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EFFECTS OF CROSS CORRELATED COVARIANCE ON SPACE-
CRAFT COLLISION PROBABILITY  

Vincent T. Coppola1, James Woodburn2, and  Richard Hujsak3 
The most widely used algorithm for computing spacecraft collision probability 
between two objects utilizes the relative position pdf derived from the relative 
position covariance. It is usually assumed that the position uncertainties are un-
correlated between the two objects---that is, there is no cross correlation 
contribution to the relative position covariance. This paper examines the sensi-
tivity of the computed collision probability to non-zero cross correlation. In cer-
tain cases, small but physically realistic cross correlation may lead to large 
variations in collision probability. We will present an example wherein the cross 
correlation is computed through the use of a filter which simultaneously esti-
mates the orbits of the two objects.  
  

INTRODUCTION 

In recent years, the computation of spacecraft collision probability has received 
considerable attention. An excellent discussion of the modeling assumptions and the 
standard computation can be found in a paper by Ken Chan (Ref. 1). We will be using 
Chan’s analytical expressions to compute the probability of collision in this paper. Of 
critical importance to the computation is the pdf derived from the relative position co-
variance. In many cases, the uncertainty of the covariance itself is at issue: if the posi-
tional uncertainty is very large, then the resulting probability of collision will be very 
low, leading to a false sense of security. This aspect of the sensitivity of the computation 
to the input data has been investigated by Sal Alfano (Ref. 2). Akella and Alfriend (Ref. 
3) have investigated variations of the standard assumptions to account for the uncertainty 
of the time of close approach. Glenn Peterson (Ref. 4) has investigated the effect of large 
relative velocity uncertainty on probability computations. Ken Chan (Ref. 5)  investigates 
a method for computing collision probability when the standard assumption of large rela-
tive velocity does not hold. In each of these cases, the modeling assumptions and data 
incorporated by the standard algorithm are being exercised to determine its limitations, so 
that a meaningful result can be obtained, not just a mathematically correct one. 

In this same vein, we investigate the effects of non-zero cross correlation on the 
relative position covariance. The standard assumption is that the two objects’ position 
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covariances are uncorrelated. If the orbit determination process is performed for each ob-
ject separately, then the extent to which their states may be correlated is unknown. Corre-
lation of the state estimates of the two objects becomes non-zero during simultaneous 
processing due to the estimation of common force model parameters, common tracking 
system biases or the processing of measurements which explicitly depend on the states of 
both objects. We will investigate cases where common tracking system biases are esti-
mated and satellite to satellite measurements are considered. The estimation of correc-
tions to a global atmospheric density model would be an example of estimating common 
force model parameters which could be investigated in a future study. 

For a meaningful investigation, one needs to use physically reasonable values of 
the cross correlation. We will produce this data for a specific example conjunction using 
the orbit determination software package, STK/OD. STK/OD uses a sequential filter (Ref. 
6) which can simultaneously estimate the orbits of the two objects, force modeling pa-
rameters for the satellites and measurement system biases. STK/OD also employs physi-
cally connected process noise models during the propagation of the covariance resulting 
in realistic covariance. The relative position covariance is constructed from the complete 
state estimate covariance. We will compare the probability of collision values when rela-
tive position covariance is computed with and without the cross correlation. 

RELATIVE POSITION COVARIANCE 

The computation of the relative position covariance is straight forward. Let xA de-
note the position vector of object A; let xB denote the position vector of object B; let 
∆x=xA - xB denote the relative position vector. The relative position covariance P∆∆ is de-
fined to be 
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where E[] denotes the expectation operator. Using the linearity of E[], we find 
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Figure 3 shows two objects at a close approach surrounded by their position covariance 
ellipsoids. The relative position covariance ellipsoid, computed using (3), is also shown 
centered at one of the objects. Note that the elongation of the relative covariance ellipsoid 
is much less than the elongations of the individual position covariances. This is expected 
whenever the symmetry axes do not align; in general, this is a common occurrence. 
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The relative position covariance matrix is used directly in the computation of collision 
probability. The standard assumption is then made that PBA = 0, i.e., that the two objects’ 
uncertainties are uncorrelated because of the unavailability of the cross correlation data. 
Moreover, zero seems to be a reasonable assumption in comparison with the worst case 
assumptions. 

COLLISION PROBABILITY  

We provide a very brief discussion of the collision probability computation. For a 
more complete discussion, see Chan (Ref. 1). 

Consider the time of close approach between two objects involved in a conjunc-
tion. At this time, the range between the objects is at a minimum, which occurs when the 
relative position vector is perpendicular to the relative velocity vector. Consider a plane, 
called the encounter plane, whose normal is the relative velocity vector at the time of 
close approach. Since the relative position vector is perpendicular to the relative velocity 
vector at this time, the plane can be located to contain both objects. Define the y-axis 
along the relative velocity vector, the x-axis along the relative position vector, and the z-
axis to complete the triad: then the encounter plane is the xz-plane. 

Near the time of close approach it is assumed for modeling purposes that the mo-
tion of each object is a line. This is an accurate model for conjunctions of short duration, 
where the relative speed is not small and for objects that are meters in size rather than 
thousands of meters. This would not apply for objects in tight formations like co-located 
GEOs. The linear motion assumption permits a reduction from a three-dimensional pdf to 
a two dimensional pdf computed over an area in the encounter plane itself. The pdf in the 
encounter plane is given by 
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where σx, σz, and ρxz describe the relative position covariance projected into the xz-plane. 
The probability of collision is then given by 
 
 ∫∫=

A
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where A is the collision cross-sectional area, typically (but not limited to) a circle. 

Notice that the constant-probability curves of the pdf are ellipses in the xz-plane, 
whose major axis makes some angle θ to the x-axis, depending on ρxz. The integration is 
more easily computed by respecting the principal axes of these ellipses, by rotating to a 
new x’z’ axes system by θ and integrating in x’ and z’. 
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The probability of collision is a function of just 5 parameters, shown in Table 1. 
The first parameter is a measure of the sizes of the objects; the second a measure of the 
nominal distance between the objects; the last three describe the projection of the relative 
covariance ellipsoid into the encounter plane. It is best to consider the analysis using non-
dimensional variables. We use the following: 
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where AR is the aspect ratio of the uncertainty ellipse in the encounter plane and is al-
ways greater or equal to 1, H is the hard body radius scaled by the minor uncertainty, M 
is the miss distance scaled by the minor uncertainty, and θ is already non-dimensional 
and lies between -90 and 90 deg. 

Table 1 

 PARAMETERS FOR COMPUTING COLLISION PROBABILITY 

Parameter Description 

rA Sum of hard body radii of 
primary and secondary 

xe Miss distance (i.e., relative 
range between objects at 
TCA) 

σx’ Major axis of uncertainty el-
lipse in the encounter plane 

σz’ Minor axis of uncertainty el-
lipse in the encounter plane 

θ The angle between the line of 
sight between objects and the 
major axis of the uncertainty 
ellipse (x’) 

 

Chan makes a modeling assumption to transform the pdf integral from the (x’,z’) 
space into a scaled space (x’’, z’’) in which the integrand is isotropic, which then can be 
further transformed into an expression amiable for analytic approximation. His resulting 
analytic expression for P is then: 
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The modeling assumption essentially assumes that AR is not too large. Chan was able to 
show cases where even for AR as large as 10, this approximate solution compares very 
favorably with others methods for integrating the pdf. We will be using (7) in our analy-
sis, though the ultimate conclusions apply more generally than this specific approxima-
tion. 

SENSITIVITY OF COLLISION PROBABILITY  

Ultimately, the reason one computes the collision probability is to compare its 
value against a trigger threshold to make a decision about maneuvering. Values much 
larger than the trigger indicate a need for maneuver while values much smaller than the 
trigger indicate nothing to do. The calculation is only as good as the input data of course. 

Of the five parameters from Table 1 that determine probability, rA is the most 
likely quantity to be known with some confidence before an event. Miss distance depends 
on the nominal orbit predictions for both objects; these predictions may be refined over 
time leading to changing estimates of TCA and the miss distance itself. One’s confidence 
in TCA and the encounter plane geometry is tied directly to the ephemeris predictions of 
the two objects, which in turn depend on such things as the time since orbit epoch and the 
ephemeris generation method (e.g., numerical integration, analytical approximation).  

The probability calculation is most sensitive to the quality of the covariance. 
Sequential filters employ a structure that naturally allows for the addition of process 
noise during the propagation of covariance. The role of process noise is to increase the 
uncertainty due to the uncertainty in the dynamical model. Least squares methods lack a 
formal structure to account for dynamical modeling errors and typically employ empiri-
cally derived ‘consider parameters’ in an attempt to provide a realistic covariance. 

Ultimately the covariance must be propagated to TCA and different error propa-
gation may produce different predicted covariances at TCA. Lastly, although one’s con-
fidence in each objects’ covariance may be high, the probability computation depends on 
the projection of the combined covariance ellipsoid into the encounter plane whose ge-
ometry is tied to TCA. 

Given that the parameters needed for computing the probability are themselves 
uncertain, one should be cautious in making a decision based upon a value computed us-
ing nominal values. It would be prudent to determine the sensitivity of the computed 
probability to expected variations in the parameters describing the computation. As will 
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be seen, in some cases the probability is not sensitive to the variations in the parameter 
values, while in other cases it is sensitive. The real concern are times when the errors in 
the input parameters trigger a false alarm, or more seriously, fail to trigger an alarm when 
one is required. 

The following analysis explores the sensitivity of the collision probability to er-
rors in the covariance shape (AR) and orientation (θ). 

Figure 1 shows a plot of probability as a function of θ, for 5 different AR values, 
at a fixed H and M. The figure shows the probability as two measures (θ, AR) of the rela-
tive covariance at TCA are varied while the geometry of the conjunction remains con-
stant. Each curve is symmetric with respect to θ=0 (which is also the maximum probabil-
ity) and flattens out near θ= +/-90 deg. The curve is steepest somewhere in between (near 
θ=45 deg, but the actual steepest point depends on AR). For a nominal value of θ near the 
steep part of the curve, a small variation in θ has a dramatic impact on the value of P. 

Figure 2 shows a similar plot, for different values of H and M, corresponding to a 
larger scaled hard body radius and a larger scaled miss distance. The variations with θ 
and AR are similar to Figure 1, although the change in P for a change in a parameter is 
much more dramatic in this case. Notice, however, that while P is very sensitive to varia-
tions, it may be significantly less than the typical trigger value of 10^(-6) for a large 
range of θ. 

As would be expected for a function of 4 variables, the two-dimensional plots do 
not completely characterize the variation of P to variations in each of its parameters. 
Moreover, it is unlikely that sweeping generalizations can be made, expect for the few 
obvious ones (e.g., if the miss distance is large enough, the probability is always signifi-
cantly lower than any (positive) trigger value).  The two figures do demonstrate, how-
ever, that there are areas within the parameter space where P is very sensitive to the val-
ues of the parameters. Under these conditions, small errors in the input covariance can 
result in a large error in the probability. 

SENSITIVITY OF PROBABILITY TO PREDICTION SPAN 
 

Even in cases where the probability computation itself is not sensitive to parame-
ter variations, the value of probability may vary as a result of improved data. Consider 
the case of two LEO objects, both 1 m in size, that have a close approach event. 

We constructed a set of truth ephemerides which were used to produce simulated 
observations from the AFSCN tracking network in STK/OD. The STK/OD simulator was 
configured to generate time varying biases for each tracker/ measurement type combina-
tion and to add white noise to the measurements. Ground tracking observables consisted 
of two-way range, two-way Doppler, azimuth and elevation generated at a rate of one ob-
servation set per minute whenever the satellites were visible. 
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Figure 1. Probability as a function of θ, parameterized by AR, 
for H=0.05 and M=5. 

 

 

 

Figure 2. Probability as a function of θ, parameterized by AR, 
for H=0.10 and M=10. 
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The sequential filter in STK/OD was then used to simultaneously estimate the 
ephemeris and covariance of the two objects. Measurement processing was stopped at 
three times before the event and the trajectories and covariance were predicted to a time 
past the conjunction event to emulate an operational process of updating conjunction as-
sessments as new tracking data becomes available. Three orbit determination solutions 
were computed: one with a 12 hour prediction span, one with a 6 hour span, and the last 
with a 3 hour span. For each case, we computed the predicted TCA and collision prob-
ability.  As expected, the size of the relative covariance at TCA was smaller for the 
shorter predict spans.  

Table 2 lists the various values used in the probability computation. In this par-
ticular example, the probability increased by a factor of 20 from the 12 hour predict to the 
3 hour predict. The variability of the computed value is not a result of uncertain parame-
ters but rather caused by the reduction of the relative covariance at TCA. 
 

Table 2 
PARAMETER VALUES FOR 3 PREDICTION SPANS   

 
Parameter 12 hour 6 hour 3 hour 
TCA diff (secs) 0.0137 0.0004 0.0013 

xe (m) 28.8 30.1 17.9 
σz’ (m) 70.0 15.2 9.8 

H 0.028 0.131 0.204 
M 0.41 1.98 1.83 
AR 1.1 2.68 2.12 

θ (deg) 35.0 10.4 5.7 
P 3.4e-04 2.3e-03 6.5e-03 

 
 

CROSS CORRELATION  

Typically, the correlation in position uncertainty between two objects is not 
known because each object’s orbit determination is performed independently from all 
other objects. The correlation is then treated as zero in the computation of probability of 
collision. In many cases, such as space surveillance, the same algorithms, environmental 
force models, and tracking stations are used in the orbit determination for both objects, 
permitting the possibility that a non-zero cross correlation exists that is being ignored. 

We used the results of the three OD runs from the previous section to determine 
the level of cross correlation in the position uncertainty of the two objects which would 
be introduced through the estimation of the common tracking system biases. We found 
that the cross-correlation could be quite significant, with the resulting relative position 
covariance ellipsoid being significantly affected in size and shape, see Figure 4. 
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High satellite-to-satellite cross correlations are developed during tracking by 
shared trackers with correlated bias errors. These cross correlations dissipate rapidly dur-
ing prediction due to the continuing application of process noise for these parameters.  
Thus, the large cross correlation was found to be localized in time, near times of meas-
urement updates.  The cross correlation became insignificant at TCA. 

This dissipation may be an artifice of continuous application of Gauss Markov 
stochastic model for biases. After all, if the bias states were dropped from state space at 
the end of the tracking pass, the satellite-to-satellite cross correlations would persist for a 
very long time.  Tracking data occurs at discrete times, yet most sequential filters apply 
the bias process noise as a continuous process, and decorrelation during prediction is 
fairly standard.  The authors plan to investigate the application of a discrete process noise 
model for bias states, and the consequences on collision probability, at a later date. Our 
expectation is that satellite to satellite correlations will remain high and will play a more 
important role in collision probability.  

Space Based Measurements 

We then investigated the use of satellite to satellite observations in the OD proc-
ess.  One vehicle measured  the location of the other object and this ranging was used as 
part of the orbit determination of both objects simultaneously. 

The test case cited in the previous section involves two LEO objects that have a 
repeating close approach every half revolution. We generated simulated satellite to satel-
lite two-way range measurements at a frequency of one measurement every 5 seconds 
during two minute windows approximately centered on the conjunctions occurring 1 and 
1.5 revolutions prior to the conjunction of interest.  We processed that tracking data with 
STK/OD to produce a covariance with significant realistic cross correlation. 

This models a case where one satellite had a limited ranging capability to better 
estimate the relative position covariance. Although this may not be realistic due to the 
high tracking rates during a conjunction, we use this example for illustrative purposes. 
These measurements produced a highly cross-correlated position covariance at the meas-
urement time. Figure 5 depicts the relative position covariance ellipsoid just after a space 
based range measurement. The inclusion of cross correlation dramatically alters the ellip-
soid. More importantly, a significant cross-correlation persisted for several revs after the 
measurement update. 

The last space based measurement occurred 1 rev before the event. The relative 
position ellipsoid size at TCA, computed with and without the cross correlation, is given 
in Table 3. Figure 6 shows two views of the close approach event, showing the relative 
position covariance computed with and without the cross correlation. You can see that the 
two ellipsoids have different sizes and slightly different orientation and shape.  
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Table 3 

 RELATIVE POSITION COVARIANCE ELLIPSOID SIZE  
 

Uncertainty  No cross correlation With cross correlation 
Maximum (m) 34.4 23.0 

Middle (m) 18.0 16.2 
Minimum (m) 9.6 9.9 

 
Given that the ellipsoid size, shape, and orientation are different, and knowing 

that the probability may be sensitive to these variations, we computed the collision prob-
ability for both ellipsoids. Each object was assigned a finite size of 1m; the miss distance 
for the predicted ephemeris was 27 m. The relevant parameters are given in Table 4. 
 

Table 4 
  PARAMETER VALUES FOR CASE UTILIZING SPACE-BASED MEASURE-

MENTS 
 

Parameter No cross corre-
lation 

With cross cor-
relation 

σz’ (m) 9.33 9.33 
H 0.214 0.214 
M 2.89 2.89 
AR 1.58 1.63 

θ (deg) 2.6 -1.3 
P 2.7e-03 2.9e-03 

 
In this example, the probabilities differ by just 7%. The value computed using the 

cross correlation is slightly higher than the value computed ignoring it, though the cross 
correlation ellipsoid is significantly smaller in size. The probability is not very sensitive 
to the size difference because the largest difference is in a direction mostly perpendicular 
to the encounter plane. This may be serendipity---if the largest difference had been in the 
encounter plane, then the different ellipsoids may lead to very different probabilities. 
 

CONCLUSION 
 

We have investigated position cross-correlation in several examples. We have 
shown that significant cross correlation can exist; however, it may dissipate quickly over 
time. We need to investigate further whether the fast dissipation is an artifact of the orbit 
determination modeling of biases. Our example using space based measurements pro-
duced a highly cross-correlated covariance at TCA. In such a case, the collision probabil-



 

11  

ity computation should (and easily can) include the cross-correlation. Although ignoring 
the cross correlation in this example produced a similar value of collision probability, 
others examples may not. We have shown that there exists areas of the collision probabil-
ity parameter space that are sensitive to parameter errors. The example happened to lie in 
an insensitive part of the parameter space.  
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Figure 3. The position covariance ellipsoids are shown in red and blue. 
The relative position covariance ellipsoid is shown in purple. 
 
 
 
 

 
Figure 4. The relative position covariance ellipsoid, shown at a time just 
after a ground range measurement. The purple ellipsoid is computed with 
the cross correlation; the green one ignores the cross correlation. 
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Figure 5. The relative position covariance ellipsoid, shown at a time just 
after a space based range measurement. The purple ellipsoid is computed 
with the cross correlation; the green one ignores the cross correlation. 

 

 
 

 
Figure 6. Two views of the same close approach event showing the rela-
tive position covariance ellipsoid. The purple ellipsoid is computed with 
the cross correlation; the green one ignores the cross correlation. 


