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The indirect term in the formula for third body perturbations models the 
acceleration of the primary body due to the third body. This term is necessary 
because the integration frame, which has its origin at the center of the primary 
body, is not inertial. The term is normally computed analytically, assuming both 
bodies are point masses and only gravitational forces affect the primary body. 
However, these assumptions lead to inaccuracies when other forces act on the 
primary body.  

 
 
INTRODUCTION 
 
When using numerical integration to compute the trajectory of a spacecraft, the classical 
formula for modeling third-body perturbations (Eq. (6) derived below) contains two 
terms: a direct term and an indirect term.  The direct term models the effect of the third 
body on the spacecraft, and the indirect term models the effect of the third body on the 
primary body.  The indirect term is necessary because the integration frame, which has its 
origin at the center of mass of the primary body, is not inertial. 
  
The indirect term in the classical formula assumes that the only forces acting on the 
primary body are the point mass effects of the third bodies included in the integration.  If 
the planetary ephemeris used in the integration comes from an n-body integration where 
only point-mass effects were included, this assumption is correct.  However, if the 
planetary ephemeris comes from another source, such as JPL DE 405 or JPL Spice files, 
other terms exist in the acceleration of the primary body which are ignored.  Ignoring 
these terms can lead to inaccuracies in the computed trajectory. 
 
Instead of using the classical formula, the acceleration of the primary body can be found 
by numerically differentiating the planetary ephemeris.  This approach should yield better 
accuracy than the classical approach because it does not ignore any terms.  Alternatively, 
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if the integration is performed in an inertial frame, such as one with the origin at the solar 
system barycenter, the indirect term is not needed. 
 
 In this paper, we use three different formulations of the equations of motions to examine 
the effects of modeling third body gravitational forces on a spacecraft that is orbiting near 
a celestial body. Tests are performed in the Earth-Moon system as well as about moons in 
the Jupiter and Saturn systems.  We wish to determine whether the choice of formulation 
or reference frame has any consequences for obtaining an accurate trajectory. While in 
principle neither formulation nor frame should affect the resulting trajectory, in practice 
both choices do. 
 
EQUATIONS OF MOTION 
 
The derivation of the equations of motion for a spacecraft traveling in the solar system 
starts from the choice of a suitable inertial frame. The axes of the inertial frame can be 
taken as J2000 axes (or the ICRF axes if J2000 axes do not suffice). The origin of the 
inertial frame is taken as the solar system barycenter.  Though the solar system 
barycenter defines the inertial origin, it is rarely used as the origin for the frame in which 
the equations of motions themselves will be expressed.  It is much more common to use 
the position of a celestial body in the solar system as the origin for the equations of 
motion.  Earth-orbiting spacecraft typically use the Earth as the origin.  Of course, once 
the inertial frame is determined, the equations of motion written for the inertial origin can 
be translated to any origin by simply including the effects of the origin’s acceleration.  In 
Newtonian mechanics, the motion of the spacecraft is independent of the choice of origin 
that locates the spacecraft if the same inertial frame is being used to generate the 
equations. 
 
When modeling the force environment of the system, forces on the spacecraft arising 
from celestial bodies are considered while forces on the celestial bodies arising from the 
spacecraft are ignored.  Thus, the motion of the celestial bodies can be determined 
independently from the motion of the spacecraft. Typical methods for modeling the 
motion of celestial bodies include (i) analytic approximations (e.g., Brouwer’s formula 
for the location of the Moon) and (ii) interpolation of a numerical integration of an N-
body problem (e.g., the Developmental Ephemeris created by JPL (Ref. 1)).   
 
Forces on the spacecraft may include gravity (arising from a specified set of celestial 
bodies), tides, solar radiation pressure, atmospheric drag, thrust, albedo, general relativity 
corrections, and other effects as deemed necessary to achieve the required fidelity of the 
generated ephemeris.  For all but the lowest fidelity ephemeris, gravity contributions to 
the forces on an Earth-orbiting spacecraft are typically modeled using a gravity field for 
the Earth and point-mass third-body gravity forces arising from the Moon and Sun. 
  
Let Bi be a celestial body and RBi locate its (center-of-mass) position with respect to the 
solar system barycenter O in inertial axes.  Let R locate the spacecraft S from O in 
inertial axes. Then the Newtonian equations of motion for S are: 
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where m is the spacecraft mass, G the universal gravitation constant, MBi is the mass of 
Bi, and FS is the sum of all forces on the spacecraft other than the point-mass gravitational 
force caused by all the celestial bodies (e.g., additional gravitational forces over the 
point-mass effect, drag, solar radiation pressure, general relativistic corrections, etc.).  
 
Note that the motions of the celestial bodies are taken to be known as a function of time − 
the motion of the spacecraft and bodies are not being solved simultaneously. The most 
precise ephemeredes for planets and moons are available from JPL. JPL’s Developmental 
Ephemeris was derived from a numerical integration of the major bodies of the solar 
system, using barycenter values for the outer planets. The equations of motion considered 
general relativistic effects and oblateness of the Earth and Moon (Ref. 1).  Thus, the 
motion of the bodies is not simply driven by point-mass gravity. 
 
Ephemeredes for the moons of other planets are also available from JPL, in SPICE 
format (Ref. 2), created by investigators using the best knowledge of the force 
environment at the time. We would expect that oblateness would indeed have a 
significant effect on the moons of Jupiter and Saturn and be considered in their 
ephemeredes. 
 
These equations are now transformed to a coordinate system using the same axes whose 
origin is at the (center-of-mass) position of one of the bodies, say B0. Let rBi and r be the 
relative position of Bi and S with respect to B0, i.e.,  
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Rewriting (1) using (2) and dividing through by m, we find 
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Rearranging, we find 
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where µ = GMB0 and µi = GMBi. Now the equations of motion for B0 are 
 



 4

00 0 0 0 03
0

, whereBi
Bi B

i Bi

M GM M M M
>

= +∑ rR F
r

 (5)

 
where F0 represents all other forces on B0 other than the point-mass gravity of the other 
celestial bodies. Combining (4) and (5), we find the equations of motion for the 
spacecraft, expressed using a frame whose origin is B0: 
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The first term in (6) is the point-mass effect of gravity of B0 and the second term is the 
classical third-body gravity perturbation acceleration.  We refer to this as the classical 
third-body formula because it is widely used and found in astrodynamics texts (e.g. 
Ref. 3). 
 
The classical third-body gravity formula (i.e., the summation term in (6)) is comprised of 
two terms: the first term is the direct term that depends on the distance to the third body 
from the spacecraft; the second term is the indirect term and only depends on the location 
of the third body relative to B0.  The direct term arises from the forces on the spacecraft 
while the indirect term arises from the non-inertial nature of the frame being used to 
express the equations of motion.  
 
In principle, the solutions to (1), (4) and (6) for different reference bodies B0 will be 
equivalent (i.e., producing the same trajectory when converted to a common frame). In 
practice, however, the solutions will be different because of modeling assumptions made 
in evaluating (6).  Three common assumptions are made:  

(i) any difference in the µi values used for modeling the third-body 
perturbation in (6) as compared to the actual µi values used when 
computing the ephemeredes for B0 in (5) is inconsequential;  

(ii) only a small set of the celestial bodies need be modeled for the third-
body gravitational effect; 

(iii) the celestial bodies themselves are dominated by the point-mass 
gravitational effects so that F0 can be ignored.   

The first assumption can be eliminated if the correct µi values are used (i.e., those 
consistent with the value used for creating the ephemeredes of the celestial bodies).  The 
second assumption follows from an analysis of the third-body gravity terms in (6).  It is 
this third assumption that we explore below. 
 
The magnitude of the disparity of the solutions will be larger in cases where the motion 
of B0 differs significantly from point-mass motion. In the solar system, the motion of the 
major planets derives largely from point-mass motion and so the effect should be small. 
The motion of moons, however, may deviate from point-mass motion in the presence of 
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planetary oblateness. We would then expect that a larger disparity would occur for 
spacecraft traveling near a moon.   
 
CHARACTERIZING THIRD-BODY PERTURBATIONS 
 
The effect of truncating the set of celestial bodies is most easily seen in the third-body 
gravity terms in (6).  Whenever r << rBi , the direct and indirect terms nearly cancel out 
no matter their magnitude; thus, those bodies Bi have little effect on the solution to (6). 
This is the reason that only the Moon and Sun are usually considered for Earth-orbiting 
spacecraft. In (1), only the direct terms are present; bodies may be ignored only if the 
direct term itself is sufficiently small. For Earth-orbiting spacecraft, Jupiter (and other 
bodies at times) must be considered when evaluating (1) to generate accurate ephemeris.  
(We deem an ephemeris accurate if the inclusion of an additional celestial body does not 
appreciably change the trajectory over the time span being considered.)  In (4), 0R  
includes the indirect terms for all the celestial bodies. A direct term must be included in 
(4) to offset the indirect term in 0R  unless the direct term itself is sufficiently small (in 
which case that body has little impact on 0R itself). In making comparisons, we will be 
mindful of including sufficient celestial bodies to produce accurate ephemeredes. 
 
We will assess the impact of the third assumption on several different test cases by 
comparing the solutions to (1), (4) and (6) when both FS and F0 are taken as zero. We 
would expect the solutions to (1) and (4) to always match closely, but not match solutions 
to (6) when B0 experienced more than point-mass gravitational effects. 
 
To compute 0R , the acceleration of B0 in the inertial frame in (4), we rely on numerical 
central difference formulas since the accelerations of the celestial bodies are not provided 
directly by JPL. We compare two formulas for obtaining accelerations from velocity data, 
using a variety of step sizes.  (We also tried using position samples but in general this 
proved less accurate and more sensitive than using velocity formulas.) The central 
differences formulas are: 
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where V0 denotes the velocity of B0 and ∆t denotes the sample step size.  Though the 
formulas are generally more accurate when ∆t is small, if ∆t is too small they have 
precision problems in floating point arithmetic due to subtracting numbers that agree to 
many significant digits.  
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RESULTS 
 
Earth-Moon System 
 
Six test cases are considered in the Earth-Moon system.  Three are orbits about the Earth: 
a low-earth orbit (LEO), a highly-elliptical orbit (HEO), and a geosynchronous orbit 
(GEO).  Two are orbits about the Moon: a low-lunar orbit (LLO) and an elliptical lunar 
orbit (ELO).  The sixth test case is a five day transfer orbit from the Earth to the Moon 
(XFER).  The transfer starts at low-earth orbit (290 km altitude) just after a trans-lunar 
injection burn (TLI) and ends at 100 km altitude above the Moon, just before a lunar orbit 
insertion burn (LOI) would occur.  Table 1 gives the orbital elements of the first five test 
cases and the initial state vector in J2000 of the transfer case.  The first five test cases 
have an epoch of 1 Jul 2007 12:00:00 UTC, and the transfer case has an initial epoch of 1 
Jul 2007 05:35:24.178 UTC.  The orbits are integrated for five days with a 20 second step 
size with a Runge-Kutta-Fehlberg 7(8) integrator using STK/Astrogator. 
 

Table 1: Test cases in Earth-Moon system 
Test Case a (km) e i (deg) ω (deg) Ω (deg) ν (deg) 

LEO 6678.136 0.01 28.5 0 0 0 
HEO 26553.4 0.741 63.4 270 0 0 
GEO 42164.0 0.0001 1.0 0 0 0 
LLO 1837.4 0.01 45 0 0 0 
ELO 12000 0.75 45 0 0 0 

 X (km) Y (km) Z (km) Vx (km/s) Vy (km/s) Vz (km/s) 
XFER -6654.097 437.354 -11.608 -0.642728 -9.537455 5.108033 

 
In addition to the Earth, Moon, and Sun, all planets are included in the integration.  
Including all planets is necessary when integrating in the barycenter (1) or when using 
numerical differentiation to compute 0R in (4), because the direct terms of each planet is 
significant.  When using the classical formula the planets are not significant, because the 
direct and indirect terms (nearly) cancel out. Table 2 shows the maximum difference in 
position over five days between including and not including each planet for the LEO test 
case when integrating in the barycenter and when using the classical formula.  The 
position of the planets is found from JPL DE 405 files, and the gravitational parameters 
from JPL DE 405 are used in the integration.  At this epoch Mercury is closer than Mars 
to Earth, so it has a larger effect than Mars for the barycenter integration.  In the classical 
integration, only Jupiter and Venus have a significant effect; the other planets only add 
noise to the results.  In the barycenter case the Sun has a larger effect than the Moon, 
because its gravity is larger, but in the classical case the Moon has a larger effect than the 
Sun, because the Sun is farther away. 
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Table 2: Effect of each body on LEO position over 5 days 
Planet Barycenter (m) Classical (mm) 
Sun 6990000 292 

Moon 39700 598 
Jupiter 427 3.10 
Venus 109 1.09 
Saturn 34.8 0.0540 

Mercury 3.20 0.218 
Mars 2.36 0.0181 

Uranus 1.75 0.0243 
Neptune 0.652 0.0284 

 
To determine the best method for computing 0R , both the second-order and fourth-order 
central difference formulas in (7) are used with step sizes of 1000, 100, 10, 5, 1, and 0.1 
seconds.  Using these combinations (4) is integrated in two different reference frames: 
one with Earth as the origin, and one with the Moon as the origin.  Figures 1 through 6 
show the maximum difference, in millimeters, between integrating in the different 
reference frames for both the second-order (O2) and fourth-order (O4) formulas.  
Because changing the origin should not affect the trajectory if the acceleration of the 
origin is modeled correctly, the differencing method that yields the least difference 
between the trajectories should be modeling the acceleration best. 
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Figure 1: Numerical differentiation position 

differences in LEO 
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Figure 2: Numerical differentiation 

position differences in HEO 
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Figure 3: Numerical differentiation position 

differences in GEO 
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Figure 4: Numerical differentiation 

position differences in LLO 
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Figure 5: Numerical differentiation position 

differences in ELO 
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Figure 6: Numerical differentiation 

position differences for Transfer 
 
The figures show that the fourth-order formula is less sensitive to step size than the 
second order formula, which is expected because it uses more samples.  The differences 
decrease as the step size decreases in the second-order case down to a step size of 5 sec, 
while in the fourth-order case the differences are relatively constant for step sizes 
between 1000 sec and 1 sec.  For both formulas the differences increase at a step size of 
0.1 seconds, where precision problems occur from subtracting close numbers. Some test 
cases show an increase in the difference at 1 sec compared to 5 sec while the others show 
similar results at 5 sec and 1 sec.  Because we wish to have one method that works well 
for all test cases, we use a five second step size with the fourth-order formula in the 
comparisons against the solar system barycenter and classical approaches.  Though not 
shown in the figures, using the Earth-Moon barycenter as the origin gives similar 
differences to those shown in Figures 1-6 for the combinations of step size and central 
differencing formula, when compared to using the Earth or the Moon as the origin.  
When the Earth-Moon barycenter is used in the numerical approach, its acceleration with 
respect to the solar system barycenter is used as 0R in (4). 
 
To measure the effect of neglecting F0 in (6), the test cases are integrated using the 
barycenter (1), using the numerical approach (4) with the fourth-order formula and a 5 
sec step size, and using the classical approach (6).  For the numerical and classical 
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approaches, the integrations are performed using three origins: the Earth, the Moon, and 
the Earth-Moon barycenter.  In the Earth-Moon barycenter case, the classical formula has 
no indirect term for the Earth and the Moon, only for the Sun and other planets.  Table 3 
shows the maximum differences over 5 days for each test case between the using either 
the numerical or classical approaches for each origin and the using the solar system 
barycenter. 
 

Table 3: Maximum differences against integrating in the solar system barycenter in 
Earth-Moon system (meters) 

 Classical Numerical 
Test case Earth Moon Barycenter Earth Moon Barycenter 

LEO 0.288 0.833 0.668 0.124 0.123 0.118 
HEO 7.07 39.0 30.5 0.408 0.406 0.419 
GEO 3.310 9.53 9.29 0.0492 0.0489 0.0486 
LLO 0.328 1.36 0.875 0.195 0.190 0.189 
ELO 6.97 28.8 21.1 0.0174 0.0147 0.0124 

XFER 33.9 61.3 150 0.699 0.718 0.711 
 
The table shows meter-level differences in the classical approach compared to using the 
solar system barycenter.  Using the Moon as the origin with the classical approach gives 
more difference than using the Earth, which is more likely due to the Earth’s oblateness 
effects on the Moon’s orbit than the Moon’s oblateness effects on the Earth’s orbit, so the 
classical approach models the Earth better.  Using the Earth-Moon barycenter as the 
origin in the classical approach gives less difference in most cases than using the Earth, 
but more than the Earth. 
 
Using the numerical approach matches the barycenter better than the classical approach, 
in some cases by an order of magnitude or more.  This is expected because the equations 
of motion used in the numerical approach (4) come directly from the equations for the 
barycenter approach (1) with no assumptions.  In fact, the differences shown in Table 3 
for the numerical approach are most likely errors in the barycenter integration.  The 
position of the spacecraft with respect to the barycenter is very large, on the order of 
1.5×108 km.  Using numerical integration with numbers this large gives a significant 
amount of round-off error, which will build up over the integration.  Because the 
numerical approach provides consistent results regardless of origin to 10 mm or better 
(Figures 1-6), it can be considered to be more accurate than using the solar system 
barycenter as the origin. 
 
Jovian system 
 
A similar study is performed in the Jovian system with a test case orbit about Io.  Table 5 
gives the orbital elements for the orbit.  For this test the Sun, Jupiter, Io, Europa, 
Ganymede, Europa, Callisto, and all other planets are included in the force model, as well 
as Earth’s moon.  The position of the Sun, planets and moons is found from JPL Spice 
files (Ref. 2), and the gravitational parameters used in creating the Spice files are used for 
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the bodies.  For Saturn, Uranus and Neptune, the barycenter positions from the Spice files 
are used, as are the system gravitational parameters. 
 

Table 5: Test case in Jovian system (orbit about Io) 
rp (km) e i (deg) ω (deg) Ω (deg) ν (deg) 
2500 0.05 45 0 0 0 

 
As in the Earth-Moon tests, both central difference formulas (7) are used with step size of 
1000, 100, 10, 5, 1 and 0.1 seconds.  These formulas are used with three origins: Jupiter, 
Io, and the barycenter of the Jovian system.  Using the Jovian barycenter as the origin 
gives the same results as using Jupiter for all step sizes for both formulas.  Figure 7 
shows the maximum differences over five days between using Jupiter and Io as the origin 
for each formula and step size.  The figure shows that the fourth-order case gives 
relatively constant results for step sizes between 100 sec and 1 sec, while the second-
order case shows the difference decreasing between 1000 sec and 1 sec.  For both 
formulas the cases match best at 1 sec.  However, for consistency with the Earth-Moon 
test, a step size of 5 seconds is used in the comparisons against the other approaches. 
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Figure 7: Numerical differentiation position differences in Jupiter-Io case 

 
Table 6 shows the differences between the classical, numerical, and barycenter 
approaches.  The table shows that using Io with the classical approach gives hundreds of 
kilometers of difference. When the numerical approach is used, the difference between 
using Io as the origin and using the solar system barycenter is reduced to meters.  The 
numerical approach also reduces the difference in using Jupiter as the origin versus using 
the solar system barycenter, by an order of magnitude.    Using the Jupiter barycenter in 
the classical approach gives the same result as using the Jupiter barycenter, or Jupiter 
itself, in the numerical approach. 
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Table 6: Maximum differences against integrating in the solar system barycenter for 
Jupiter-Io case (meters) 

Classical Numerical 
Jupiter Io Barycenter Jupiter Io Barycenter 
45.7 447000 1.08 1.08 3.05 1.08 

 
Saturn system 
 
A study is also performed in the Saturn system with an orbit about Enceladus.  Table 7 
gives the elements of the orbit.  In this test the Sun, Saturn, Enceladus, all planets and 
Earth’s moon are included in the force model, as well as Saturn’s other moons: Mimas, 
Tethys, Dione, Rhea, Titan, Hyperion, Iapetus, and Phoebe.  JPL Spice files are used for 
the ephemeris of the Sun, planets and moons, and the gravitational parameters used in the 
Spice files are also used (Ref. 2).  The barycenter position and system gravitational 
parameters are used for Jupiter, Uranus and Neptune.  Because the orbit around 
Enceladus cannot be maintained due to Saturn’s gravity, the test case is integrated for 
only 12 hours. 
 

Table 7: Test case in Saturn system (orbit about Enceladus) 
a (km) e i (deg) ω (deg) Ω (deg) ν (deg) 
363.35 0.067 86 274 66 220 

 
Figure 8 shows the maximum differences over 12 hours between trajectories computed 
using (4) with Saturn and Enceladus as origins with both central difference formulas (7) 
for various step sizes.  The figure shows similar results as Figures 1-7, and shows the best 
agreement using a 5 second step size with the fourth-order formula. 
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Figure 8: Numerical differentiation position differences in Saturn-Enceladus case 

 
Table 8 shows the differences between the classical, numerical, and barycenter 
approaches.  As in the case about Io, using Enceladus as the origin with the classical 
approach gives hundreds of kilometers of difference, in this case after only 12 hours.  
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With the numerical approach the difference is improved by six orders of magnitude.  
Using Saturn as the origin in the classical approach also shows meter-level differences 
against the solar system barycenter.  The smallest differences arise from using the Saturn 
barycenter, which matches the solar system barycenter to 0.186 m using both the classical 
and numerical approaches. 
 

Table 8: Maximum differences against integrating in the solar system barycenter for 
Saturn-Enceladus case (meters) 

Classical Numerical 
Saturn Enceladus Barycenter Saturn Enceladus Barycenter 
7.66 221000 0.186 0.189 0.234 0.186 

 
DISCUSSION 
 
The test cases demonstrate that the solutions using different reference bodies are 
essentially the same when using (1) and (4), but may differ when using (6). The 
difference is most pronounced when the reference body’s ephemeris was generated using 
more than point-mass gravitational effects.  At first, one may believe that this makes the 
use of (6) suspect; however, the reverse is true: the actual trajectory produced by (6) is a 
better model of the ephemeris of the spacecraft than all the others. 
 
Consider again the use of Io as the reference body. The ephemeris for Io includes the J2 
gravitational effect of Jupiter. However, by setting FS to zero, Jupiter’s J2 effect is not 
considered when modeling the forces on the spacecraft. This is a modeling error: the J2 
effect may be modeled as being on or off, but needs to be consistently applied to all 
bodies, the spacecraft included.  Since the ephemeris for Io has already made the 
modeling decision to include Jupiter’s J2 effect, the effect must be included on the 
spacecraft as well. Thus, testing using FS as zero doesn’t model the spacecraft motion 
properly. 
 
Even so, the solution already created using (6) with Io as the reference body better 
reflects the actual spacecraft motion because it can be viewed as incorporating Jupiter’s 
J2 effect (at least approximately).  We computed (6) viewing both FS and F0 as zero. 
However, they need not be viewed as being individually zero: it is their difference 
(divided by the appropriate masses) that was actually treated as zero.  When modeling 
Jupiter’s J2 effect, the difference expression in (6) becomes 
 

 ( )0
1 1 ( ) ( )T S J Bi Bi

om M
µ′ − = Φ − −Φ −F F F r r r  (8) 

 
where S′F  represents the component of FS caused by the non-point mass gravitation of B0 

and ( )Φ ⋅  represents the expression of Jupiter’s J2 effect normalized by its gravitational 
coefficient. When the spacecraft is near Io, r << rBi ,  (8) is approximately zero. Thus, the 
solutions we created about Io to (6) are consistent with a model incorporating Jupiter’s J2 
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effect on both the spacecraft and Io. As this represents a consistent modeling of the 
gravitational effect of Jupiter on all bodies, this trajectory betters models the actual 
spacecraft motion. Of course, an even better model would actually evaluate (8) and not 
treat it as zero---this would require the ability to evaluate the gravitational field of Jupiter 
even when treating it as a third body. 
  
CONCLUSIONS 
 
While in principle the formulation of the equations of motion has little bearing on the 
obtained trajectories, in practice this is not the case. Different formulations may lead to 
different trajectories because of assumptions being made when implementing the 
formulations. Above all, one must be careful to be consistent when including 
gravitational effects in each formulation to achieve accurate trajectories. 
 
The formulation with the origin at the solar system barycenter, equation (1), suffers from 
numerical truncation problems for spacecraft that orbit near a celestial body. Moreover, 
the gravitational effects from all celestial bodies must be included on the spacecraft to 
achieve an accurate trajectory (including non-point mass effects).   The formulation that 
uses a reference celestial body as the origin but computes the reference body acceleration 
numerically, equation (4), eliminates the truncation issue but still must model all 
gravitational effects from all celestial bodies on the spacecraft. 
 
There are several advantages to the last formulation, equation (6), which separates the 
reference body acceleration into two parts. First, the dominant point-mass gravitational 
effect of third bodies only appears as a tidal term (i.e., in the form of a difference of a 
direct and indirect term). When the spacecraft remains close to the reference body, the 
direct and indirect terms nearly cancel. This provides a mechanism for ignoring certain 
celestial body gravitational effects entirely while still maintaining an accurate trajectory.  
A consequence of this, however, is that if the tidal force FT  is ignored (i.e., treated as 
zero) but is not nearly zero, solutions to (6) using different reference bodies will be 
different.  Only by computing FT , by including the full gravity fields of all the bodies,  
will solutions to (6) be equivalent using different reference bodies. 
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