5897.99072793
-9722.59184564

-13283.77044765

3.870864200
-0.526711345
-3.953623254
-0.637046974

3.811771909

1.674350083
-3.400497806
-2.530348121

2.731792947

3.249039133
-1.973162139
-3.715146421

1.114159970

4.418965470
0.051284086
-0.963604380
-1.457448565
-1.674863386
-1.245829683
6.071727751
0.222320754
-0.892750056
-1.420277669
-1.668016053
-1.378032363
8.507977176
0.416496290
-0.816711048
-1.380403341
-1.656939412
-1.474476061
9.881929371
0.639556952
-0.734895006
-1.337753546
-1.642084365
-1.545152610
6.168997265

-3.835279101
2.023055719
1.763224157
1.067616787

-0.313732186

-7.037399220
1.883159288
1.905002133
1.326244476
0.245398835

-3.009733018
1.279288285
2.007322354

-8.729303005
-3.719475070
-2.860576613
-2.426469823
-2.147108978

41

4.455588552
6.812157950
-2.616070012
-7.417786044
0.438071490
7.694169068
1.447945424
-7.221719393
-3.350576075
6.465974362
4.877039020
-5.320176914
-6.104773578

1.629592098
1.213127306
0.685454965
0.179955469
-0.436454983
-1.543789125
1.349579102
1.272214306
0.737383381
0.235599456
-0.360431458
-1.373184736
0.414560797
1.332106006
0.789391108
0.290228810
-0.287930881
-1.222693624
-1.978467207
1.392554379
0.841564851
0.343969522
-0.218525096
-1.088119523
-3.634011554

-7.662552175
-2.151306405
-0.102514446
1.352427865
2.808771328
3.022613131
-3.177051976
-0.625883074
0.921916487
2.329974347
3.902496058
-4.736005905
-1.227461376

-0.828225037
-1.336673022
-1.183771565
-1.078592475
-1.000530827

-5.211082191
3.929825087
6.145637500

-2.076120187

-6.829260617
0.316915204
6.904010052
1.438141553

-6.527773339

-3.069806659
5.832414910
4.418210777

-4.829967400

4.115531802
2.429004159
1.177181937
0.071502601
-1.201040990
-3.324449221
3.898430260
2.580527192
1.291738834
0.185517056
-1.052854596
-3.013963835
2.543322806
2.739301737
1.407901804
0.298258120
-0.910825599
-2.737178731
-1.922261005
2.906206324
1.526009909
0.410018472
-0.774148204
-2.487447214
-5.963531682

0.944561323
0.265065778
0.012397139
-0.166956367
-0.346204118
-0.370272416
0.390793162
0.076098187
-0.114527455
-0.287495880
-0.478928582
0.582878255
0.149383897

-0.122314827
-0.621888261
-0.568473909
-0.525341431
-0.491587582
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2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006

2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006

2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
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15: 0:
15:20:

0.000000
0.000009
15:40: 0.000018
16: 0: 0.000027
16:19:59.999996
16:40: 0.000004
17: 0: 0.000013
17:20: 0.000022
17:40: 0.000031
18: 0: 0.000000
18:20: 0.000009
18:40: 0.000018
19: 0: 0.000027

15:25:
17:25:
19:25:
21:25:
23:25:
1:25:
3:25:
5:25:
7:25:
9:25:
11:25:
13:25:
15:25:
17:25:
19:25:
21:25:
23:25:
1:25:
3:25:
5:25:
7:25:
9:25:
11:25:
13:25:

5.468479
5.468452
5.468465
5.468479
5.468452
5.468465
5.468479
5.468452
5.468465
5.468479
5.468452
5.468465
5.468479
5.468452
5.468465
5.468479
5.468452
5.468465
5.468479
5.468452
5.468465
5.468479
5.468452
5.468465

12:58:49.772928
14:58:49.772902
16:58:49.772915
18:58:49.772928
20:58:49.772902
22:58:49.772915
0:58:49.772928
2:58:49.772902
4:58:49.772915
6:58:49.772928
8:58:49.772902
10:58:49.772915

13:59:59.999169
15:59:59.999142
17:59:59.999155
19:59:59.999169



600.00000000 -115093.00686387
720.00000000 -127965.80064891
840.00000000 -139863.28332207
960.00000000 -150960.22978259
1080.00000000 -161381.71414630
1200.00000000 -171221.18736947
1320.00000000 -180550.82888746
1440.00000000 -189427.87533074
1560.00000000 -197898.69401409
1600.00000000 -200638.82986236

23599 xx

0.00000000
20.00000000
40.00000000
60.00000000
80.00000000

100.00000000
120.00000000
140.00000000
160.00000000
180.00000000
200.00000000
220.00000000
240.00000000
260.00000000
280.00000000
300.00000000
320.00000000
340.00000000
360.00000000
380.00000000
400.00000000
420.00000000
440.00000000
460.00000000
480.00000000
500.00000000
520.00000000
540.00000000
560.00000000
580.00000000
600.00000000
620.00000000
640.00000000
660.00000000
680.00000000
700.00000000
720.00000000

24208 xx

0.00000000
120.00000000
240.00000000
360.00000000
480.00000000
600.00000000
720.00000000
840.00000000
960.00000000

1080.00000000

9892.63794341
11931.95642997
11321.71039205
9438.29395675
6872.08634639
3933.37509798
816.64091546
-2334.41705804
-5394.31798039
-8233.35130237
-10693.96497348
-12553.89669904
-13450.20591864
-12686.60437121

-8672.55867753
1153.31498060
9542.79201056
11868.80960100
11376.23941678
9547.70300782
7008.51470263
4082.28135104
969.17978149
-2184.71515444
-5253.42223370
-8108.27961017
-10594.77795556
-12497.32045995
-13467.92475245
-12848.18843590

-9152.70552728

280.38490909

9166.25784315
11794.48942915
11424.30138324

9652.09867350

7140.41945884

7534.10987189
-14289.19940414
-32222.92014955
-41413.95109398
-39402.72251896
-26751.08889828

-6874.77975542
14859.52039042
32553.14863770
41365.67576837

-36962.56316477
-43363.32967165
-49436.45704153
-55227.45413896
-60770.64040903
-66092.76474442
-71215.23290630
-76155.54943344
-80928.29015181
-82484.14969882

35.76144969
7340.74973750
13222.84749156
17688.05450261
20910.11016811
23024.07662542
24118.98675475
24246.86096326
23429.42716149
21661.24480883
18909.88168891
15114.63990716
10190.57904289
4079.31106161
-2827.56823315
-6411.98692060
-533.71253081
6861.59590848
12858.97121366
17421.48570758
20725.47471227
22911.04184601
24071.23673676
24261.21671601
23505.37595671
21800.81688388
19117.80779221
15398.64085906
10560.90147785
4541.21901842
-2344.24950144
-6500.10264018
-1093.12552651
6382.21138354
12494.26088864
17153.84762075
20539.25485336

41266.39266843
39469.05530051
26916.25425799
7055.51656639
-14716.42475223
-32515.13982431
-41530.38329422
-39302.58907247
-26398.88401807
-6298.09965811

-16634.15682929
-19809.90480432
-22836.80438139
-25734.01408879
-28516.26290017
-31195.19847387
-33780.24938270
-36279.19882816
-38698.57972447
-39488.34331447

-1.08228838
886.46365987
1602.40119049
2146.59293402
2539.79945034
2798.25966746
2932.69459428
2949.36448841
2850.86832586
2636.51456118
2302.33707548
1840.93573231
1241.95958736
498.27078614
-342.59644716
-779.87288941
-65.73165428
833.72780602
1563.40660172
2118.56907515
2520.56064289
2786.37568309
2927.31326579
2950.08142825
2857.66120738
2649.72981961
2322.72136979
1869.69983897
1280.78399181
548.53826427
-287.98121970
-790.36092984
-129.49428887
780.88439015
1524.33165488
2090.48038336
2501.21469368

-0.10801028
1428.62838591
2468.59996594
2838.90906671
2441.32678358
1384.38865570

-46.60245459
-1465.02482524
-2485.45866002
-2828.05254033

-1.945446188
-1.789652016
-1.663762568
-1.558730986
-1.468977174
-1.390837596
-1.321788672
-1.260024473
-1.204211888
-1.186748462

3.556643237
0.308329116
-1.151973982
-1.907904054
-2.323995367
-2.542860616
-2.626838010
-2.602259646
-2.474434068
-2.230845533
-1.835912433
-1.212478879
-0.189082511
1.664498211
5.515079852
9.689818102
3.926947087
0.452957852
-1.087665695
-1.876540262
-2.308703599
-2.536665546
-2.626695115
-2.607072866
-2.484424544
-2.247597251
-1.863118484
-1.258130763
-0.271870523
1.494157156
5.127921095
9.779619614
4.316668714
0.604412453
-1.021328075
-1.844516637
-2.293173684

-3.027168008
-2.893205245
-1.973007929
-0.521665080
1.066928187
2.366228869
3.027415087
2.869609883
1.930064459
0.459741276

42

-0.938947736
-0.888278463
-0.845315913
-0.808061065
-0.775190459
-0.745785633
-0.719184752
-0.694896053
-0.672544709
-0.665472422

6.456009375
5.532328972
4.285810871
3.179955046
2.207398462
1.327134966
0.504502763
-0.288058266
-1.074055982
-1.875742344
-2.716169865
-3.619036996
-4.596701971
-5.559889865
-5.551222962
1.388598425
6.459583539
5.632811328
4.374693347
3.253891728
2.270724438
1.383670232
0.557172428
-0.236887607
-1.022255436
-1.821159176
-2.656426668
-3.551583368
-4.520514224
-5.489585384
-5.650383025
0.581815811
6.438636494
5.731729369
4.463448968
3.327522235
2.333507912

0.558848996
-1.045447840
-2.359335071
-3.029172207
-2.878714619
-1.951032799
-0.494671177

1.100123969

2.401574539

3.051680214

-0.464199202
-0.441254468
-0.421548627
-0.404293846
-0.388951810
-0.375140398
-0.362579495
-0.351058133
-0.340413731
-0.337037582

0.783610890
0.672887281
0.521919425
0.387692479
0.269506121
0.162450076
0.062344306
-0.034145135
-0.129868366
-0.227528603
-0.329931880
-0.439970633
-0.559173899
-0.676747779
-0.676360044
0.167868798
0.785686755
0.685262323
0.532207051
0.395810243
0.276138613
0.168153407
0.067536854
-0.029125215
-0.124714444
-0.221925624
-0.323521502
-0.432338888
-0.550016092
-0.667472039
-0.685989008
0.074171345
0.785116609
0.697574333
0.542532698
0.403915232
0.282716311

0.207982755
0.179634249
0.102539376
-0.002066843
-0.105865729
-0.181018498
-0.207337260
-0.177514425
-0.099250520
0.006431872
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1994
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1994
1994
1994
1994
1994
1994
1994
1994

2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
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2006
2006
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2006
2006
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21:59:59.999142
23:59:59.999155
1:59:59.999169
3:59:59.999142
5:59:59.999155
7:59:59.999169
9:59:59.999142
11:59:59.999155
13:59:59.999169
14:39:59.999146

18:42:
19: 2:
19:22:
19:42:
20: 2:
20:22:
20:42:
21: 2:
21:22:
21:42:
22: 2:
22:22:
22:42:
23: 2:
23:22:
23:42:
0: 2:
0:22:
0:42:
1: 2:
1:22:
1:42:
s 2:
2:22:
2:42:
3: 2:
3:22:
3:42:
4: 2:
4:22:
4:42:

6.640047
6.640056
6.640025
6.640034
6.640043
6.640052
6.640020
6.640029
6.640038
6.640047
6.640056
6.640025
6.640034
6.640043
6.640052
6.640020
6.640029
6.640038
6.640047
6.640056
6.640025
6.640034
6.640043
6.640052
6.640020
6.640029
6.640038
6.640047
6.640056
6.640025
6.640034
6.640043
6.640052
6.640020
6.640029
6.640038

5:22:
5:42:

6:22:

2:58:29.343360
4:58:29.343334
6:58:29.343347
8:58:29.343360
10:58:29.343334
12:58:29.343347
14:58:29.343360
16:58:29.343334
18:58:29.343347



1200.00000000
1320.00000000
1440.00000000

25954 xx

0.00000000
-1440.00000000
-1320.00000000
-1200.00000000
-1080.00000000

-960.00000000
-840.00000000
-720.00000000
-600.00000000
-480.00000000
-360.00000000
-240.00000000
-120.00000000
0.00000000
120.00000000
240.00000000
360.00000000
480.00000000
600.00000000
720.00000000
840.00000000
960.00000000
1080.00000000
1200.00000000
1320.00000000
1440.00000000

26900 xx

0.00000000
9300.00000000
9360.00000000
9400.00000000

26975 xx

0.00000000
120.00000000
240.00000000
360.00000000
480.00000000
600.00000000
720.00000000
840.00000000
960.00000000

1080.00000000
1200.00000000
1320.00000000
1440.00000000
1560.00000000
1680.00000000
1800.00000000
1920.00000000
2040.00000000
2160.00000000
2280.00000000
2400.00000000
2520.00000000
2640.00000000

38858.83295070
25701.46068162
5501.08137100

8827.15660472
8118.18519221
27766.34015328
39932.57237973
41341.01365441
31614.99210558
13375.75227587
-8464.89963309
-28026.23406158
-40040.01314363
-41268.43291976
-31377.85317015
-13031.41552688
8827.15660472
28306.85426674
40159.05128805
41192.55903455
31131.69755798
12687.81846530
-9172.23500245
-28562.51093192
-40260.77504549
-41114.14376538
-30890.01512240
-12341.46194020
9533.27750818

-42014.83795787
40968.68133298
42135.66858481
41304.75156132

-14506.92313768
7309.62197950
-3882.62933791
-16785.45507465
-23524.16689356
-22890.23597092
-11646.39698980
7665.76124241
-6369.35388112
-18345.64763145
-23979.74839255
-21921.97167880
-8266.43821031
6286.85464535
-8730.87526788
-19735.81883249
-24232.73847703
-20654.45640708
-4337.15988957
4074.62263523
-10950.23438984
-20952.40702045
-24273.48944134

15523.39314924
33089.42617648
41590.27784405

-41223.00971237
-41368.40537378
-31724.97000557
-13532.60040454
8305.71681955
27907.29155353
39994.27017651
41312.93549892
31507.89995661
13218.00579413
-8632.06859693
-28156.13970334
-40092.33381029
-41223.00971237
-31243.80147394
-12845.39151157
9013.79606759
28445.55681731
40217.83324639
41161.63475527
31022.45987587
12529.11484344
-9338.87194483
-28690.40750792
-40310.06316386
-41065.52390214

3702.34357772
-9905.99156086
1072.99195618
8398.27742944

-21613.56043281
6076.00713664
11960.00543452
-734.79159704
-13629.45124622
-22209.35900155
-19855.44222106
11159.78946577
10204.80073022
-2977.76684430
-15436.44139571
-22852.45147658
-17210.74590112
13809.56328971
8244.63344365
-5191.76593007
-17112.08243255
-23184.54386047
-13410.46817244
14698.07548285
6148.66879447
-7358.71507895
-18637.15546906

-2396.86850752
-1308.68556638
138.32522930

3.63482963
4.11046687
9.93297846
13.12958252
12.84988501
9.16618797
3.05416854
-3.86622919
-9.76047869
13.06594832
12.90661266
-9.32605530
-3.27636660
3.63482963
9.57216891
12.96086316
12.90495666
9.42419238
3.44726249
-3.43575757
-9.39562161
12.84915105
12.87952404
-9.48037212
-3.55833201
3.30756482

-26.67500257
11.84946837
10.83481752

9.74006214

10.05018894
6800.08705263
-25088.14383845
-34300.57085853
-30246.27899200
-16769.91946116
3574.00109607
345.93813117
-27844.52150384
-34394.90760612
-28616.50540218
-13784.85308485
6967.95546070
-6321.60663781
-30039.92372791
-34166.14974143
-26742.88893252
-10611.55144716
9870.45949215
-12248.65327973
-31736.65532865
-33633.06643074
-24633.27702390

-1.140211488
-2.428713821
-3.050691874

3.007087319
3.017696741
2.314236153
0.987382819
-0.605098224
-2.034243523
-2.915424366
-3.011600615
-2.296840160
-0.963328772
0.630042315
2.054021717
2.924657466
3.007087319
2.279137743
0.937265422
-0.656727442
-2.073484842
-2.931721827
-3.000571486
-2.261449202
-0.913097031
0.681588815
2.092989805
2.940537098
2.995596171

-0.269775247

0.722756848
-0.078150602
-0.612515135

2.212943308
1.300543383
-2.146773699
-1.386528125
-0.462846784
0.704351342
2.626712727
-0.584818007
-2.050573276
-1.243589864
-0.294973425
0.945455629
3.082244069
-1.615964016
-1.935622871
-1.097835530
-0.119786184
1.209238113
3.532753095
-2.053824693
-1.809875605
-0.948973031
0.064161440
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2.867567143
1.897381431
0.409203052

0.643701323
0.591994297
2.024903193
2.911942843
3.014378268
2.305014102
0.975119874
-0.617275050
-2.043607595
-2.919827983
-3.009677376
-2.288554158
-0.950541167
0.643701323
2.064316875
2.928448287
3.003543458
2.269770851
0.924962230
-0.668847508
-2.082713897
-2.935933528
-2.998432565
-2.252978152
-0.900219523
0.695200236

-3.061854393
2.989645389
3.074772455
3.014117469

1.159970892
5.322579615
-1.372461491
-1.907762641
-1.586139830
-0.671112594
1.815887329
3.193514161
-1.582940542
-1.892050757
-1.482987916
-0.428940995
2.665881872
1.383135377
-1.724162072
-1.860148418
-1.364365317
-0.144169639
3.772236461
0.203325817
-1.816179062
-1.813594137
-1.228537560

0.110637217
0.184605907
0.207958133

0.000941663
0.000933016
0.000660861
0.000213298
-0.000291034
-0.000718418
-0.000955576
-0.000939664
-0.000674889
-0.000231414
0.000273163
0.000704959
0.000949381
0.000941663
0.000684127
0.000245505
-0.000257479
-0.000691233
-0.000940766
-0.000940101
-0.000689669
-0.000256181
0.000245006
0.000680459
0.000934170
0.000938525

0.000336726
-0.000161261
-0.000380063
-0.000511575

3.020600202
-4.788746312
-2.579382089
-0.220949641

1.269293624

2.432433851

2.960883901
-5.750338922
-2.076075232

0.060372061

1.478255628

2.596964378

2.712555075
-5.358719132
-1.631224738

0.324401050

1.680220468

2.748054938

2.088424247
-4.607867718
-1.233364913

0.573893078

1.875728935
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2004
2004
2004
2004
2004
2004
2004
2004
2004
2004
2004
2004
2004
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20:58:29.343360
22:58:29.343334
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16:20:
18:20:
20:20:
22:20:
0:20:
2:20:
4:20:
6:20:
8:20:
10:20:
12:20:
14:20:
16:20:
18:20:
20:20:
22:20:
0:20:
2:20:
4:20:
6:20:
8:20:
10:20:
12:20:
14:20:
16:20:

1.494254
1.494268
1.494241
1.494254
1.494268
1.494241
1.494254
1.494268
1.494241
1.494254
1.494268
1.494241
1.494254
1.494268
1.494241
1.494254
1.494268
1.494241
1.494254
1.494268
1.494241
1.494254
1.494268
1.494241
1.494254

4:52:50.805439
5:52:50.805426
6:32:50.805444

22:35:47.504573
0:35:47.504546
2:35:47.504559
4:35:47.504573
6:35:47.504546
8:35:47.504559
10:35:47.504573
12:35:47.504546
14:35:47.504559
16:35:47.504573
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2:35:47.504559
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2760.00000000
2880.00000000

28057 xx

0.00000000
120.00000000
240.00000000
360.00000000
480.00000000
600.00000000
720.00000000
840.00000000
960.00000000

1080.00000000
1200.00000000
1320.00000000
1440.00000000
1560.00000000
1680.00000000
1800.00000000
1920.00000000
2040.00000000
2160.00000000
2280.00000000
2400.00000000
2520.00000000
2640.00000000
2760.00000000
2880.00000000

28129 xx

0.00000000
120.00000000
240.00000000
360.00000000
480.00000000
600.00000000
720.00000000
840.00000000
960.00000000

1080.00000000
1200.00000000
1320.00000000
1440.00000000

28350 xx

0.00000000
120.00000000
240.00000000
360.00000000
480.00000000
600.00000000
720.00000000
840.00000000
960.00000000

1080.00000000
1200.00000000
1320.00000000
1440.00000000

28623 xx

0.00000000
120.00000000

-19057.55468077
43.69305308

-2715.28237486
-1816.87920942
1483.17364291
2801.25607157
411.09332812
-2506.52558454
-2090.79884266
1091.80560222
2811.14062300
805.72698304
-2249.59837532
-2311.57375797
688.16056594
2759.94088230
1171.50677137
-1951.43708472
-2475.70722288
281.46097847
2650.33118860
1501.17226597
-1619.73468334
-2581.04202505
-119.22080628
2486.23806726
1788.42334580

21707.46412351
18616.75971861
-3006.50596328
21607.02086957
18453.06134549

3425.11742384
21858.23838148
18360.69935796
-3412.84765409
21758.08331586
18193.41290284

3833.57386848
22002.20074562

6333.08123128
-3990.93845855
-603.55232010
4788.22345627
-6291.84601644
4480.74573428
-446.42460916
-3713.79581831
6058.32017522
-5631.73659006
2776.84991560
1148.04430837
-4527.90871828

-11665.70902324
-11645.35454950

-23148.29322082
-8145.90299207

-6619.26436889
-1835.78762132
5395.21248786
5455.03931333
-1728.99769152
-6628.98655094
-2723.22832193
4809.88229503
5950.65707171
-812.16627907
-6505.84890714
-3560.99112891
4124.87618964
6329.87271798
125.82053748
-6251.71945820
-4331.90569958
3353.51057102
6584.33434851
1066.31132756
-5871.14051991
-5020.05572531
2510.90620488
6708.18210028
1990.50530957

15318.61752390

3166.15177043
18522.20742011
15432.59962630
-3150.83256134
-18514.73232706
15101.51661554

3506.55256762
18646.85269710
15215.44829478
-3493.85876912
18635.77026711
14879.72595593

-1580.82852326
3052.98341907
-2685.13474569
782.56169214
1547.82790772
-3028.55200374
2932.28872588
-1382.66125130
-827.47406722
2623.70953644
-3255.36941953
2486.07343386
-723.29199041

24943.61433357
979.37668356

-7269.38614178
11634.57079913

-0.01341443
6661.07926465
4448.65907172

-3692.12865695
-6935.45548810
-988.07784497
6266.13356576
5172.42897894
-2813.23705389
-7067.58483968
-1956.72365062
5748.16749600
5794.55994449
-1879.19518331
-7061.96626202
-2886.95472355
5117.31234924
6302.87900650
-908.29027134
-6918.71472952
-3760.56587071
4385.92329047
6687.45615459
80.43349581
-6640.59337725

0.13551152
18833.41523210
18941.84078154

206.62470309
18685.83030936
18588.67200557

387.34517048
19024.81678979
18748.00359987

-180.82181406
18877.14757717
18388.68722885
774.32827099

90.69355720
4155.32700629
-5891.70274282
4335.14284621
-453.67116498
-3586.94343641
5759.19389757
-5122.45131136
2104.04678651
1766.49125084
-4837.19667790
5826.34075913
-4527.44608319

25.80543633
5517.89500058

1.500802809
3.780661682

-1.008587273
2.325140071
2.560540387

-0.595095864

-2.935970964

-1.390577189
1.992640665
2.717483546

-0.159662742

-2.798936020

-1.731234729
1.626569751
2.810973665
0.266930672

-2.605687852

-2.024131483
1.235823539
2.840647273
0.675457235

-2.361891904

-2.264093975
0.829668458
2.807575712
1.057274905

-2.074169091

1.304029214
-2.076122016
-3.375452789
-1.306049851

2.106017925

3.394666340

1.247973967
-2.122684184
-3.366815728
-1.250144680

2.153326942

3.384748179

1.191573619

0.714634423
-5.909006188
7.572519907
-4.954509026
-0.308625588
5.320920857
-7.561000245
6.090931626
-1.798403024
-3.216401578
6.748135564
-7.420162295
5.121674217

-1.596228621
3.407743502
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0.195383037
5.105315423

0.422782003
6.655669329
4.039025766
-3.951923117
-6.684085058
-0.556164143
6.337529519
4.805518977
-3.121215491
-6.889265977
-1.528750230
5.890482233
5.479585563
-2.222670878
-6.958489749
-2.475214272
5.322743371
6.047222485
-1.274044972
-6.889669974
-3.376316601
4.645048038
6.496549689
-0.294294027
-6.683381288

1.816904974
2.838457575
1.032680773
-1.817011568
-2.860236337
-1.003072030
1.856017403
2.830618605
0.986039922
-1.856490448
-2.852221264
-0.955363841
1.894561165

3.224246550
-0.876307966
-1.975656726

3.683346464
-3.341538574

1.199736275

1.550975493
-3.512629733

3.787067272
-2.309140959
-0.193044825

2.589456382
-3.909895427

-1.476127961
-5.183094988

2.879031237
0.714401345

7.385272942
2.463394512
-5.736648561
-6.298799125
1.492800886
7.312736468
3.411803080
-5.030019896
-6.775341949
0.472770873
7.096660885
4.293545048
-4.224866316
-7.119390567
-0.556333225
6.741537478
5.091281211
-3.337085992
-7.323921567
-1.574718619
6.254622256
5.789262667
-2.384136661
-7.384689123
-2.562777776

3.161919976
1.586210535
-1.559324534
-3.163725018
-1.586151870
1.610061295
3.161439948
1.537510677
-1.607874972
-3.163774870
-1.536617760
1.658785020
3.159953047

7.083128132
-5.039131404
0.121722605
4.804645839
-7.082659115
5.626350481
-1.374970885
-3.467571746
6.641439744
-6.788609120
4.005718698
0.356350006
-4.500218556

1.126059754
-0.492983277
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25
25

26

18:35:47.504546
20:35:47.504559

20:52:
22:52:
0:52:
2:52:
4:52:
6:52:
8:52:
10:52:
12:52:
14:52:
16:52:
18:52:
20:52:
22:52:
0:52:
2:52:
4:52:
6:52:
8:52:
10:52:
12:52:
14:52:
16:52:
18:52:

4.079709
4.079682
4.079695
4.079709
4.079682
4.079695
4.079709
4.079682
4.079695
4.079709
4.079682
4.079695
4.079709
4.079682
4.079695
4.079709
4.079682
4.079695
4.079709
4.079682
4.079695
4.079709
4.079682
4.079695

15:41:49.461504
17:41:49.461477
19:41:49.461491
21:41:49.461504
23:41:49.461477
1:41:49.461491
3:41:49.461504
5:41:49.461477
7:41:49.461491
9:41:49.461504
11:41:49.461477
13:41:49.461491

7:13:45.407419
9:13:45.407392
11:13:45.407405
13:13:45.407419
15:13:45.407392
17:13:45.407405
19:13:45.407419
21:13:45.407392
23:13:45.407405
1:13:45.407419
3:13:45.407392
5:13:45.407405

21:27:32.414976



29141

240.00000000
360.00000000
480.00000000
600.00000000
720.00000000
840.00000000
960.00000000
1080.00000000
1200.00000000
1320.00000000
1440.00000000

28626 xx

0.00000000
120.00000000
240.00000000
360.00000000
480.00000000
600.00000000
720.00000000
840.00000000
960.00000000

1080.00000000
1200.00000000
1320.00000000
1440.00000000

28872 xx

0.00000000
5.00000000
10.00000000
15.00000000
20.00000000
25.00000000
30.00000000
35.00000000
40.00000000
45.00000000
50.00000000
XX
0.00000000
20.00000000
40.00000000
60.00000000
80.00000000
100.00000000
120.00000000
140.00000000
160.00000000
180.00000000
200.00000000
220.00000000
240.00000000
260.00000000
280.00000000
300.00000000
320.00000000
340.00000000
360.00000000
380.00000000
400.00000000

5619.19252274
-9708.68629714
14394.03162892

7712.09476270
-7558.36739603
15495.61862220

9167.02568222
-5275.80272094
15601.37656145

9301.05872300
-2914.31065828

42080.71852213
37740.00085593
23232.82515008

2467.44290178
18962.59052991
35285.00095313
42103.20138132
37580.31858370
22934.20761876
-2109.90332389
19282.77774728
35480.60990600
42119.96263499

-6131.82730456
-5799.24256134
-4769.05061967
-3175.45157340
-1210.19024802
896.73799533
2896.99663534
4545.78970167
5627.43299371
5984.72318534
5548.43325922

423.99295524
931.80883587
-83.44906141
-958.57681221
-255.25619985
867.44295097
559.16882013
-669.85184205
-784.20708019
406.15811659
916.34911813
-104.02490970
-944.61642849
-187.16569888
884.59720467
446.40767236
-752.24467495
-643.72872525
584.40295819
779.59211765
-403.03155588

19651.44862280
26306.14553149

6659.30765074
15565.72627434
27035.11367962
11550.15897828
10363.65204210
27151.78486008
15641.29379850

3883.15265574
26665.20392758

-2646.86387436
18802.76872802
35187.33981802
42093.60909959
37661.66243819
23085.44402778

2291.06228893
19120.40485693
35381.23870806
42110.71508198
37495.59250598
-22779.03375285

-1925.77567263

2446.52815528
2589.14811119
2420.46580562
1965.98738086
1281.54541294
447.12357305
-440.04738594
-1273.55952872
-1947.94282469
-2371.37691609
-2480.16469245

-6658.12256149
-1017.17852239
6286.20208453
3259.26005348
-5132.59762974
-5038.40402933
3376.30587937
6196.00229484
-1278.53125553
-6607.03115799
-884.08649248
6304.31821405
2872.17248379
-5404.86163467
-4465.74516163
4086.66839620
5588.35473301
-2585.02528560
-6202.35605817
1100.73728301
6399.18000837

-7261.38496765
-1204.29478856

5593.38345858

-7342.40465571
-2385.12054184

5053.83178121

-6871.52576042
-3494.50687216

4217.03266850

-5477.86477017
-4511.09814335

0.81851294
3.45512584
4.98927428
5.15062987
4.04433258
2.08711880
-0.13274964
-2.02755702
-3.16495932
-3.36507889
-2.71861462
-1.52841859
-0.19827433

-253.64211033
2011.54515100
4035.30855837
5582.12569607
6474.68172772
6607.22400507
5954.92675486
4580.16512984
2634.16714930

349.87996209

-1979.24314527

136.13040356
6529.19244527
2223.49837161

-5722.63732467
-4221.27233118

4256.73810533
5699.22017391

-2281.95741770
-6449.19892596

148.33021477
6491.09810362
1960.08739882

-5846.94103362
-3731.97057618

4725.83632696
5093.05596650

-3275.04092573
-5923.01306608

1781.00536019
6311.59529480
-364.12735875

-2.013634213
-1.824164290

1.556522911
-1.646800364
-1.999583791

0.469277336
-0.881621027
-2.129609388
-0.249183123

0.871447821
-2.216261909

0.193105177
-1.371035206
-2.565776620
-3.069341800
-2.746151982
-1.683277908
-0.166974816

1.394367848

2.580167539

3.070935369

2.734400524

1.661210676

0.140521206

-0.144920228
2.325207364
4.464585796
6.049639376
6.920746273
6.983396282
6.211488246
4.656984233
2.464141047

-0.121276950

-2.763269534

1.006373613
-0.298847918
-1.113515974
-0.101225813

1.077709303

0.479447535
-0.906749328
-0.795804092

0.636702380

1.009818575
-0.302163049
-1.108873823
-0.051117686

1.094696706

0.380656028
-0.982424447
-0.661161370

0.807922142

0.869250450
-0.599552305
-1.008861924
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3.106842861
-0.931909596
-4.681657614

4.070313571
-0.393409283
-4.029761073

5.223361510

0.150196480
-3.405238557

6.493677331

0.710067769

3.068688251
2.752105932
1.694193132
0.179976276
-1.382675777
-2.572893625
-3.070104560
-2.740341612
-1.672360951
-0.153808390
1.406220933
2.587414593
3.071541613

0.995100963
-0.047125672
-1.060923209
-1.935777558
-2.580517337
-2.925846168
-2.926949815
-2.568711513
-1.873985161
-0.911981546

0.199691915

0.217309983
7.613891977
2.530970283
-6.735338321
-4.905938824
5.032326446
6.646149867
-2.752114827
-7.595425203
0.231843765
7.669887109
2.259522809
-6.989747076
-4.412110995
5.691554046
6.072965199
-4.016290740
-7.171597814
2.226927514
7.721032522
-0.516636615

0.284235517
1.113419052
0.296912248
-0.109483081
1.078093515
0.679054742
-0.740696297
1.021038089
0.888214503
-1.885545282
0.940691824

0.000438449
0.000336883
0.000163365
-0.000031739
-0.000197633
-0.000296282
-0.000311007
-0.000248591
-0.000134907
-0.000005855
0.000103486
0.000168300
0.000179561

7.658645067
7.296234071
6.070907874
4.148607019
1.748783868
-0.872655207
-3.433959806
-5.638510954
-7.195743032
-7.859613894
-7.482796996

7.662587892
1.226399480
-7.219445568
-3.804851872
5.892521264
5.857126248
-3.852331832
-7.202478520
1.431090802
7.692047844
1.084336909
-7.351147710
-3.413102600
6.326060952
5.303910983
-4.791630682
-6.676898026
3.041115058
7.471676765
-1.275153027
-7.799812287
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23:27:32.414949
1:27:32.414963
3:27:32.414976
5:27:32.414949
7:27:32.414963
9:27:32.414976
11:27:32.414949
13:27:32.414963
15:27:32.414976
17:27:32.414949
19:27:32.414963

13:12:14.455025
15:12:14.454998
17:12:14.455012
19:12:14.455025
21:12:14.454998
23:12:14.455012
1:12:14.455025
3:12:14.454998
5:12:14.455012
7:12:14.455025
9:12:14.454998
11:12:14.455012

0:33:58.939092
0:38:58.939114
0:43:58.939096
0:48:58.939118
0:53:58.939101
0:58:58.939123
1: 3:58.939105
1: 8:58.939127
1:13:58.939109
1:18:58.939092

6:45:41.242102
7: 5:41.242111
7:25:41.242079
7:45:41.242088
8: 5:41.242097
8:25:41.242106
8:45:41.242075
9: 5:41.242084
9:25:41.242093
9:45:41.242102
10: 5:41.242111
10:25:41.242079
10:45:41.242088
11: 5:41.242097
11:25:41.242106
11:45:41.242075
12: 5:41.242084
12:25:41.242093
12:45:41.242102
13: 5:41.242111



420.00000000

29238 xx

0.00000000
120.00000000
240.00000000
360.00000000
480.00000000
600.00000000
720.00000000
840.00000000
960.00000000

1080.00000000
1200.00000000
1320.00000000
1440.00000000

88888 xx

0.00000000
120.00000000
240.00000000
360.00000000
480.00000000
600.00000000
720.00000000
840.00000000
960.00000000

1080.00000000
1200.00000000
1320.00000000
1440.00000000

-852.93910071

-5566.59512819
4474.27915495
1922.17712474

-6157.93546882
2482.64052411
4036.26455287

-5776.81371622

67.98699487
5520.62207038

-4528.05104455

-2356.61468078
6149.65800134

-2629.55011449

2328.96975262
1020.69234558
-3226.54349155
2456.10706533
787.16457349
-3110.97648029
2567.56229695
556.05661780
-2982.47940539
2663.08964352
328.54999674
-2842.06876757
2742.55398832

192.65232023

-3789.75991159
-1447.72286142
5113.01138342
-2094.70798790
-3268.45944555
4827.43347201
-118.64155319
-4456.49213473
3782.38203554
1808.46273329
-4852.51202272
2173.59423261
3400.98040158

-5995.22051338
2286.56260634
3503.70977525

-6071.93855503
2719.91800946
3121.73026235

-6112.50383922
3144.52288201
2712.61663711

-6115.48290885
3557.09490552
2278.42343492

-6079.67009123

-6322.47054784

67.60382245
4619.83927235
-4087.08470203
-1941.63730960
5146.38006190
-2507.99063955
-3641.22052418
4863.71794283
-596.73193161
-4816.99727762
3856.53816184
1369.29488732
-5344.38217129

1719.97297192
-6191.55565927
4532.80979343
1222.89768554
-6043.86662024
4878.15217035
713.96374435
-5855.34636178
5192.32330472
196.40072866
-5626.21427211
5472.33437150
-326.39012649

0.396006194

2.873759367
4.712595822
-6.490769651
0.149900661
6.501814698
-5.184409515
-2.539917207
7.183809420
-3.027966069
-4.808419763
6.688446735
-0.345832777
-6.368548448

2.912073281
-3.746543902
1.000992116
2.679390040
-3.759883839
1.244916056
2.440245751
-3.754660143
1.475566773
2.196121564
-3.731193288
1.691852635
1.948497651
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-7.882964919

-3.825340523
5.668306153
-0.522350158
-5.175192523
4.402848754
1.772280695
-5.622701582
2.418917791
3.754152525
-5.185789345
0.118520958
5.109857861
-3.998963509

-0.983417956
6.467532721
-5.788042888
-0.448290811
6.277439314
-6.124880425
0.098109002
6.044752775
-6.427737014
0.652415093
5.769341172
-6.693216335
1.211072678

-0.289331517

6.023253926
-2.701606741
-3.896001154

5.604262034
-0.350943511
-5.331390168

4.403125405

2.015642495
-6.013506363

2.642104494

4.021854210
-5.842951828

0.577253064

-7.090816210
1.827985678
5.162585826

-7.228792155
2.397897864
4.700576353

-7.319959258
2.957941672
4.202420227

-7.362824152
3.504058731
3.671022712

-7.356193131
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1980
1980
1980
1980
1980
1980
1980
1980
1980
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1980
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NDNMNDNMNNMNNNDMNDNDNMNNDNDDNDDN

13:25:41.242079

8:53:44.456634
10:53:44.456607
12:53:44.456620
14:53:44.456634
16:53:44.456607
18:53:44.456620
20:53:44.456634
22:53:44.456607
0:53:44.456620
2:53:44.456634
4:53:44.456607
6:53:44.456620

1:41:24.113771
3:41:24.113744
5:41:24.113757
7:41:24.113771
9:41:24.113744
11:41:24.113757
13:41:24.113771
15:41:24.113744
17:41:24.113757
19:41:24.113771
21:41:24.11374
23:41:24.113757



Appendix F — Computer Code Listing

Producing computer code in multiple languages is advantageous for testing as many smaller issues were
corrected in this process. Although some features do not exist in each language, an attempt was made to separate the
mathematical theory, the Input/Output, the debugging, and the extra routines for the main program. The debugging
portion is not listed here to reduce the size of the paper, but the full files are available on the website. In addition, the
extra routines (sgp4ext) are not included in this listing as they are primarily intended for use with a main program,
and they vary widely by language. At a future time, it may be advisable to standardize debugging and warning
output routines to handle these cases for integrated programs.

The dependence of each routine is shown below, with parentheses for the name of the file where the routine is
found. This was discussed graphically with Fig. 4 in the paper, and is shown in Fig 12.

SGP4EXT- Misc routines for the main program, math, time, etc. (varies by language for intrinsic math routines)
MAG
CROSS
DOT
ANGLE
NEWTONNU
RV2COE
JIDAY
DAYS2MDHMS
INVIDAY

SGP4UNIT- SGP4 mathematical routines including GST and getting the constants.
DPPER, DSCOM, DSPACE, GSTIME, and GETGRAVCONST have no coupling.
DSINIT

— GETGRAVCONST,
INITL

— GETGRAVCONST

— GSTIME (sgp4ext)
SGP4INIT

— GETGRAVCONST

—INITL

—DSCOM

— DPPER

— DSINIT

— SGP4
SGP4

— GETGRAVCONST

— DSPACE

— DPPER

SGP410- TLE data parser
TWOLINE2RV
— SGPAINIT (sgp4unit)
— DAYS2MDHMS (sgp4ext)
—JDAY (sgp4ext)

TESTCPP- Main driver for test program (last three letters indicate the language)
MAIN
— TWOLINE2RYV (sgp4io)
— SGP4 (sgp4unit)
— INVIDAY (sgp4ext)
— RV2COE (sgp4ext)
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START
TwoLine2RVSGP
L(:ngto 4 SGP4init
input file Loop —
of TLE Days2DMYHMS
data
Loop t :
Pomene || TS - e
each e
SGP4
0 GETGRAVCONST
DSPACE
{ — | DPPER
Function
Locations
SGPA4Ext
Output -
SGP4I0

SGP4U

Figure 12. Program Code Structure. An example flowchart shows the relations between the
various routines in the revised code. Note that the initialization is required a single time after each
new TLE is processed.
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**

curre

A T T O . A T R

changes
20 jul 05 david vallado
fixes for paper, corrections from paul crawford
7 jul 04 david vallado
fix record file and get working
14 may 01 david vallado
2nd edition baseline
97 nasa
internet version
80 norad
original baseline
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <io.h>
#include "sgpdext.h"
#include "sgp4unit.h"
#include "sgp4io.h"

testcpp. cpp

this program tests the sgp4 propagator.

companion code for
fundamentals of astrodynamics and applications
2004
by david vallado

(w) 719-573-2600, email dvallado@agi.com

R R R

nt
14 aug 06 david vallado

update mfe for verification time steps, constants

#define pi 3.14159265358979323846

int main
{
char
char

()

str[l];
infilename[12];

double rol[3];
double vol[3];

FILE

char typerun;

gravconsttype whichconst;

int whichcon;
*infile, *outfile, *outfilee;

——————————————————————— locals -—-—-----————--—-—---———————————

double p, a, ecc, incl, node, argp, nu, m, arglat, truelon, lonper;

double sec, Jjd, rad, tsince, startmfe, stopmfe, deltamin;
int i; int year; int mon; int day; int hr; int min;

char

char

longstrl[1307];
typedef char str3[4];
str3 monstr[13];

char outname[64];
longstr2[1301];

elsetrec satrec;

YAEr—

strcpy (monstr[1] )
strcpy (monstr[2] )
strcpy (monstr([3] )
strcpy (monstr[4] )
strcpy (monstr[5], "May");
strcpy (monstr([6] n")
strcpy (monstr([7] )
strcpy (monstr[8] )
strcpy (monstr[9], )i
strcpy (monstr[10] )
strcpy (monstr[11], "Nov");
strcpy (monstr[12] )

, "Jan"
, "Feb"
, "Mar"
, "Apr"

, "Ju

, "Jul"

, "Aug"
, "Oct"

, "Dec"

//typerun = 'c' compare 1 year of full satcat data

//typerun = 'v' verification run, requires modified elm file with

// start stop and delta times
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printf ("input type of run c,
scanf ( "%c",&typerun );

v \n");

printf ("input which constants 72 84 \n");

scanf( "%i",&whichcon );

if (whichcon == 721) whichconst = wgs720ld;

if (whichcon == 72) whichconst = wgs72;

if (whichcon == 84) whichconst = wgs84;

/] mmmmmmmm setup files for operation --------------—-——-

// input 2-line element set file
printf ("input elset filename: \n");
scanf( "%s",&infilename ) ;
infile fopen (infilename,
if (infile == NULL)

npey

{
printf ("Failed to open file:
return 1;

%s\n", infilename) ;

if c')

fopen("tcppall.out",

(typerun ==
outfile
else
{
if

"Wty

(typerun ==

outfile
else

outfile

v
fopen ("tcppver.out"

W)

fopen("tcpp.out", "w");

}

//
//

dbgfile fopen ("sgpd4test.dbg", "w");
fprintf (dbgfile, "this is the debug output\n\n"

)

(feof (infile)

// ===-=------------- test simple propagation -----------------—-
while

{

test simple propagation
== 0)

do
{
fgets( longstrl,130,infile);
strncpy (str, &longstrl[0], 1);
str[l] = "\0';
} while ((strcmp(str, "#")==0)&&(feof (infile)
if (feof(infile) ==
{
fgets( longstr2,130,infile);
// convert the char string to sgp4 elements
// includes initialization of sgp4
twoline2rv( longstrl, longstr2, typerun, whichconst,
startmfe, stopmfe, deltamin, satrec );
fprintf (outfile, "%1d xx\n", satrec.satnum);
printf (" %$1d\n", satrec.satnum);
// call the propagator to get the initial state vector value
sgp4 (whichconst, satrec, 0.0, ro, vo);

== 0)

// generate .e files

jd satrec.jdsatepoch;

strncpy (outname, &longstrl([2],5);
outname[5]= '.';

outname([6]= 'e';

outname[7]= '\0';

invjday( jd, year,mon,day,hr,min,
outfilee fopen (outname, "w");
fprintf (outfilee, "stk.v.4.3 \n");

)

sec

// must use 4.3...

fprintf (outfilee, "\n");
fprintf (outfilee, "BEGIN Ephemeris \n");
fprintf (outfilee," \n");
fprintf (outfilee, "NumberOfEphemerisPoints 146 \n");
fprintf (outfilee, "ScenarioEpoch %31 %35%51%31:%21:%12.9f \n",day,monstr [mon],
year,hr,min, sec );

fprintf (outfilee, "InterpolationMethod Lagrange \n");
fprintf (outfilee, "InterpolationOrder 5 \n");
fprintf (outfilee, "CentralBody Earth \n");
fprintf (outfilee, "CoordinateSystem J2000 \n");

(

fprintf (outfilee,

fprintf (outfilee,
fprintf (outfilee,
fprintf (outfilee,
fprintf (outfilee,
fprintf (outfilee,

"CoordinateSystemEpoch
monstr [mon],year,hr,min, sec

%31 %$3s%51%31:%21:%12.9f \n",day,
)i

"DistanceUnit Kilometers \n");
"o\n");

"EphemerisTimePosVel \n");

" \n");

%16.8f %16.8f %16.8f %16.8f %12.9f %12.9f %12.9f\n",
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satrec.t,ro[0],ro[1l],ro[2],vo[0],vo[l],vo[2]);

fprintf (outfile, " %16.8f %16.8f %16.8f $16.8f %12.9f $12.9f %12.9f\n",
satrec.t,ro[0],ro[1l],ro[2],vo[0],vo[l],vo[2]);

tsince = startmfe;
// check so the first value isn't written twice
if ( fabs(tsince) > 1.0e-8 )
tsince = tsince - deltamin;
// loop to perform the propagation
while ((tsince < stopmfe) && (satrec.error == 0))
{

tsince = tsince + deltamin;

if (tsince > stopmfe)
tsince = stopmfe;

sgp4 (whichconst, satrec, tsince, ro, vo);
if (satrec.error > 0)
printf ("# *** error: t:= %f *** code = %3d\n",

satrec.t, satrec.error);

if (satrec.error == 0)

{
if ((typerun != 'v') && (typerun != 'c'))
{
jd = satrec.jdsatepoch + tsince/1440.0;
invjday( jd, year,mon,day,hr,min, sec );
fprintf (outfile,
"$51%31%31 %21:%21:%9.6f $16.8f%16.8£%16.8%12.9£%12.9£%12.9f\n",
year,mon,day, hr,min, sec );
// fprintf (outfile, " %16.8f %16.8f %16.8f %16.8f %12.9f %12.9f %12.9f\n",
// tsince,ro[0],ro[1l],ro[2],vo[0],vo[1l],vo([2]);
}
else
{

jd = satrec.jdsatepoch + tsince/1440.0;
invjday( jd, year,mon,day,hr,min, sec );

fprintf (outfilee, " %16.6f $16.8f %16.8f %16.8f %12.9f %$12.9f %12.9f \n",
tsince*60.0,ro[0],ro[1l],ro[2],vo[0],vo[l],vo([2]);

fprintf (outfile, " %16.8f %16.8f %16.8f %16.8f %12.9f %12.9f $12.9f"
tsince,ro[0],ro[1l],ro[2],vo[0],vo[1l],vo([2]);
rv2coe(ro, vo, p, a, ecc, incl, node, argp, nu, m, arglat, truelon, lonper );

fprintf (outfile, " %14.6f %8.6f $10.5f %10.5f $10.5f %10.5f %10.5f %51%31%31
%$21:%21:%9.6£f\n",
a, ecc, incl*rad, node*rad, argp*rad, nu*rad,
m*rad, year,mon,day, hr,min, sec) ;
}
} // if satrec.error == 0
} // while propagating the orbit
} // if not eof

fprintf (outfilee, " END Ephemeris \n");
fclose (outfilee);

} // while through the input file

return 0;
} // end testcpp
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#ifndef _sgpdext_
#define _sgpdext_

/* ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
*

& sgp4ext.h

*

* this file contains extra routines needed for the main test program for sgp4.
* g test these routines are derived from the astro libraries.
*

* companion code for

* fundamentals of astrodynamics and applications
* 2004

* by david vallado

*

* (w) 719-573-2600, email dvallado@agi.com

*

* current

* 14 aug 06 david vallado

* separate from ast libraries

* changes

* 14 aug 06 david vallado

* original baseline

*

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, */

#include <string.h>
#include <math.h>

double sgn
( double
double ;;g
( double[]
void léoss
( double[], double[], doublel]

double dot
: double[] , doublel[]
double ;;gle
: double[],
double[]
void Aéwtonnu
: double ecc, double nu,
double& e0, double& m
void i;2coe
( double[], doublel],
double&, double&, double&, double&, double&, double&,
double&, double&, double&, double&, double&
void ;éay
( int, int, int, int, int, double, double&
void ééys2mdhms
: int, double, int&, int&, int&, int&, double&
void ;;vjday
: double, inté&, int&, int&, int&, int&, double&
)i

#endif
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#ifndef
#define
/*

*

R T

#includ

#includ
#includ

_sgpdio_
_sgpdio_

14 aug 06

changes

15 dec 05

e <math.h>

e "sgpdext.h"
e "sgp4dunit.h"

sgp4io.h;

this file contains miscallaneous functions to read two line element
sets. while not formerly part of the sgp4 mathematical theory, they are
required for practical implemenation.

david vallado
separate functions, misc doc

david vallado
original baseline

_______________________________________________ */

// for several misc routines
// for sgpdinit and getgravconst

/] —mmmm e function decarations -------------"-"-"-------——-

void twoline2rv

(

#endif

char([130], char[130]

char,
gravconsttype,
double&,
double&,
double&,
elsetrec&
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sgp4io.cpp

this file contains miscallaneous functions to read two line element
sets. while not formerly part of the sgp4 mathematical theory, they are
required for practical implemenation.

companion code for
fundamentals of astrodynamics and applications
2004
by david vallado

(w) 719-573-2600, email dvallado@agi.com

B T T N T S A T N

current
14 aug 06 david vallado
separate functions, misc doc
changes
15 dec 05 david vallado
original baseline
________________________________________________________________ */
#include "sgpdext.h" // for several misc routines
#include "sgp4unit.h" // for sgpd4init and getgravconst

#include "sgp4io.h"

#define pi 3.14159265358979323846

*

function twoline2rv

this function converts the two line element set character string data to
variables and initializes the sgp4 variables. several intermediate varaibles
and quantities are determined. note that the result is a structure so multiple
satellites can be processed simaltaneously without having to reinitialize. the
verification mode is an important option that permits quick checks of any
changes to the underlying technical theory. this option works using a
modified tle file in which the start, stop, and delta time values are
included at the end of the second line of data. this only works with the
verification mode. the catalog mode simply propagates from -1440 to 1440 min
from epoch and is useful when performing entire catalog runs.

author : david vallado 719-573-2600 1 mar 2001
inputs :
longstrl - first line of the tle
longstr2 - second line of the tle
typerun - type of run verification 'v', catalog 'c', 'n'
whichconst - which set of constants to use 72, 84
outputs :
satrec - structure containing all the sgp4 satellite information
coupling :
getgravconst-
days2mdhms - conversion of days to month, day, hour, minute, second
jday - convert day month year hour minute second into julian date
sgp4init - initialize the sgp4 variables
references

norad spacetrack report #3
vallado, crawford, hujsak, kelso 2006

R A

void twolinel2rv

(

char longstr1[130], char longstr2[130]
char typerun,
gravconsttype whichconst,

double& startmfe, double& stopmfe, double& deltamin,
elsetrec& satrec

const double rad = 180.0 / pi; // 57.29577951308230
const double xpdotp = 1440.0 / (2.0 *pi); // 229.1831180523293

double sec, radiusearthkm, tumin, xke, j2, 33, j4, j303j2;

int cardnumb, numb, Jj;
long revnum = 0, elnum = 0;
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char classification, intldesg([11];
int year = 0;
int mon, day, hr, minute, nexp, ibexp;

getgravconst ( whichconst, tumin, radiusearthkm, xke, j2, j3, j4, j3o03j2 );
satrec.error = 0;

// set the implied decimal points since doing a formated read
// fixes for bad input data values (missing, ...)
for (j = 10; j <= 15; J++)
if (longstrl[j]
longstrl([j] = '_';

if (longstrl([44] != ' ")
longstrl[43] = longstrl[44];
longstrl[44] = '.';
if (longstrl[7
longstrl[7
if (longstrl[9
longstrl[9
for (j = 45; j <= 49; j++)
if (longstrl([j] == ' ")
longstrl[j] = '0';
if (longstrl([51] == ' ')
longstrl[51] = '0';
if (longstrl([53] ! )
]

1
1
1
1

.

longstrl[52] = longstrl[53];
longstrl[53] = '.';
longstr2[25] = '.';

for (j = 26; j <= 32;

if (longstr2([j]

longstr2[j]

if (longstrl[62] ==

longstrl[62] = '0';
if (longstrl([68] == ' ')
longstrl([68] = '0';

sscanf (longstrl, "$2d %$51d %$1lc %10s %2d %$121f %111f %71f %2d $71f %24 %24 %61d ",
&cardnumb, &satrec.satnum, &classification, intldesg, &satrec.epochyr,
&satrec.epochdays, &satrec.ndot, &satrec.nddot, &nexp, &satrec.bstar,
&ibexp, &numb, &elnum ) ;

if (typerun == 'v') // run for specified times from the file
{
if (longstr2([52] == ' ')
sscanf (longstr2, "$2d %$51d %$91f %91f %81f %91f %91f %101f %6l1ld %$1f %1f %1f \n",
&cardnumb, &satrec.satnum, &satrec.inclo,
&satrec.nodeo, &satrec.ecco, &satrec.argpo, &satrec.mo, &satrec.no,
&revnum, &startmfe, &stopmfe, &deltamin );
else
sscanf (longstr2, "$2d %$51d %$91f %91f %81f %91f %91f %$111f %61d %$1f %1f %1f \n",
&cardnumb, &satrec.satnum, &satrec.inclo,
&satrec.nodeo, &satrec.ecco, &satrec.argpo, &satrec.mo, &satrec.no,
& revnum, &startmfe, &stopmfe, &deltamin );
}
else // simply run -1 day to +1 day or user input times
{
if (longstr2([52] == ' ')
sscanf (longstr2, "$2d %51d %91f %91f %81f %91f %91f %101f %61d \n",
&cardnumb, &satrec.satnum, &satrec.inclo,
&satrec.nodeo, &satrec.ecco, &satrec.argpo, &satrec.mo, &satrec.no,
&revnum ) ;
else
sscanf (longstr2, "$2d %51d %91f %91f %81f %91f %91f %111f %61d \n",
&cardnumb, &satrec.satnum, &satrec.inclo,
&satrec.nodeo, &satrec.ecco, &satrec.argpo, &satrec.mo, &satrec.no,

&revnum ) ;
}
// ---- find no, ndot, nddot ----
satrec.no = satrec.no / xpdotp; //* rad/min

satrec.nddot= satrec.nddot * pow(10.0, nexp);
satrec.bstar= satrec.bstar * pow(10.0, ibexp) ;

// ---- convert to sgp4 units ----
satrec.a = pow( satrec.no*tumin , (-2.0/3.0) );
satrec.ndot = satrec.ndot / (xpdotp*1440.0); //* ? * minperday

satrec.nddot= satrec.nddot / (xpdotp*1440.0*1440);

// ---- find standard orbital elements ----
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satrec.inclo = satrec.inclo / rad;
satrec.nodeo = satrec.nodeo / rad;
satrec.argpo = satrec.argpo / rad;

satrec.mo = gsatrec.mo / rad;
satrec.alta = satrec.a* (1.0 + satrec.ecco*satrec.ecco) - 1.0;
satrec.altp = satrec.a* (1.0 - satrec.ecco*satrec.ecco) - 1.0;

// find sgpdepoch time of element set
// remember that sgp4 uses units of days from 0 jan 1950 (sgpé4epoch)
// and minutes from the epoch (time)

/) mm e e e
// ---- input start stop times manually
if ((typerun != 'v') && (typerun != 'c'))
{
printf ("input start min from epoch \n");
scanf( "%$1f", &startmfe );
printf ("input stop min from epoch \n");
scanf ( "%$1f", &stopmfe );
printf ("input time step in minutes \n");
scanf( "%$1f",&deltamin );
}
// ---- perform complete catalog evaluation
if (typerun == 'c')
{
startmfe = -1440.0;
stopmfe = 1440.0;
deltamin = 20.0;
}
// temp fix for years from 1950-2049 --

correct fix will occur when year is 4-digit in tle
if (satrec.epochyr < 50)
year= satrec.epochyr + 2000;
else
year= satrec.epochyr + 1900;

days2mdhms ( year, satrec.epochdays, mon,day,hr,minute, sec );
jday( year,mon,day,hr,minute, sec, satrec.jdsatepoch );

/] -= initialize the orbit at sgpd4epoch --—-————————————————
sgp4init ( whichconst, satrec.satnum, satrec.jdsatepoch-2433281.5, satrec.bstar,
satrec.ecco, satrec.argpo, satrec.inclo, satrec.mo, satrec.no,
satrec.nodeo, satrec);
} // end twoline2rv
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#ifndef _sgpdunit_
#define _sgpdunit_
/* ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*

sgpdunit.h

this file contains the sgp4 procedures. the code was originally

released in the 1980 and 1986 papers. in 1997 and 1998, the updated and

copmbined code (sgp4 and sdp4) was released by nasa on the internet.
seawifs.gsfc.nasa.gov/~seawifsp/src/bobdays/

current
14 aug 06 david vallado
chg lyddane choice back to strn3, constants, fmod,
separate debug and writes, misc doc
changes

26 jul 05 david vallado
fixes for paper
note that each fix is preceded by a
comment with "sgp4fix" and an explanation of
what was changed
14 may 01 david vallado
2nd edition baseline
97 nasa
internet version
80 norad
original baseline

B T T R S

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, */
#include <math.h>
#include <stdio.h>
/] mmmmmm e structure decarations ---------------——--—————————
typedef enum
{
wgs720ld,
wgs72,
wgs84
} gravconsttype;
typedef struct elsetrec
{
long int satnum;
int epochyr, epochtynumrev;
int error;
char init, method;
/* Near Earth */
int isimp;
double aycof , con4dl , ccl , cc4d , cch , d2 , d3 , d4d ,
delmo , eta , argpdot, omgcof , sinmao , t , t2cof, t3cof
tdcof , t5cof , x1lmth2 , x7thml , mdot , nodedot, xlcof , xmcof
nodecf;
/* Deep Space */
int irez;
double d2201 , d2211 , d3210 , d3222 , d4410 , d4422 , d5220 , d5232
ds421 , d5433 , dedt , dell , del2 , del3 , didt , dmdt
dnodt , domdt , e3 , ee2 , peo , pgho , pho , pinco
plo , se2 , se3 , sgh2 , sgh3 , sgh4 , sh2 , sh3
si2 , si3 , sl2 , sl13 , sl4 , gsto , xfact , xgh2
xgh3 , xgh4 , xh2 , xh3 , xi2 , xi3 , x12 , x13
x14 , xlamo , zmol , zZmos , atime , x1i , xni;
double a , altp , alta , epochdays, jdsatepoch , nddot , ndot
bstar , rcse , inclo , nodeo , ecco , argpo , mo
no;

} elsetrec;

[/ mmmm e function decarations -----------—-—-—-———————————
int sgp4init
(

gravconsttype whichconst, const int satn, const double epoch,
const double xbstar, const double xecco, const double xargpo,
const double xinclo, const double xmo, const double xno,

const double xnodeo,
elsetrec& satrec
)i

int sgp4
(
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gravconsttype whichconst,
elsetrec& satrec, double tsince,
double r[], double v[]

)i

double gstime
(
double

)

void getgravconst

(
gravconsttype,
double&,
double&,
double&,
double&,
double&,
double&,
double&

)i

#endif
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sgpdunit.cpp

this file contains the sgp4 procedures. the code was originally

released in the 1980 and 1986 papers. in 1997 and 1998, the updated and

copmbined code (sgp4 and sdp4) was released by nasa on the internet.
seawifs.gsfc.nasa.gov/~seawifsp/src/bobdays/

companion code for
fundamentals of astrodynamics and applications
2004
by david vallado

(w) 719-573-2600, email dvallado@agi.com

current
14 aug 06 david vallado
chg lyddane choice back to strn3, constants, fmod,
separate debug and writes, misc doc
changes

26 jul 05 david vallado
fixes for paper
note that each fix is preceded by a
comment with "sgp4fix" and an explanation of
what was changed
14 may 01 david vallado
2nd edition baseline
97 nasa
internet version
80 norad
original baseline

T T R T S O

________________________________________________________________ */
#include "sgp4unit.h"
const char help = 'n';
FILE *dbgfile;
#define pi 3.14159265358979323846
/¥ —mmmm e ———— local functions - only ever used internally by sgp4 -----—--——-- */
static void dpper
(
double e3, double ee2, double peo, double pgho, double pho,
double pinco, double plo, double se2, double se3, double sgh2,
double sgh3, double sgh4, double sh2, double sh3, double si2,
double si3, double s12, double sl13, double sl4, double t,
double xgh2, double xgh3, double xghi4, double xh2, double xh3,
double xi2, double xi3, double x12, double x13, double x14,
double zmol, double zmos, double inclo,
char init,
double& ep, double& inclp, double& nodep, double& argpp, double& mp
)
static void dscom
(
double epoch, double ep, double argpp, double tc, double inclp,

double nodep, double np,
double& snodm, double& cnodm, double& sinim, double& cosim, double& sinomm,

double& cosomm,double& day, double& e3, double& ee2, double& em,
double& emsqg, double& gam, double& peo, double& pgho, double& pho,
double& pinco, double& plo, double& rtemsqg, double& se2, double& se3,
double& sgh2, double& sgh3, double& sgh4, double& sh2, double& sh3,
double& si2, double& si3, double& sl2, double& sl13, double& sl4,
double& s1, double& s2, double& s3, double& s4, double& s5,
double& s6, double& s7, double& ssl, double& ss2, double& ss3,
double& ss4, double& ss5, double& ssb6, double& ss7, double& szl,
double& sz2, double& sz3, double& szll, double& szl1l2, double& szl13,

double& sz21, double& sz22, double& sz23, double& sz31, double& sz32,
double& sz33, double& xgh2, double& xgh3, double& xgh4, double& xh2,

double& xh3, double& xi12, double& x1i3, double& x12, double& x13,
double& x14, double& nm, double& z1, double& z2, double& z3,
double& z11, double& z12, double& z13, double& z21, double& z22,
double& z23, double& z31, double& z32, double& z33, double& zmol,

double& zmos
)i

static void dsinit

(
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)i

static

(

static

gravconsttype whichconst,

double
double
double
double
double
double
double
double z21,
double eccsq,
double& nm,
int& irez,
double& atime,
double& d4410,
double& d5433,
double& dnodt,
double& xfact,

cosim,
s3,
ss2,
sz3,
sz31,
mo,
xpidot,

void dspace

int irez,
double d2201,
double d4422,
double dedt,
double dmdt,
double t,
double no,
double& atime,
double& mm,

void initl

int satn,

double ecco,
char& method,
double& ainv,

double& cosio2,

double& rp,

double
double
double
double
double
double
double
double
double&
double&

emsq,
s4,
ss3,
szll,
sz33,
mdot,
zl,
z23,
em,
nodem,

double&
double&
double&
double&
double&

d2201,
da422,
dedt,

domdt,
xlamo,

double
double
double
double
double

d2211,
ds5220,
dell,
dnodt,
tc,

double& em,
double& xni,

double
double
double
double
double
double
double z3,

double z31,

double& argpm,

argpo,
s5,
ss4,
sz13,
t,

no,

double&
double&
double&
double&
double&

d2211,
d5220,
didt,
dell,
x1i,

double
double
double
double
double

d3z1o,
d5232,
del2,
domdt,
gsto,

double& argpm,
double& nodem,

gravconsttype whichconst,

double epoch,

double& ao,
double& eccsq,

double inclo,

double& condl,

double& omeosq,

double& rteosq,double& sinio

double
double
double
double
double
double
double zl11,

double z33,

double& inclm,

sl,
sinim,
ssb5,
sz21,
tc,
nodeo,

double&
double&
double&
double&
double&

d3210,
as232,
dmdt,
del2,
xni

double
double
double
double
double

d3222,
ds5421,
del3,

argpo,
xfact,

double& inclm,
double& dndt,

double& no,
double&
double&
double&

cond?2,
posqg,
gsto
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double
double
double
double
double
double
double z13,
double ecco,
double& mm,

s2,

ssl,
szl,
sz23,
gsto,
nodedot,

double&
double&
double&
double&

ds222,
ds421,
dndt,
del3,

double
double
double
double
double

d441o0,
ds5433,
didt,
argpdot,
xlamo,

double& x1i,
double& nm

double& cosio,
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/ K e

*

B procedure dpper

*

* this procedure provides deep space long period periodic contributions

* to the mean elements. by design, these periodics are zero at epoch.

* this used to be dscom which included initialization, but it's really a

* recurring function.

*

* author : david vallado 719-573-2600 28 jun 2005

*

* inputs :

* e3 —

* ee2 -

* peo —

* pgho -

* pho —

* pinco -

* plo —

* se2 , se3 , sgh2, sgh3, sgh4, sh2, sh3, si2, si3, sl2, sl3, sl4 -

* t —

* xh2, xh3, xi2, xi3, x12, x13, x14 -

* zmol -

* Zmos -

* ep - eccentricity 0.0 - 1.0

* inclo - inclination - needed for lyddane modification

* nodep - right ascension of ascending node

* argpp - argument of perigee

* mp - mean anomaly

*

*  outputs :

* ep - eccentricity 0.0 - 1.0

* inclp - inclination

* nodep - right ascension of ascending node

* argpp - argument of perigee

* mp - mean anomaly

*

* locals :

* alfdp -

* betdp -

* cosip , sinip , cosop , sinop ,

* dalf -

* dbet -

* dls -

* f2, f£3 -

* pe —

* pgh —

* ph -

* pinc -

* pl -

* sel , ses , sghl , sghs , shil , shs , sil , sinzf , sis ,

* sll , sls

* xls -

* xnoh -

* Zf -

* Zm -

*

* coupling

* none.

*

* references

* hoots, roehrich, norad spacetrack report #3 1980

* hoots, norad spacetrack report #6 1986

* hoots, schumacher and glover 2004

* vallado, crawford, hujsak, kelso 2006

____________________________________________________________________________ * /
static void dpper
(

double e3, double ee2, double peo, double pgho, double pho,
double pinco, double plo, double se2, double se3, double sgh2,
double sgh3, double sgh4, double sh2, double sh3, double si2,
double si3, double s12, double sl13, double sl4, double t,
double xgh2, double xgh3, double xghi4, double xh2, double xh3,
double xi2, double xi3, double x12, double x13, double x14,
double zmol, double zmos, double inclo,
char init,
double& ep, double& inclp, double& nodep, double& argpp, double& mp
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const double twopi = 2.0 * pi;

char ildm;

double alfdp, betdp, cosip, cosop, dalf, dbet, dls,
£2, £3, pe, pgh, ph, pinc, pl ,
sel, ses, sghl, sghs, shll, shs, sil,
sinip, sinop, sinzf, sis, sll, sls, xls,
xnoh, zf, zm, zel, zes, znl, zns;

/* mmm e mm e constants -—---------------—----————-——— */

zns 1.19459e-5;

zes = 0.01675;

znl = 1.5835218e-4;

zel 0.05490;

/¥ mmmm e calculate time varying periodics ----------- */

zm = zmos + zns * t;

// be sure that the initial call has time set to zero

if (init == 'y')
Zm = zZmos;

zf = zm + 2.0 * zes * sin(zm);

sinzf = sin(zf);

£f2 = 0.5 * sinzf * sinzf - 0.25;

£3 = -0.5 * sinzf * cos(zf);

ses = se2* f2 + se3 * £3;

sis = si2 * f2 + si3 * f3;

sls = sl12 * f2 + s13 * f3 + sl4 * sinzf;

sghs = sgh2 * f2 + sgh3 * £3 + sgh4 * sinzf;

shs = sh2 * £2 + sh3 * £3;

zm = zmol + znl * t;

if (init == 'y"')
zm = zmol;

zf =zm + 2.0 * zel * sin(zm);

sinzf = sin(zf);

£2 = 0.5 * sinzf * sinzf - 0.25;

f3 = -0.5 * sinzf * cos(zf);

sel = ee2 * f2 + e3 * f3;

sil = xi2 * f2 + xi3 * £3;

s11 = x12 * f2 + x13 * f3 + x14 * sinzf;

sghl = xgh2 * f2 + xgh3 * f3 + xgh4 * sinzf;
shll = xh2 * f2 + xh3 * f3;

pe = ses + sel;
pinc = sis + sil;
pl = sls + sll;
pgh = sghs + sghl;
ph = shs + shll;
if (init == 'n"')

{

// 0.2 rad = 11.45916 deg
// sgpdfix for lyddane choice
// add next three lines to set up use of original inclination per strn3 ver

ildm = 'y';

if (inclo >= 0.2)
ildm = 'n';

pe = pe - peo;

pinc = pinc - pinco;

pl = pl - plo;

pgh = pgh - pgho;

ph = ph - pho;

inclp = inclp + pinc;

ep = €ep + pe;

sinip = sin(inclp);
cosip = cos(inclp);

[* mmmm e apply periodics directly -----——-—-——---- */
// sgpdfix for lyddane choice
// strn3 used original inclination - this is technically feasible
// gsfc used perturbed inclination - also technically feasible
// probably best to readjust the 0.2 limit value and limit discontinuity
// use next line for original strn3 approach and original inclination
// 1f (inclo >= 0.2)
// use next line for gsfc version and perturbed inclination
if (inclp >= 0.2)
{

ph = ph / sinip;

pgh = pgh - cosip * ph;

argpp = argpp + bgh;

nodep = nodep + ph;

mp = mp + pl;
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else

{

/* ---- apply periodics with lyddane modification ---- */
sinop = sin(nodep) ;

cosop = cos(nodep) ;

alfdp = sinip * sinop;

betdp = sinip * cosop;

dalf = ph * cosop + pinc * cosip * sinop;

dbet = -ph * sinop + pinc * cosip * cosop;

alfdp = alfdp + dalf;
betdp = betdp + dbet;

nodep = fmod(nodep, twopi) ;

x1ls = mp + argpp + cosip * nodep;

dls = pl + pgh - pinc * nodep * sinip;
x1ls = xls + dls;

xnoh = nodep;

nodep = atan2(alfdp, betdp);

if (fabs(xnoh - nodep) > pi)
if (nodep < xnoh)
nodep = nodep + twopi;

else
nodep = nodep - twopi;
mp =mp + pl;
argpp = xls - mp - cosip * nodep;
}
} // if init == 'n'

//#include "debugl.cpp"
} // end dpper
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static void dscom

(

double epoch, double ep, double argpp, double tc,
double nodep, double np,

double& snodm, double& cnodm, double& sinim, double& cosim,
double& cosomm,double& day, double& e3, double& ee2,
double& emsq, double& gam, double& peo, double& pgho,
double& pinco, double& plo, double& rtemsqg, double& se2,
double& sgh2, double& sgh3, double& sgh4, double& sh2,
double& si2, double& si3, double& sl2, double& sl13,
double& s1, double& s2, double& s3, double& s4,
double& s6, double& s7, double& ssl, double& ss2,
double& ss4, double& ss5, double& ssb6, double& ss7,

64

/ K e e
*

B procedure dscom

*

* this procedure provides deep space common items used by both the secular
* and periodics subroutines. input is provided as shown. this routine
* used to be called dpper, but the functions inside weren't well organized.
*

* author david vallado 719-573-2600 28 jun 2005
*

* inputs

* epoch -

* ep - eccentricity

* argpp - argument of perigee

* tc —

* inclp - inclination

* nodep - right ascension of ascending node

* np - mean motion

*

* outputs :

* sinim , cosim , sinomm , cosomm , snodm , cnodm

* day —

* e3 -

* ee2 -

* em - eccentricity

* emsq - eccentricity squared

* gam -

* peo -

* pgho -

* pho -

* pinco -

* plo -

* rtemsq -

* se2, se3 -

* sgh2, sgh3, sgh4 -

* sh2, sh3, si2, si3, sl2, sl3, sl4 -

* sl, s2, s3, s4, s5, s6, s7 -

* ssl, ss2, ss3, ss4, ssb, ss6, ss7, szl, sz2, sz3 -

* szll, szl2, szl1l3, sz2l, sz22, sz23, sz31l, sz32, sz33 -

* xgh2, xgh3, xgh4, xh2, xh3, xi2, xi3, x12, x13, x14 -

* nm - mean motion

* zl, z2, z3, z11, z12, z13, z21, z22, z23, z31, z32, z33 -
* zmol -

* Zmos -

*

* locals :

* al, a2, a3, a4, a5, a6, a7, a8, a9, alo -

* betasqg -

* cc -

* ctem, stem -

* x1l, x2, x3, x4, x5, x6, x7, x8 -

* xnodce -

* xnoi -

* zcosg , zsing , zcosgl , zsingl , zcosh , zsinh , zcoshl , zsinhl
* zcosi , zsini , zcosil , zsinil

* ZX -

* zy -

*

* coupling

* none.

*

* references :

* hoots, roehrich, norad spacetrack report #3 1980

* hoots, norad spacetrack report #6 1986

* hoots, schumacher and glover 2004

* vallado, crawford, hujsak, kelso 2006

double inclp,

double&
double&
double&
double&
double&
double&
double&
double&
double&

sinomm,
em,
pho,
se3,
sh3,
sl4,
s5,
ss3,
szl,
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double& sz2, double& sz3, double& szll, double& szl2,

double& sz21, double& sz22, double& sz23, double& sz31,
double& sz33, double& xgh2, double& xgh3, double& xgh4,
double& xh3, double& xi12, double& x1i3, double& x12,
double& x14, double& nm, double& z1, double& z2,

double& zl11, double& z12, double& z13, double& z21,
double& z23, double& z31, double& z32, double& z33,

double& zmos

[ e constants --------------—-——————

const double zes = 0.01675;

const double zel = 0.05490;

const double clss = 2.9864797e-6;

const double cll = 4.7968065e-7;

const double zsinis = 0.39785416;

const double zcosis = 0.91744867;

const double zcosgs = 0.1945905;

const double zsings = -0.98088458;

const double twopi = 2.0 * pi;

/¥ e local variables ---——-----—-—---—-———————

int 1sflg;

double al , a2 , a3 , a4 , ab , a6 , a7
a8 , a9 , alo , betasqg, cc , ctem , stem ,
x1 , X2 , X3 , x4 , x5 , X6 , x7 ,
x8 , xnodce, xnoi , zcosg , zcosgl, zcosh , zcoshl,
zcosi , zcosil, zsing , zsingl, zsinh , zsinhl, zsini ,
zsinil, zx , ZY;

nm = np;

em = ep;

snodm = sin(nodep) ;

cnodm = cos (nodep) ;

sinomm = sin(argpp) ;

cosomm = cos (argpp) ;

sinim = sin(inclp);

cosim = cos(inclp);

emsq = em * em;

betasq = 1.0 - emsq;

rtemsqg = sqrt(betasq);

/* e initialize lunar solar terms ------------

peo = 0.0;

pinco = 0.0;

plo = 0.0;

pgho = 0.0;

pho = 0.0;

day = epoch + 18261.5 + tc / 1440.0;

xnodce = fmod(4.5236020 - 9.2422029e-4 * day, twopi);

stem = sin(xnodce) ;

ctem = cos (xnodce) ;

zcosil = 0.91375164 - 0.03568096 * ctem;

zsinil = sqgrt(1.0 - zcosil * zcosil);

zsinhl = 0.089683511 * stem / zsinil;

zcoshl = sqgrt (1.0 - zsinhl * zsinhl);

gam = 5.8351514 + 0.0019443680 * day;

zZX = 0.39785416 * stem / zsinil;

zy = zcoshl * ctem + 0.91744867 * zsinhl * stem;

ZX = atan2(zx, zy);:

ZX = gam + zX - xXnodce;

zcosgl = cos(zx);

zsingl = sin(zx);

[ e do solar terms ------------------

ZCOSg = 2ZCOSJS;

zsing = zsings;

zcosli = zcosis;

zsini = zsinis;

zcosh = cnodm;

zsinh = snodm;

cc = clss;

xnoi = 1.0 / nm;

for (lsflg = 1; 1lsflg <= 2; 1lsflg++)

{
al
a3
a7
a8
a9

zcosg * zcosh + zsing * zcosi * zsinh;
-zsing * zcosh + zcosg * zcosi * zsinh;
-zcosg * zsinh + zsing * zcosi * zcosh;
*
*

zsing zsini;
= zsing zsinh + zcosg * zcosi * zcosh;
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double&
double&
double&
double&
double&
double&
double&

sz13,
sz32,
xh2,
x13,
z3,
z22,
zmol,
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alo
a2
a4
ab
a6

x1
x2
x3
x4
x5
x6
x7
x8

z31
z32
z33
zl
z2
z3
z11
z12

z13
z21
222

if
{

zmol =
Zmos =

se2
se3
si2
si3
sl2

= zcosg * zsini;

= cosim * a7 + sinim * a8;

= cosim * a9 + sinim * alO;

= -sinim * a7 + cosim * a8§;

= -sinim * a9 + cosim * alo0;

= al * cosomm + a2 * sinomm;

= a3 * cosomm + a4 * sinomm;

= -al * sinomm + a2 * cosomm;

= -a3 * sinomm + a4 * cosomm;

= ab * sinomm;

= a6 * sinomm;

= ab * cosomm;

= a6 * cosomm;

=12.0 * x1 * x1 - 3.0 * x3 * x3;

=24.0 * x1 * x2 - 6.0 * x3 * x4;

= 12.0 * x2 * x2 - 3.0 * x4 * x4;

= 3.0 * (al * al + a2 * a2) + z31 * emsq;

= 6.0 * (al * a3 + a2 * ad4) + z32 * emsq;

= 3.0 * (a3 * a3 + a4 * ad) + z33 * emsq;

= -6.0 * al * a5 + emsqg * (-24.0 * x1 * x7-6.0 * x3 * x5);
-6.0 * (al * a6 + a3 * a5) + emsqg *

(-24.0 * (x2 * x7 + x1 * x8) - 6.0 * (x3 * x6 + x4 * x5));
= -6.0 * a3 * a6 + emsqg * (-24.0 * x2 * x8 - 6.0 * x4 * x6);
= 6.0 * a2 * a5 + emsqg * (24.0 * x1 * x5 - 6.0 * x3 * x7);

6.0 * (ad * a5 + a2 * a6) + emsqg *

(24.0 * (x2 * x5 + x1 * x6) - 6.0 * (x4 * x7 + x3 * x8));
= 6.0 * a4 * a6 + emsqg * (24.0 * x2 * x6 - 6.0 * x4 * x8);
= z1 + z1 + betasqg * z31;
= z2 + z2 + betasqg * z32;
= z3 + z3 + betasqg * z33;
= cc * xnoij;
= -0.5 * s3 / rtemsq;
= s3 * rtemsq;
= -15.0 * em * s4;
=x1 * x3 + x2 * x4;
= x2 * x3 + x1 * x4;
= x2 * x4 - x1 * x3;

——————————————————————— do lunar terms ------------------- %/
(lsflg == 1)

ssl = sl;

ss2 = s2;

ss3 = s3;

ss4d = s4;

ssb = s5;

ss6 = s6;

ss7 = s7;

szl = zl;

sz2 = z2;

sz3 = z3;

sz1ll = z11;

szl2 = z12;

sz1l3 = z13;

sz21 = z21;

sz22 = z22;

sz23 = z23;

sz31 = z31;

sz32 = z32;

sz33 = z33;

zZcosg = zcosgl;

zsing = zsingl;

zcosl = zcosil;

zsini = zsinil;

zcosh = zcoshl * cnodm + zsinhl * snodm;
zsinh = snodm * zcoshl - cnodm * zsinhl;
cc = cll;

fmod (4.7199672 + 0.22997150
fmod (6.2565837 + 0.017201977 * day, twopi);

* day - gam, twopi);

do solar terms ------------—--——————- */
sl * ss6;
sl * ss7;
s2 * szl2;
s2 * (szl3 - szll);
s3 * s22;
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sl3 = -2.0 * ss3 * (sz3 - szl);

sld = -2.0 * ss3 * (-21.0 - 9.0 * emsq) * zes;
sgh2 = 2.0 * ss4 * sz32;

sgh3 = 2.0 * ss4 * (sz33 - sz31);

sghd4 = -18.0 * ss4 * zes;

sh2 = -2.0 * ss2 * sz22;

sh3 = -2.0 * ss2 * (sz23 - sz2l);

[/F mmm e do lunar terms -------------—--——-———- */
ee2 = 2.0 * sl * s6;

e3 = 2.0 * s1 * g7;

xi2 = 2.0 * s2 * z12;

xi3 = 2.0 * s2 * (z13 - z11);

x12 = -2.0 * 83 * z2;

x13 = -2.0 * 83 * (z3 - zl);

xl4 = -2.0 * s3 * (-21.0 - 9.0 * emsq) * zel;
xgh2 = 2.0 * s4 * z32;

xgh3 = 2.0 * s4 * (z33 - z31);

xgh4d = -18.0 * s4 * zel;

xh2 = -2.0 * s2 * z22;

xh3 = -2.0 * s2 * (z23 - z21);

//#include "debug2.cpp"
} // end dscom
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procedure dsinit

this procedure provides deep space contributions to mean motion dot due
to geopotential resonance with half day and one day orbits.

author : david vallado 719-573-2600 28 jun 2005
inputs :

cosim, sinim-

emsq - eccentricity squared

argpo - argument of perigee

sl, s2, s3, s4, sb -
ssl, ss2, ss3, ss4, ssb -
szl, sz3, szll, szl1l3, sz2l, sz23, sz31l, sz33 -

t - time
tc -
gsto - greenwich sidereal time rad
mo - mean anomaly
mdot - mean anomaly dot (rate)
no - mean motion
nodeo - right ascension of ascending node
nodedot - right ascension of ascending node dot (rate)
xpidot -
z1l, z3, z11, z13, z21, z23, z31, z33 -
eccm - eccentricity
argpm - argument of perigee
inclm - inclination
mm - mean anomaly
xn - mean motion
nodem - right ascension of ascending node
outputs
em - eccentricity
argpm - argument of perigee
inclm - inclination
mm - mean anomaly
nm - mean motion
nodem - right ascension of ascending node
irez - flag for resonance O-none, l-one day, 2-half day
atime -
d2201, d2211, d3210, d3222, d4410, d4422, d5220, 45232, d5421, d5433 -
dedt -
didt -
dmdt -
dndt -
dnodt -
domdt -
dell, del2, del3 -
ses , sghl , sghs , sgs , shl , shs , sis , sls
theta -
xfact -
xlamo -
x11i -
xni
locals :
ainv2 -
aonv -
cosisqg -
eoc -

£220, £221, £311, £321, £322, £330, f441, f442, £522, £523, £542, £543 -
g200, g201, g211, g300, g310, g322, g410, g422, g520, g521, g532, g533 -
sini2 -
temp -
templ -
theta -
xXno2 -

coupling :
getgravconst

references
hoots, roehrich, norad spacetrack report #3 1980
hoots, norad spacetrack report #6 1986
hoots, schumacher and glover 2004
vallado, crawford, hujsak, kelso 2006

T T T A T T T T T A T T I

static void dsinit
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gravconsttype whichconst,

double cosim, double emsq, double argpo, double sl1, double s2,
double s3, double s4, double s5, double sinim, double ssl,
double ss2, double ss3, double ss4, double ss5, double szl,
double sz3, double szl1, double sz13, double sz21, double sz23,
double sz31, double sz33, double t, double tc, double gsto,
double mo, double mdot, double no, double nodeo, double nodedot,
double xpidot, double z1, double z3, double zl11, double z13,
double z21, double z23, double z31, double z33, double ecco,
double eccsqg, double& em, double& argpm, double& inclm, double& mm,
double& nm, double& nodem,

int& irez,

double& atime, double& d2201, double& d2211, double& d3210, double& d3222,
double& d4410, double& d4422, double& d5220, double& d5232, double& d5421,
double& d5433, double& dedt, double& didt, double& dmdt, double& dndt,
double& dnodt, double& domdt, double& dell, double& del2, double& del3,
double& xfact, double& xlamo, double& x1i, double& xni

[* e local variables ---------—=————————————- */
const double twopi = 2.0 * pi;

double ainv2 , aonv=0.0, cosisqg, eoc, f220 , f221 , £311 ,
£321 , £322 , £330 , f441 , f442 , £522 , £523 ,
£542 , £543 , g200 , g201 , g211 , g300 , g310 ,
g322 , g410 , g422 , g520 , g521 , g532 , g533 ,
ses , Sgs , sghl , sghs , shs , shll , sis ,
sini2 , sls , temp , templ , theta , xno2 , g22 ,
g3l , 33 , root22, root44, root54, rptim , root32,
root52, x203 , xke znl , emo zZns , emsqgo,

tumin, radiusearthkm, 32, 33, j4, 3j303j2;

q22 = 1.7891679%e-6;
Q31 = 2.1460748e-6;
g33 = 2.2123015e-7;
root22 = 1.7891679e-6;
rootdd = 7.3636953e-9;
rooth4 = 2.1765803e-9;
rptim = 4.37526908801129966e-3; // this equates to 7.29211514668855e-5 rad/sec
root32 = 3.7393792e-7;
rooth52 = 1.1428639%e-7;
%203 =2.0/ 3.0;
znl = 1.5835218e-4;
zZns = 1.19459%9e-5;

// sgp4fix identify constants and allow alternate values
getgravconst ( whichconst, tumin, radiusearthkm, xke, j2, j3, j4, j3o03j2 );

[* mmmm e deep space initialization ------------ */
irez = 0;
if ((nm < 0.0052359877) && (nm > 0.0034906585))

irez = 1;
if ((nm >= 8.26e-3) && (nm <= 9.24e-3) && (em >= 0.5)

irez = 2;
[/F mmm e do solar terms -----------—-----——- */
ses = ssl * zns * ss5;
sis = ss2 * zns * (szll + szl3);
sls = -zns * ss3 * (szl + sz3 - 14.0 - 6.0 * emsq);
sghs = ss4 * zns * (sz31 + sz33 - 6.0);
shs = -zns * ss2 * (sz2l1 + sz23);
// sgp4fix for 180 deg incl
if ((inclm < 5.2359877e-2) || (inclm > pi - 5.2359877e-2))

shs = 0.0;
if (sinim != 0.0)
shs = shs / sinim;

sgs = sghs - cosim * shs;
[/ e do lunar terms ------------------ */
dedt = ses + sl * znl * s5;

didt = sis + s2 * znl * (z1ll + z13);

dmdt = sls - znl * s3 * (z1 + z3 - 14.0 - 6.0 * emsq);

sghl = s4 * znl * (z31 + z33 - 6.0);

shll = -znl * s2 * (z21 + z23);

// sgp4fix for 180 deg incl

if ((inclm < 5.2359877e-2) || (inclm > pi - 5.2359877e-2))
shll = 0.0;

domdt = sgs + sghl;

dnodt = shs;

if (sinim != 0.0)
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domdt = domdt - cosim / sinim * shll;
dnodt = dnodt + shll / sinim;

}
/* —mmm e calculate deep space resonance effects -------- */
dndt = 0.0;
theta = fmod(gsto + tc * rptim, twopi);
em = em + dedt * t;
inclm = inclm + didt * t;
argpm = argpm + domdt * t;
nodem = nodem + dnodt * t;
mm = mm + dmdt * t;
// sgpdfix for negative inclinations
// the following if statement should be commented out
//1if (inclm < 0.0)
/7 A
// inclm = -inclm;
// argpm = argpm - pi;
// nodem = nodem + pi;
/)
/* mmm e initialize the resonance terms ------------- */
if (irez != 0)
{
aonv = pow(nm / xke, x203);
/* mmmmmm e geopotential resonance for 12 hour orbits ------ */
if (irez == 2)
{
cosisqg = cosim * cosim;
emo = em;
em = ecco;
emsgo = emsq;
emsq = eccsq;
eoc = em * emsq;
g201 = -0.306 - (em - 0.64) * 0.440;
if (em <= 0.65)
{
g2ll = 3.616 - 13.2470 * em + 16.2900 * emsqg;
g310 = -19.302 + 117.3900 * em - 228.4190 * emsqg + 156.5910 * eoc;
g322 = -18.9068 + 109.7927 * em - 214.6334 * emsqg + 146.5816 * eoc;
g410 = -41.122 + 242.6940 * em - 471.0940 * emsg + 313.9530 * eoc;
gd422 = -146.407 + 841.8800 * em - 1629.014 * emsqg + 1083.4350 * eoc;
g520 = -532.114 + 3017.977 * em - 5740.032 * emsqg + 3708.2760 * eoc;
}
else
{
g211 = -72.099 + 331.819 * em - 508.738 * emsqg + 266.724 * eoc;
g310 = -346.844 + 1582.851 * em - 2415.925 * emsqg + 1246.113 * eoc;
g322 = -342.585 + 1554.908 * em - 2366.899 * emsqg + 1215.972 * eoc;
gd410 = -1052.797 + 4758.686 * em - 7193.992 * emsqg + 3651.957 * eoc;
g422 = -3581.690 + 16178.110 * em - 24462.770 * emsqg + 12422.520 * eoc;
if (em > 0.715)
g520 =-5149.66 + 29936.92 * em - 54087.36 * emsqg + 31324.56 * eoc;
else
gb520 = 1464.74 - 4664.75 * em + 3763.64 * emsq;
}
if (em < 0.7)
{
g533 = -919.22770 + 4988.6100 * em - 9064.7700 * emsqg + 5542.21 * eoc;
g521 = -822.71072 + 4568.6173 * em - 8491.4146 * emsq + 5337.524 * eoc;
g532 = -853.66600 + 4690.2500 * em - 8624.7700 * emsqg + 5341.4 * eoc;
}
else
{
g533 =-37995.780 + 161616.52 * em - 229838.20 * emsqg + 109377.94 * eoc;
g521 =-51752.104 + 218913.95 * em - 309468.16 * emsqg + 146349.42 * eoc;
g532 =-40023.880 + 170470.89 * em - 242699.48 * emsqg + 115605.82 * eoc;
}
sini2= sinim * sinim;
£f220 = 0.75 * (1.0 + 2.0 * cosim+cosisq);
f221 = 1.5 * gini2;
£321 = 1.875 * sinim * (1.0 - 2.0 * cosim - 3.0 * cosisq);
£322 = -1.875 * sinim * (1.0 + 2.0 * cosim - 3.0 * cosisq);
f441 = 35.0 * sini2 * £220;
£442 = 39.3750 * sini2 * sini2;
£522 = 9.84375 * ginim * (sini2 * (1.0 - 2.0 * cosim- 5.0 * cosisqg) +
0.33333333 * (-2.0 + 4.0 * cosim + 6.0 * cosisq) );
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£523 = sinim * (4.92187512 * sini2
10.0 * cosisqg) + 6.56250012
£542 = 29.53125 * sinim * (2.0 - 8.
(-12.0 + 8.0 * cosim + 10.0

£543 = 29.53125 * sinim *

*
*
0
*

(-2.0 - 4.0 * cosim +
(1.0+2.0 * cosim - 3.0 * cosisq));
* cosim+cosisqg *

cosisq));

(12.0 + 8.0 * cosim - 10.0 * cosisq));

(-2.0 - 8.0 * cosim+cosisqg *

Xno2 = nm * nm;
ainv2 = aonv * aonv;
templ = 3.0 * xno2 * ainv2;
temp = templ * root22;
d2201 = temp * £220 * g201;
d2211 = temp * £221 * g211;
templ = templ * aonv;
temp = templ * root32;
d3210 = temp * £321 * g310;
d3222 = temp * £322 * g322;
templ = templ * aonv;
temp = 2.0 * templ * root4d4;
d4410 = temp * £441 * g410;
d4422 = temp * f442 * g422;
templ = templ * aonv;
temp = templ * root52;
d5220 = temp * £522 * g520;
d5232 = temp * £523 * g532;
temp = 2.0 * templ * root54;
d5421 = temp * £542 * g521;
d5433 = temp * £543 * g533;
xlamo = fmod(mo + nodeo + nodeo-theta - theta, twopi);
xfact = mdot + dmdt + 2.0 * (nodedot + dnodt - rptim) - no;
em = emo;
emsqg = emsqo;
}
/¥ mmmmmmmm e synchronous resonance terms -------------- */
if (irez == 1)
{
g200 = 1.0 + emsqg * (-2.5 + 0.8125 * emsq);
g310 = 1.0 + 2.0 * emsq;
g300 = 1.0 + emsq * (-6.0 + 6.60937 * emsq) ;
£220 = 0.75 * (1.0 + cosim) * (1.0 + cosim);
£311 = 0.9375 * sinim * sinim * (1.0 + 3.0 * cosim) - 0.75 *
£330 = 1.0 + cosim;
£330 = 1.875 * £330 * £330 * £330;
dell = 3.0 * nm * nm * aonv * aonv;
del2 = 2.0 * dell * £220 * g200 * g22;
del3 = 3.0 * dell * £330 * g300 * g33 * aonv;
dell = dell * £311 * g310 * g31 * aonv;
xlamo = fmod(mo + nodeo + argpo - theta, twopi);
xfact = mdot + xpidot - rptim + dmdt + domdt + dnodt - no;
}
/¥ mmmmme e for sgp4, initialize the integrator ---------- */
x11 = xlamo;
xni = no;
atime = 0.0;
nm = no + dndt;
}
//#include "debug3.cpp"

}

// end dsinit
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/* ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
*

* procedure dspace

*

* this procedure provides deep space contributions to mean elements for
* perturbing third body. these effects have been averaged over one
* revolution of the sun and moon. for earth resonance effects, the
* effects have been averaged over no revolutions of the satellite.
* (mean motion)

*

* author : david vallado 719-573-2600 28 jun 2005
*

* inputs :

* d2201, d2211, d3210, d3222, d4410, d4422, d5220, d5232, d5421, d5433 -
* dedt -

* dell, del2, del3 -

* didt -

* dmdt -

* dnodt -

* domdt -

* irez - flag for resonance O-none, 1l-one day, 2-half day
* argpo - argument of perigee

* argpdot - argument of perigee dot (rate)

* t - time

* tc -

* gsto - gst

* xfact -

* xlamo -

* no - mean motion

* atime -

* em - eccentricity

* ft -

* argpm - argument of perigee

* inclm - inclination

* x1i -

* mm - mean anomaly

* xni - mean motion

* nodem - right ascension of ascending node

*

* outputs

* atime -

* em - eccentricity

* argpm - argument of perigee

* inclm - inclination

* x1i -

* mm - mean anomaly

* xni -

* nodem - right ascension of ascending node

* dndt -

* nm - mean motion

*

* locals :

* delt -

* ft -

* theta -

* x211i -

* x2omi -

* Xl -

* xldot -

* xnddt -

* xndt -

* xomi -

*

* coupling

* none -

*

* references

* hoots, roehrich, norad spacetrack report #3 1980

* hoots, norad spacetrack report #6 1986

* hoots, schumacher and glover 2004

*

vallado, crawford, hujsak, kelso 2006

____________________________________________________________________________ */
static void dspace
(
int irez,
double d2201, double d2211, double d3210, double d3222, double d4410,
double d4422, double d5220, double d5232, double d5421, double d5433,
double dedt, double dell, double del2, double del3, double didt,
double dmdt, double dnodt, double domdt, double argpo, double argpdot,
double t, double tc, double gsto, double xfact, double xlamo,
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double no,
double& atime, double& em, double& argpm, double& inclm, double& x1i,
double& mm, double& xni, double& nodem, double& dndt, double& nm

)

const double twopi = 2.0 * pi;

int iretn , iret;

double delt, ft, theta, x21i, x2omi, x1, xldot , xnddt, xndt, xomi, g22, g32,
g4d, g52, g54, fasx2, fasx4, fasx6, rptim , step2, stepn , stepp;

ft = 0.0;

fasx2 = 0.13130908;

fasx4 = 2.8843198;

fasx6 = 0.37448087;

g22 = 5.7686396;

g32 = 0.95240898;

gd4d = 1.8014998;

g52 = 1.0508330;

g54 = 4.4108898;

rptim = 4.37526908801129966e-3; // this equates to 7.29211514668855e-5 rad/sec

stepp = 720.0;
stepn = -720.0;
step2 = 259200.0;

/¥ ——mmm calculate deep space resonance effects ----------- */
dndt = 0.0;

theta = fmod(gsto + tc * rptim, twopi);

em = em + dedt * t;

inclm = inclm + didt * t;

argpm = argpm + domdt * t;

nodem = nodem + dnodt * t;

mm = mm + dmdt * t;

// sgp4fix for negative inclinations

// the following if statement should be commented out
// if (inclm < 0.0)
/7 AL
// inclm = -inclm;
// argpm = argpm - pi;
// nodem = nodem + pi;
/7
/* - update resonances : numerical (euler-maclaurin) integration - */
/* mmm e epoch restart ----——-———————————————— */
// sgp4fix for propagator problems
// the following integration works for negative time steps and periods
/7 the specific changes are unknown because the original code was so convoluted
ft = 0.0;
atime = 0.0;
if (irez !'= 0)
{
if ((atime == 0.0) || ((t >= 0.0) && (atime < 0.0)) ||
((t < 0.0) && (atime >= 0.0)))
{
if (t >= 0.0)
delt = stepp;
else
delt = stepn;
atime = 0.0;
xni = no;
x1i = xlamo;
}
iretn = 381; // added for do loop
iret = 0; // added for loop
while (iretn == 381)
{
if ((fabs(t) < fabs(atime)) || (iret == 351))
{

if (t >= 0.0)
delt = stepn;

else
delt = stepp;
iret = 351;
iretn = 381;
}
else
{

if (t > 0.0) // error if prev if has atime:=0.0 and t:=0.0 (ge)
delt = stepp;
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else
delt
if (fabs
{
iret
iret
}
else

xndt

xldot
xnddt

ds
d4
ds
ds
xldot
xnddt

ds3
ds
2.
d4
ds

xnddt

}
} // while

nm = xni xndt
x1 x1i
if (irez

{

1)

x1
nm

mm
dndt

else

x1
nm

mm
dndt

}

nm

no + dndt;

}

//#include "debug4d.cpp"
} // end dsspace

iretn

xldot * ft + xndt * ft * ft *

= stepn;
(t - atime) >= stepp)
= 0;
n = 381;
= t - atime;
n = 0;
—————————— dot terms calculated ------------- */
-- near - synchronous resonance terms ------- */
2)
dell * sin(xli - fasx2) + del2 * sin(2.0 * (x1i - fasx4)) +
del3 * sin(3.0 * (x1i - fasx6));
xni + xfact;
dell * cos(xli - fasx2) +
2.0 * del2 * cos (2.0 * (x1i - fasx4)) +
3.0 * del3 * cos (3.0 * (x1i - fasx6));
xnddt * xldot;
---- near - half-day resonance terms -------- */

argpo + argpdot * atime;
xomi + xomi;

x1i + x1i;

= d2201 * sin(x2omi + x1i - g22) + d2211 * sin(xli - g22) +
210 * sin(xomi + x1i - g32) + d3222 * sin(-xomi + x1i - g32)+
410 * sin(x2omi + x21i - g44)+ d4422 * sin(x21i - g44) +
220 * sin(xomi + x1i - g52) + d5232 * sin(-xomi + x1i - g52)+
421 * sin(xomi + x21i - g54) + d5433 * sin(-xomi + x21i - g54);
xni + xfact;
d2201 * cos(x2omi + x1i - g22) + d2211 * cos(xli - g22) +
210 * cos(xomi + x1li - g32) + d3222 * cos(-xomi + x1i - g32) +
220 * cos(xomi + x1li - g52) + d5232 * cos(-xomi + x1i - g52) +
0 * (d4410 * cos(x2omi + x21i - g44) +
422 * cos(x21i - g44) + d5421 * cos(xomi + x21i - g54) +
433 * cos(-xomi + x21i - g54));

xnddt * xldot;

x1i + xldot * delt + xndt * step2;
xni + xndt * delt + xnddt * step2;
atime + delt;

381

i

* ft + xnddt * ft * ft * 0.5
0.5;

i

2.0 * nodem + 2.0 * theta;
no;

nodem - argpm + theta;
no;
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/ K e e e e e e
*

* procedure initl

*

* this procedure initializes the spg4 propagator. all the initialization is
* consolidated here instead of having multiple loops inside other routines.
*

* author : david vallado 719-573-2600 28 jun 2005
*

* inputs

* ecco - eccentricity 0.0 - 1.0
* epoch - epoch time in days from jan 0, 1950. 0 hr

* inclo - inclination of satellite

* no - mean motion of satellite

* satn - satellite number

*

* outputs

* ainv - 1.0/ a

* ao - semi major axis

* condl -

* con4?2 - 1.0 - 5.0 cos(1i)

* cosio - cosine of inclination

* cosio2 - cosio squared

* eccsqg - eccentricity squared

* method - flag for deep space 'd', 'n'

* omeosq - 1.0 - ecco * ecco

* posqg - semi-parameter squared

* rp - radius of perigee

* rteosq - square root of (1.0 - ecco*ecco)

* sinio - sine of inclination

* gsto - gst at time of observation rad

* no - mean motion of satellite

*

* locals :

* ak -

* dl -

* del -

* adel -

* po —

*

*  coupling :

* getgravconst

* gstime - find greenwich sidereal time from the julian date
*

* references

* hoots, roehrich, norad spacetrack report #3 1980

* hoots, norad spacetrack report #6 1986

* hoots, schumacher and glover 2004

*

vallado, crawford, hujsak, kelso 2006

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, */
static void initl
(
int satn, gravconsttype whichconst,
double ecco, double epoch, double inclo, double& no,
char& method,
double& ainv, double& ao, double& con4l, double& con42, double& cosio,
double& cosio2,double& eccsqg, double& omeosqg, double& posq,
double& rp, double& rteosq,double& sinio , double& gsto
)
{
[* e local variables -----------—-——————————- */

double ak, dl, del, adel, po, x203, j2, xke,
tumin, radiusearthkm, 33, j4, j303j2;

/* mmm e earth constants ------------------—-—- */
// sgpdfix identify constants and allow alternate values
getgravconst ( whichconst, tumin, radiusearthkm, xke, j2, 3j3, j4, j3o03j2 );

%203 =2.0/ 3.0;

[* mmmm e calculate auxillary epoch quantities ---------- */
eccsg = ecco * ecco;

omeosqg = 1.0 - eccsq;

rteosqg = sqrt (omeosq) ;

cosio = cos(inclo);

coslio2 = cosio * cosio;

[* mmmmmm e un-kozai the mean motion ----------------- */
ak = pow(xke / no, x203);

dil = 0.75 * j2 * (3.0 * cosio2 - 1.0) / (rteosqg * omeosq);

del =dl / (ak * ak);
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adel = ak * (1.0 - del * del - del *
(1.0 / 3.0 + 134.0 * del * del / 81.0));

del = dl/(adel * adel);

no =no / (1.0 + del);

ao = pow(xke / no, x203);
sinio = sin(inclo);

po = ao * omeosdq;

cond42 = 1.0 - 5.0 * cosio2;
condl = -cond2-cosio2-cosio2;
ainv = 1.0 / ao;

posqg = po * po;

rp = ao * (1.0 - ecco);
method = 'n';

gsto = gstime(epoch + 2433281.5);

//#include "debug5.cpp"
} // end initl
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author

inputs
satn -
bstar -
ecco -
epoch -
argpo -
inclo -
mo -
no -
nodeo -

outputs
satrec -
return code -

sfour -
ssl, ss2, ss3,
szl, sz2, sz3

tc -
temp -
templ, temp2,
tsi -
xpidot -
xhdotl -
zl, z2, z3
z11, z12, z13,

coupling :
getgravconst-
initl -
dscom -
dpper -
dsinit -
sgp4d -

references

T T T A T T T T T A T T I

int sgp4init

procedure sgp4init

this procedure initializes variables for sgp4.

david vallado 719-573-2600 28 jun 2005

satellite number

sgpd type drag coefficient kg/m2er
eccentricity

epoch time in days from jan 0, 1950. 0 hr
argument of perigee (output if ds)

inclination

mean anomaly (output if ds)

mean motion

right ascension of ascending node

common values for subsequent calls
non-zero on error.

ss4,

szll, szl2, szl3,

sz21,

temp3

z21,

ss5,

z22,

1 - mean elements, ecc >= 1.0 or ecc < -0.001 or a < 0.95 er
2 - mean motion less than 0.0
3 - pert elements, ecc < 0.0 or ecc > 1.0
4 - semi-latus rectum < 0.0
5 - epoch elements are sub-orbital
6 - satellite has decayed
locals :

cnodm , snodm , cosim , sinim , cosomm , sinomm

cclsg , cc2 , cc3

coef , coefl

cosio4d -

day -

dndt -

em - eccentricity

emsq - eccentricity squared

eeta -

etasqg -

gam -

argpm - argument of perigee

nodem -

inclm - inclination

mm - mean anomaly

nm - mean motion

perige - perigee

pinvsg -

psisqg -

gzms24 -

rtemsqg

sl, s2, s3, s4, s5, s6, s7 -

ss6, ss7 -

sz22, sz23, sz31, sz32, sz33 -

z23, z31, z32, z33 -

hoots, roehrich, norad spacetrack report #3 1980
hoots, norad spacetrack report #6 1986

hoots, schumacher and glover 2004

vallado, crawford, hujsak, kelso 2006
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gravconsttype whichconst, const int satn, const double epoch,
const double xbstar, const double xecco, const double xargpo,

const double xinclo, const double xmo, const double xno,

const double xnodeo, elsetrec& satrec

[* mm e local variables ------------------—————— */

double ao, ainv, con42, cosio, sinio, cosio2, eccsq,
omeosq, posd, rp, rteosq,
cnodm , snodm , cosim , sinim , cosomm, sinomm, cclsqg ,
cc2 , cc3 , coef , coefl , cosio4, day , dndt ,
em , emsq , eeta , etasqg , gam , argpm , nodem ,
inclm , mm , nm , perige, pinvsqg, psisq , gzms24,
rtemsq, sl , s2 , s3 , s4 , sb , s6 ,
s7 , sfour , ssl , ss2 , ss3 , ss4 , ssb ,
ss6 , ss7 , szl , sz2 , sz3 , szll , szl2 ,
sz13 , sz21 , sz22 , sz23 , sz31 , sz32 , sz33 ,
tc , temp , templ , temp2 , temp3 , tsi , xXpidot,
xhdotl, =zl , z2 , z3 , zl11 , zl12 , z13 ,
z21 , 222 , z23 , z31 , z32 , z33,

gzms2t, ss, j2, j3o0j2, j4, x203, r[3], vI[3]
tumin, radiusearthkm, xke, 3j3;

[* mmmmmm e initialization -------------=----——- */
// sgp4fix divisor for divide by zero check on inclination

const double temp4d = 1.0 + cos(pi-1.0e-9);

/F* mmmm e set all near earth variables to zero ------------ */
satrec.isimp = 0; satrec.method = 'n'; satrec.aycof = 0.0;
satrec.condl = 0.0; satrec.ccl = 0.0; satrec.ccd = 0.0;
satrec.cch = 0.0; satrec.d2 = 0.0; satrec.d3 = 0.0;
satrec.d4 = 0.0; satrec.delmo = 0.0; satrec.eta = 0.0;
satrec.argpdot = 0.0; satrec.omgcof = 0.0; satrec.sinmao = 0.0;
satrec.t = 0.0; satrec.t2cof = 0.0; satrec.t3cof = 0.0;
satrec.tdcof = 0.0; satrec.tbcof = 0.0; satrec.xlmth2 = 0.0;
satrec.x7thml = 0.0; satrec.mdot = 0.0; satrec.nodedot = 0.0;
satrec.xlcof = 0.0; satrec.xmcof = 0.0; satrec.nodecf = 0.0;
/* set all deep space variables to */

satrec.irez =
satrec.d3210 =
satrec.d4422 =
satrec.d5421 =
satrec.dell =
satrec.didt =
satrec.domdt =
satrec.peo =
satrec.pinco
satrec.se3
satrec.sghd
satrec.si2
satrec.sl3
satrec.xfact
satrec.xghd
satrec.xi2
satrec.x13
satrec.zmol
satrec.x1li

; satrec.d2201 = 0.0; satrec.d2211 =
satrec.d3222 = satrec.d4410 =
satrec.d5220 = satrec.d5232 =
satrec.d5433 = satrec.dedt =
satrec.del2 = satrec.del3 =
satrec.dmdt = satrec.dnodt =
satrec.e3 = satrec.ee2 =
satrec.pgho = satrec.pho =
satrec.plo = satrec.se2 =
satrec.sgh2 = satrec.
satrec.sh2 = satrec.sh3 =
satrec.si3 = satrec.sl2 =
satrec.sl4d = satrec.gsto =
satrec.xgh2 = satrec.xgh3 =
satrec.xh2 = satrec.xh3 =
satrec.xi3 = satrec.x12 =
satrec.x14 = satrec.xlamo =
satrec.zmos = satrec.atime =
satrec.xni =

0]
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// sgp4fix - note the following variables are also passed directly via satrec.
// it 1is possible to streamline the sgp4init call by deleting the "x"

// variables, but the user would need to set the satrec.* values first. we

// include the additional assignments in case twoline2rv is not used.
satrec.bstar = xbstar;

satrec.ecco = xecco;

satrec.argpo = Xargpo;

satrec.inclo = xinclo;

satrec.mo = Xmo;

satrec.no = Xno;

satrec.nodeo = xnodeo;

/* e earth constants ---------------"--"---———~ */

// sgp4fix identify constants and allow alternate values

getgravconst ( whichconst, tumin, radiusearthkm, xke, j2, j3, j4, j3o03j2 );
ss = 78.0 / radiusearthkm + 1.0;

gzms2t = pow(((120.0 - 78.0) / radiusearthkm), 4);

x203 = 2.0 / 3.0;
satrec.init = 'y';
satrec.t = 0.0;
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initl

satn, whichconst, satrec.ecco, epoch, satrec.inclo, satrec.no, satrec.method,
ainv, ao, satrec.con4l, con42, cosio, cosio2, eccsqg, omeosd,
posq, rp, rteosq, sinio, satrec.gsto
)
satrec.error = 0;

if (rp < 1.0)

{
printf ("# *** satn%d epoch elts sub-orbital ***\n", satn);
satrec.error = 5;
}
if ((omeosqg >= 0.0 ) || ( satrec.no >= 0.0))
{
satrec.isimp = 0;
if (rp < (220.0 / radiusearthkm + 1.0)
satrec.isimp = 1;
sfour = ss;
gzms24 = gzms2t;
perige = (rp - 1.0) * radiusearthkm;
/* - for perigees below 156 km, s and goms2t are altered - */
if (perige < 156.0)
{

sfour = perige - 78.0;
if (perige < 98.0)
sfour = 20.0;
gzms24 = pow(((120.0 - sfour) / radiusearthkm), 4.0);

sfour = sfour / radiusearthkm + 1.0;
}
pinvsg = 1.0 / posqg;
tsi = 1.0 / (ao - sfour);
satrec.eta = ao * satrec.ecco * tsi;
etasq = satrec.eta * satrec.eta;
eeta = satrec.ecco * satrec.eta;
psisqg = fabs (1.0 - etasq);
coef = gzms24 * pow(tsi, 4.0);
coefl = coef / pow(psisqg, 3.5);
cc2 = coefl * satrec.no * (ao * (1.0 + 1.5 * etasqg + eeta *

(4.0 + etasqg)) + 0.375 * j2 * tsi / psisqg * satrec.condl *
(8.0 + 3.0 * etasg * (8.0 + etasq))):

satrec.ccl = satrec.bstar * cc2;

cc3 = 0.0;

if (satrec.ecco > 1.0e-4)

cc3 = -2.0 * coef * tsi * j30j2 * satrec.no * sinio / satrec.ecco;

satrec.xlmth2 = 1.0 - cosio2;

satrec.cc4d = 2.0* satrec.no * coefl * ao * omeosqg *
(satrec.eta * (2.0 + 0.5 * etasq) + satrec.ecco *
0.5 + 2.0 * etasq) - j2 * tsi / (ao * psisq) *

-3.0 * satrec.con4l * (1.0 - 2.0 * eeta + etasqg *
1.5 - 0.5 * eeta)) + 0.75 * satrec.xlmth2 *
2.0 * etasqgq - eeta * (1.0 + etasq)) * cos(2.0 * satrec.argpo))):;
satrec.cc5 = 2.0 * coefl * ao * omeosqg * (1.0 + 2.75 *
(etasqg + eeta) + eeta * etasq);
cosiod = cosio2 * cosio2;

(
(
(
(

templ = 1.5 * j2 * pinvsg * satrec.no;

temp2 = 0.5 * templ * j2 * pinvsq;

temp3 = -0.46875 * j4 * pinvsg * pinvsg * satrec.no;

satrec.mdot = satrec.no + 0.5 * templ * rteosq * satrec.con4l + 0.0625 *
temp2 * rteosq * (13.0 - 78.0 * cosio2 + 137.0 * cosiod);

satrec.argpdot = -0.5 * templ * cond42 + 0.0625 * temp2 *

(7.0 - 114.0 * cosio2 + 395.0 * cosiod) +
temp3 * (3.0 - 36.0 * cosio2 + 49.0 * cosiod);

xhdot1l = -templ * cosio;

satrec.nodedot = xhdotl + (0.5 * temp2 * (4.0 - 19.0 * cosio2) +
2.0 * temp3 * (3.0 - 7.0 * cosio2)) * cosio;

xpidot = satrec.argpdot+ satrec.nodedot;

satrec.omgcof = satrec.bstar * cc3 * cos(satrec.argpo);

satrec.xmcof = 0.0;

if (satrec.ecco > 1.0e-4)

satrec.xmcof = -x203 * coef * satrec.bstar / eeta;
satrec.nodecf = 3.5 * omeosqg * xhdotl * satrec.ccl;
satrec.t2cof = 1.5 * satrec.ccl;

// sgpdfix for divide by zero with xinco = 180 deg
if (fabs(cosio+1.0) > 1.5e-12)
satrec.xlcof = -0.25 * j303j2 * sinio * (3.0 + 5.0 * cosio) / (1.0 + cosio);
else
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satrec.xlcof = -0.25 * j30j2 * sinio * (3.0 + 5.0 * cosio) / temp4;
satrec.aycof = -0.5 * j30j2 * sinio;
satrec.delmo = pow( (1.0 + satrec.eta * cos(satrec.mo)), 3);
satrec.sinmao = sin(satrec.mo);
satrec.x7thml = 7.0 * cosio2 - 1.0;
/* mmmm e deep space initialization ------------- */
if ((2*pi / satrec.no) >= 225.0)
{
satrec.method = 'd';
satrec.isimp = 1;
tc = 0.0;
inclm = satrec.inclo;
dscom
(
epoch, satrec.ecco, satrec.argpo, tc, satrec.inclo, satrec.nodeo,
satrec.no, snodm, cnodm, sinim, cosim,sinomm, cosomm,
day, satrec.e3, satrec.ee2, em, emsqg, gam,
satrec.peo, satrec.pgho, satrec.pho, satrec.pinco,
satrec.plo, rtemsq, satrec.se2, satrec.se3,
satrec.sgh2, satrec.sgh3, satrec.sgh4,
satrec.sh2, satrec.sh3, satrec.si2, satrec.si3,
satrec.sl2, satrec.sl3, satrec.sl4, sl1l, s2, s3, s4, sb5,
s6, s7, ssl, ss2, ss3, ss4, ssb5, ss6, ss7, szl, sz2, sz3,
szl1ll, szl2, szl3, sz2l, sz22, sz23, sz31l, sz32, sz33,
satrec.xgh2, satrec.xgh3, satrec.xgh4, satrec.xh2,
satrec.xh3, satrec.xi2, satrec.xi3, satrec.x12,
satrec.x13, satrec.x14, nm, zl, z2, z3, z11,
z12, z13, z21, z22, z23, z31, z32, z33,
satrec.zmol, satrec.zmos
)
dpper
(
satrec.e3, satrec.ee2, satrec.peo, satrec.pgho,
satrec.pho, satrec.pinco, satrec.plo, satrec.se2,
satrec.se3, satrec.sgh2, satrec.sgh3, satrec.sgh4,
satrec.sh2, satrec.sh3, satrec.si2, satrec.si3,
satrec.sl2, satrec.sl3, satrec.sl4, satrec.t,
satrec.xgh2, satrec.xgh3, satrec.xgh4, satrec.xh2,
satrec.xh3, satrec.xi2, satrec.xi3, satrec.x12,
satrec.x13, satrec.xl4, satrec.zmol, satrec.zmos, inclm, satrec.init,
satrec.ecco, satrec.inclo, satrec.nodeo, satrec.argpo, satrec.mo
)i
argpm = 0.0;
nodem = 0.0;
mm = 0.0;
dsinit
(
whichconst,
cosim, emsq, satrec.argpo, sl, s2, s3, s4, s5, sinim, ssl, ss2, ss3,
ss5, szl, sz3, szll, szl1l3, sz2l, sz23, sz31, sz33, satrec.t, tc,
satrec.gsto, satrec.mo, satrec.mdot, satrec.no, satrec.nodeo,
satrec.nodedot, xpidot, zl, z3, zll, z13, z21, z23, z31, z33,
satrec.ecco, eccsq, em, argpm, inclm, mm, nm, nodem,
satrec.irez, satrec.atime,
satrec.d2201, satrec.d2211, satrec.d3210, satrec.d3222 ,
satrec.d4410, satrec.d4422, satrec.d5220, satrec.d5232,
satrec.d5421, satrec.d5433, satrec.dedt, satrec.didt,
satrec.dmdt, dndt, satrec.dnodt, satrec.domdt ,
satrec.dell, satrec.del2, satrec.del3, satrec.xfact,
satrec.xlamo, satrec.xli, satrec.xni
)i
}
[* —mmm e set variables if not deep space ----------- */
if (satrec.isimp != 1)
{
cclsg = satrec.ccl * satrec.ccl;
satrec.d2 = 4.0 * ao * tsi * cclsqg;
temp = satrec.d2 * tsi * satrec.ccl / 3.0;
satrec.d3 = (17.0 * ao + sfour) * temp;
satrec.d4 = 0.5 * temp * ao * tsi * (221.0 * ao + 31.0 * sfour) *
satrec.ccl;
satrec.t3cof = satrec.d2 + 2.0 * cclsqg;
satrec.td4cof = 0.25 * (3.0 * satrec.d3 + satrec.ccl *
(12.0 * satrec.d2 + 10.0 * cclsq));
satrec.tb5cof = 0.2 * (3.0 * satrec.d4 +

12.0 * satrec.ccl * satrec.d3 +
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6.0 * satrec.d2 * satrec.d2 +
15.0 * cclsg * (2.0 * satrec.d2 + cclsq));
}
} // if omeosqg = 0

/* finally propogate to zero epoch to initialise all others. */
if (satrec.error == 0)
sgp4 (whichconst, satrec, 0.0, r, Vv);
satrec.init = 'n';
//#include "debugb.cpp"

return satrec.error;
} // end sgpdinit
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procedure sgp4

this procedure is the sgp4 prediction model from space command. this is an
updated and combined version of sgp4 and sdp4, which were originally
published separately in spacetrack report #3. this version follows the nasa
release on the internet. there are a few fixes that are added to correct
known errors in the existing implementations.

author david vallado 719-573-2600 28 jun 2005

inputs
satrec
tsince

- initialised structure from sgp4init() call.
- time eince epoch (minutes)

outputs H
r - position vector

v - velocity
return code - non-zero on
1 - mean

km

km/sec

error.

elements, ecc >= 1.0 or ecc < -0.001 or a < 0.95 er
- mean motion less than 0.0
- pert elements, ecc < 0.0
semi-latus rectum < 0.0

- epoch elements are sub-orbital
- satellite has decayed

or ecc > 1.0

oUW
|

locals
am -
axnl, aynl -
betal -
cosim , sinim
sin2u , coseol ,
cosisqg , cossu ,
delm -
delomg -
dndt -
eccm -
emsq -
ecose -
el2 -
eol -
eccp -
esine -
argpm -
argpp -
omgadf -
pl -
r _
rtemsqg -
rdotl -
rl -
rvdot -
rvdotl -
su -
t2 , t3 ,
tem5, temp ,
u , ux ,

cnod ,
sini ,
sinu

snod ,
cosip ,

cos2u ,
sinip ,

sinomm
cosi ,
cosu ,

cosomm
sineol ,
sinsu ,

td ,
templ , temp2 ,
uy , uz ,

tc
tempa
VX ,

tempe
vy '

templ
vz

T T T A T T A T A T S S S T

inclm -
mm -
nm -
nodem -
xinc -
xincp -
x1 -
x1m -
mp -
xmdf -
Xmx -
Xmy -
nodedf -
xnode -
nodep -
np -

coupling :
getgravconst-
dpper
dpspace

references

inclination
mean anomaly
mean motion

right asc of ascending node
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* hoots, roehrich, norad spacetrack report #3 1980
* hoots, norad spacetrack report #6 1986
* hoots, schumacher and glover 2004
* vallado, crawford, hujsak, kelso 2006
___________________________________________________________________________ */
int sgp4
(
gravconsttype whichconst, elsetrec& satrec, double tsince,
double r[3], double v[3]
)
{
double am , axnl , aynl , betal , cosim , cnod
cos2u, coseol, cosi , cosip , «cosisg, cossu , cosu,
delm , delomg, em , emsqg , ecose , el2 , eol
ep , esine , argpm, argpp , argpdf, pl, mrt = 0.0,
mvt , rdotl , rl , rvdot , rvdotl, sinim ,
sin2u, sineol, sini , sinip , sinsu , sinu ,
snod , su , t2 , t3 , t4 , tem5 , temp,
templ, temp2 , tempa, tempe , templ , u , ux
uy , uz , VX , VY , vz , inclm , mm ,
nm , nodem, xinc , xincp , x1 , xlm , mp
xmdf , xmx , xmy , nodedf, xnode , nodep, tc , dndt,
twopi, x203 , j2 , J3 , tumin, j4 , xke , Jj303j2, radiusearthkm,
vkmpersec;
int ktr;
set mathematical constants --------------- */
// sgp4fix divisor for divide by zero check on inclination
const double temp4 = 1.0 + cos(pi-1.0e-9);

twopi = 2.0 * pi;

x203 =2.0 / 3.0;

// sgp4fix identify constants and allow alternate values

getgravconst ( whichconst, tumin, radiusearthkm, xke, j2, 3j3, j4, j3o03j2 );

vkmpersec = radiusearthkm * xke/60.0;

/* e clear sgp4 error flag ----————--—-—-----——- */
satrec.t = tsince;

satrec.error = 0;

/* —————— update for secular gravity and atmospheric drag ----- */
xmdf = satrec.mo + satrec.mdot * satrec.t;

argpdf = satrec.argpo + satrec.argpdot * satrec.t;

nodedf = satrec.nodeo + satrec.nodedot * satrec.t;

argpm = argpdf;

mm = xmdf;

t2 = satrec.t * satrec.t;

nodem = nodedf + satrec.nodecf * t2;

tempa = 1.0 - satrec.ccl * satrec.t;

tempe = satrec.bstar * satrec.ccd4 * satrec.t;

templ = satrec.t2cof * t2;

if (satrec.isimp != 1)

{
delomg = satrec.omgcof * satrec.t;

delm = satrec.xmcof *
(pow( (1.0 + satrec.eta * cos(xmdf)), 3) -
satrec.delmo) ;
temp = delomg + delm;
mm = xmdf + temp;
argpm = argpdf - temp;
t3 = t2 * satrec.t;
td = t3 * satrec.t;
tempa = tempa - satrec.d2 * t2 - satrec.d3 * t3 -
satrec.d4 * t4;
tempe = tempe + satrec.bstar * satrec.cc5 * (sin(mm) -
satrec.sinmao) ;
templ = templ + satrec.t3cof * t3 + t4d * (satrec.tdcof +
satrec.t * satrec.tbcof);
}
nm = satrec.no;
em = satrec.ecco;
inclm = satrec.inclo;
if (satrec.method == 'd')
{
tc = satrec.t;
dspace

(
satrec.irez,
satrec.d2201, satrec.d2211, satrec.d3210,

83
American Institute of Aeronautics and Astronautics



satrec.d3222, satrec.d4410, satrec.d4422,
satrec.d5220, satrec.d5232, satrec.db5421,
satrec.d5433, satrec.dedt, satrec.dell,
satrec.del2, satrec.del3, satrec.didt,
satrec.dmdt, satrec.dnodt, satrec.domdt,
satrec.argpo, satrec.argpdot, satrec.t, tc,
satrec.gsto, satrec.xfact, satrec.xlamo,
satrec.no, satrec.atime,

em, argpm, inclm, satrec.xli, mm, satrec.xni,
nodem, dndt, nm
)i
} // if method = 4
if (nm <= 0.0)
{
// printf ("# error nm %f\n", nm);
satrec.error = 2;
}
am = pow((xke / nm),x203) * tempa * tempa;
nm = xke / pow(am, 1.5);
em = em - tempe;
// fix tolerance for error recognition
if ((em >= 1.0) || (em < -0.001) || (am < 0.95)
{
// printf ("# error em %$f\n", em);
satrec.error = 1;
}
if (em < 0.0)
em = 1.0e-6;
mm = mm + satrec.no * templ;
x1lm = mm + argpm + nodem;
emsq = em * em;
temp = 1.0 - emsq;
nodem = fmod(nodem, twopi) ;
argpm = fmod(argpm, twopi) ;
x1lm = fmod (x1lm, twopi) ;
mm = fmod(xlm - argpm - nodem, twopi) ;
/¥ mmmm e compute extra mean quantities ------------- */
sinim = sin(inclm);
cosim = cos(inclm) ;
[* e add lunar-solar periodics ----—--—--—-——--—-—- */
ep = em;
xincp = inclm;
argpp = argpm;
nodep = nodem;
mp = mm;
sinip = sinim;
cosip = cosim;
if (satrec.method == 'd')
{
dpper
(
satrec.e3, satrec.ee2, satrec.peo,
satrec.pgho, satrec.pho, satrec.pinco,
satrec.plo, satrec.se2, satrec.se3,
satrec.sgh2, satrec.sgh3, satrec.sgh4,
satrec.sh2, satrec.sh3, satrec.si2,
satrec.si3, satrec.sl2, satrec.sl3,
satrec.sl4, satrec.t, satrec.xgh2,
satrec.xgh3, satrec.xgh4, satrec.xh2,
satrec.xh3, satrec.xi2, satrec.xi3,
satrec.x12, satrec.x13, satrec.x14,
satrec.zmol, satrec.zmos, satrec.inclo,
'n', ep, Xincp, nodep, argpp, mp
)i
if (xincp < 0.0)
{
xincp = -xincp;
nodep = nodep + pi;
argpp = argpp - pi;
}
if ((ep < 0.0 ) || (ep > 1.0))
{
// printf ("# error ep %$f\n", ep);
satrec.error = 3;
}
} // if method = 4
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[/* mm e long period periodics ----------------—- */
if (satrec.method == 'd')

{
sinip = sin(xincp);
cosip = cos(xincp);
satrec.aycof = -0.5*j30j2*sinip;
// sgp4fix for divide by zero for xincp = 180 deg
if (fabs(cosip+1.0) > 1.5e-12)
satrec.xlcof = -0.25 * j303j2 * sinip * (3.0 + 5.0 * cosip) / (1.0 + cosip);
else
satrec.xlcof = -0.25 * j303j2 * sinip * (3.0 + 5.0 * cosip) / temp4;
}
axnl = ep * cos(argpp);
temp = 1.0 / (am * (1.0 - ep * ep));
aynl = ep* sin(argpp) + temp * satrec.aycof;
x1 = mp + argpp + nodep + temp * satrec.xlcof * axnl;
/* mmm e solve kepler's equation ----——-———-————-——- */
u = fmod(xl - nodep, twopi);
eol = u;
tem5 = 9999.9;
ktr = 1;
// sgpd4fix for kepler iteration
// the following iteration needs better limits on corrections
while (( fabs(temb5) >= 1.0e-12) && (ktr <= 10) )
{
sineol = sin(eol);
coseol = cos(eol);
tem5 = 1.0 - coseol * axnl - sineol * aynl;
tem5 = (u - aynl * coseol + axnl * sineol - eol) / tem5;
if (fabs(tem5) >= 0.95)
tem5 = tem5 > 0.0 ? 0.95 : -0.95;
eol = eol + tem5;
ktr = ktr + 1;
}
[* mmmm e short period preliminary quantities ----------- */
ecose = axnl*coseol + aynl*sineol;
esine = axnl*sineol - aynl*coseol;
el2 = axnl*axnl + aynl*aynl;
pl = am*(1.0-el2);
if (pl < 0.0)
{
printf ("# error pl %f\n", pl);
satrec.error = 4;
}
else
{
rl = am * (1.0 - ecose);
rdotl = sqgrt(am) * esine/rl;
rvdotl = sqgrt(pl) / rl;
betal = sqgrt(l1.0 - el2);
temp = esine / (1.0 + betal);
sinu = am / rl * (sineol - aynl - axnl * temp);
cosu = am / rl * (coseol - axnl + aynl * temp);
su = atan2(sinu, cosu);
sin2u = (cosu + cosu) * sinu;
cos2u = 1.0 - 2.0 * sinu * sinu;
temp =1.0 / pl;
templ = 0.5 * j2 * temp;
temp2 = templ * temp;
[* mmmmm e update for short period periodics ------------ */
if (satrec.method == 'd')
{
cosisg = cosip * cosip;
satrec.con4l = 3.0*cosisqg - 1.0;
satrec.xlmth2 = 1.0 - cosisqg;
satrec.x7thml = 7.0*cosisg - 1.0;
}
mrt =rl * (1.0 - 1.5 * temp2 * betal * satrec.condl) +
0.5 * templ * satrec.xlmth2 * cos2u;
su = su - 0.25 * temp2 * satrec.x7thml * sin2u;
xnode = nodep + 1.5 * temp2 * cosip * sin2u;
xinc = xincp + 1.5 * temp2 * cosip * sinip * cos2u;
mvt = rdotl - nm * templ * satrec.xlmth2 * sin2u / xke;

rvdot = rvdotl + nm * templ * (satrec.xlmth2 * cos2u +
1.5 * satrec.con4l) / xke;

[* mm e orientation vectors ------------------- */
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//

//#include

}

sinsu
cossu
snod
cnod
sini
cosi

Yy // if
// sgpdfix

{

sin
cos
sin

sin(xinc) ;
cos (xinc) ;

(
(
(
(
(

)i
)i

su
su

xnode) ;
cos (xnode) ;

-snod * cosi;
cnod * cosi;
xmx * sinsu + cnod * cossu;
xmy * sinsu + snod * cossu;
sini * sinsu;
* cossu - cnod * sinsu;
xmy * cossu - snod * sinsu;
sini * cossu;

xXmx

(mrt
(mrt
(mrt
(mvt
(mvt
(mvt

pl >

position and velocity (in km and km/sec) ---------- */
ux) * radiusearthkm;
uy) * radiusearthkm;
uz)* radiusearthkm;
ux + rvdot * vx) * vkmpersec;
uy + rvdot * vy) * vkmpersec;
uz + rvdot * vz) * vkmpersec;

for decaying satellites
if (mrt < 1.0)

printf ("# decay condition %11.6f \n",mrt);
satrec.error = 6;

}

"debug7.cpp"

return satrec.error;

// end sgp4
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/* ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
*
* function gstime
*
* this function finds the greenwich sidereal time.
*
* author david vallado 719-573-2600 1 mar 2001
*
* inputs description range / units
* jdutl - julian date in utl days from 4713 bc
*
* outputs
* gstime - greenwich sidereal time 0 to 2pi rad
*
* locals :
* temp - temporary variable for doubles rad
* tutl - julian centuries from the
* jan 1, 2000 12 h epoch (utl)
*
* coupling
* none
*
* references
* vallado 2004, 191, eg 3-45
e */
double gstime
(
double jdutl
)
{
const double twopi = 2.0 * pi;
const double deg2rad = pi / 180.0;
double temp, tutl;
tutl = (jdutl - 2451545.0) / 36525.0;
temp = -6.2e-6* tutl * tutl * tutl + 0.093104 * tutl * tutl +
(876600.0*3600 + 8640184.812866) * tutl + 67310.54841; // sec
temp = fmod(temp * deg2rad / 240.0, twopi); //360/86400 = 1/240, to deg, to
/] e check quadrants -----—--————-—-————-—————
if (temp < 0.0)
temp += twopi;
return temp;
} // end gstime
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A T T O . A T R

function getgravconst

this function gets constants for the propagator. note that mu is identified t
facilitiate comparisons with newer models.

author david vallado 719-573-2600 21 jul 2006
inputs :

whichconst - which set of constants to use 72, 84
outputs

tumin - minutes in one time unit

radiusearthkm - radius of the earth in km

xke - reciprocal of tumin
j2, j3, j4 - un-normalized zonal harmonic values
j3032 - j3 divided by j2
locals
mu - earth gravitational parameter
coupling
none
references
norad spacetrack report #3

vallado, crawford, hujsak, kelso 2006

void getgravconst

(

gravconsttype whichconst,
double& tumin,

double& radiusearthkm,
double& xke,

double& j2,

double& 3j3,

double& j4,

double& j303j2

)
{

double mu;
switch (whichconst)

{
// -- wgs-72 low precision str#3 constants --
case wgs72o0ld:
radiusearthkm = 6378.135; // km
xke = 0.0743669161;
tumin = 1.0 / xke;
j2 = 0.001082616;
j3 = -0.00000253881;
ja4 = -0.00000165597;
j3o0j2 = 33 / j2;
break;
/] === wgs-72 constants ------------
case wgs72:
mu = 398600.8; // in km3 / s2
radiusearthkm = 6378.135; // km
xke = 60.0 / sgrt(radiusearthkm*radiusearthkm*radiusearthkm/mu) ;
tumin = 1.0 / xke;
j2 = 0.001082616;
33 = -0.00000253881;
j4 = -0.00000165597;
j3o0j2 = 33 / j2;
break;
case wgs84:
/) ——————————— wgs-84 constants -------—-----
mu = 398600.5; // in km3 / s2
radiusearthkm = 6378.137; // km
xke = 60.0 / sgrt(radiusearthkm*radiusearthkm*radiusearthkm/mu) ;
tumin = 1.0 / xke;
j2 = 0.00108262998905;
j3 = -0.00000253215306;
ja4 = -0.00000161098761;
j3oj2 = 33 / j2;
break;
default:
fprintf (stderr, "unknown gravity option (%d)\n",whichconst) ;
break;
}
} // end getgravconst
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