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Abstract

Existing definitions for optimal orbit determination are not satisfac-
tory. Any useful definition must explicitly address questions relating to se-
quential processing, linearization, performance function and its extremal-
ization, state estimate structure completeness, use of physics in applicable
stochastic processes, and criteria for validation. Such a definition is pre-
sented.

1 Introduction
Orbit determination refers to the estimation of orbits of spacecraft (or natural
satellites or binary stars) relative to primary celestial bodies, given applicable
measurements. All useful orbit determination methods produce orbit estimates,
and all orbit estimates have errors. But what is optimal orbit determination?
By itself, the adjective optimal refers [21] to most desirable, most favorable,

or most satisfactory. But most satisfactory to whom? There are choices to
make from available orbit determination methods. The fastest methods are the
least accurate. Should we prefer sequential methods to batch methods? Should
we minimize the size of measurement residuals or the size of orbit errors? How
should we model measurement residuals and orbit errors?
All orbit determination problems are multidimensional and nonlinear. Should

we attempt a multidimensional nonlinear solution directly? Or should we use a
linearization method? If so, is there a preferred method for linearization?
What is optimal orbit determination? My answer is given in Section 4.7

herein.

2 Orbit Determination Methods
Orbit determination methods are distinguished with three categories according
to their inputs, outputs, and accuracy performance:

• Initial orbit determination (IOD)
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• Batch least squares differential corrections (LS)
• Sequential processing (SP)

Operationally, the order in which these methods are used defines a depen-
dency tree: IOD output is LS input, and LS output is SP input:

IOD =⇒ LS =⇒ SP

For accuracy performance: IOD produces crude orbit estimates, LS produces
refined orbit estimates in a batch processing mode, and SP produces refined
orbit estimates in a sequential mode.
IOD methods input tracking measurements with tracking platform locations,

and output spacecraft position and velocity estimates. No a priori orbit esti-
mate is required. IOD methods are characterized by the use of approximations
and/or recursive algorithms operating on nonlinear two-body dynamics. IOD
methods were derived by various authors[16]: LaPlace, Gauss, Lagrange, Lam-
bert, Gibbs, Herrick, Williams, Stumpp, Lancaster, Blanchard, Gooding, and
Smith. Operationally, the orbit determination process is frequently begun, or
restarted, with IOD.
LS methods input tracking measurements, tracking platform locations, an a

priori orbit estimate, and other a priori state parameter values. The LS output
contains a refined orbit estimate. An a priori orbit estimate is required. LS
methods consist of a sequence of linear LS corrections. At each correction,
the LS algorithm processes a subset of a fixed batch of tracking measurements
simultaneously. Each correction is characterized by the minimization of the sum
of squares of measurement residuals, and by the use of definitive deterministic
force models. The LS method was derived first by Gauss in 1795, and then
independently by Legendre. Gauss’ English translation was first available in
1857[1].
SP methods input tracking measurements with tracking platform locations,

an a priori state estimate (inclusive of orbit estimate), and an a priori state
error covariance matrix. An a priori state estimate is required, and an a priori
state error covariance matrix is required. SP methods output state estimates
and state error covariance matrices. SP methods are forward-time recursive se-
quential machines consisting of a repeating pattern of time update of the state
estimate and measurement update of the state estimate. The time update propa-
gates the state estimate and its error covariance forward, and the measurement
update incorporates the next measurement. State estimate error magnitudes
grow during the time update interval, and are reduced at times of measurement
update. The growth of state estimate error magnitudes is due most significantly
to errors in force models: gravity, air-drag, solar photon pressure, spacecraft
thrusting for trajectory and attitude maneuvers, outgassing of stored fuel, and
thermal radiation. SP methods account for the recursive growth and reduction
of state estimate errors according to the time order in which they are realized.
SP methods were developed and proposed by Swerling[9], Kalman[4], Bucy[7],
and others.
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In summary, IOD methods produce crude state estimates X̂ from measure-
ments alone, whereas LS and SP methods produce refined corrections ∆X̂ to a
priori state estimates X̂.

3 Mathematical Operators for SP Methods

3.1 Subscript Notation

3.1.1 State Matrices

The state estimate X̂ is referred to two times with the notation[5]:

X̂j|i ≡ X̂ (tj |ti) (1)

where i, j ∈ {0, 1, 2, . . .}. The time tj to the left of the vertical bar denotes the
epoch for X̂, and is driven by the filter time update function. The time ti to the
right of the bar denotes the time-tag of the last measurement processed to form
X̂, and is driven by the filter measurement update function. Examples: X̂7|6
refers to the state estimate at time t7, given the last measurement processed
at time t6, whereas X̂7|7 refers to the state estimate at time t7, given the last
measurement processed at time t7. Evidently, X̂7|6 was obtained by filter time
update of X̂6|6 from t6 to t7.
Similar notation is used for the state estimate correction:

∆X̂j|i ≡ ∆X̂ (tj |ti) (2)

and the state estimate error covariance matrix:

Pj|i ≡ P (tj |ti) (3)

3.1.2 Measurement Matrices

Denote a measurement at time tj with yj , and denote a measurement estimate
(representation) at time tj with ŷj|h.

3.2 Nonlinear Operators

Nonlinear operators are required in the state estimate time update and the state
estimate measurement update for SP methods of orbit determination.

3.2.1 State Propagation

Let ϕ denote a nonlinear operator that propagates the state estimate X̂i|h from
time ti to time tj :

X̂j|h = ϕ
n
tj ; X̂i|h, ti

o
(4)
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3.2.2 Measurement Representation

Let y (·) denote a nonlinear operator that calculates the measurement represen-
tation ŷj|h, given the state estimate X̂j|h:

ŷj|h = y
³
X̂j|h, tj

´
(5)

3.3 Linear Operators

3.3.1 State Estimate Error Propagation

Let Φj,i ≡ Φ (tj , ti) denote the linear operator that propagates the state error
estimate ∆X̂i|h from time ti to time tj

∆X̂j|h = Φj,i∆X̂i|h (6)

where

Φj,i =

·
∂Xj

∂Xi

¸
X̂j|h

(7)

and where evaluation derives from X̂j|h.

3.3.2 Measurement Residual

Let ∆yj denote the linear operator that defines the measurement residual at
time tj :

∆yj = yj − ŷj|h (8)

3.3.3 Measurement/State Partials Jacobian

Let Hj denote the jacobian of measurement to state partial derivatives at time
tj :

Hj =

·
∂yj
∂Xj

¸
X̂j|h

(9)

where evaluation derives from X̂j|h.

4 Definitions

4.1 State Estimate Reference for Linearization of SPMeth-
ods

Evaluation of the measurement representation ŷj|h defined by Eq. 5 requires
the use of some a priori state estimate reference X̂j|h, where tj ≥ th. A similar
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requirement is associated with Eqs. 7 and 9. I refer to X̂j|h as the state estimate
reference for linearization.

4.2 Local Linearization

Let tk and tk+1 ≥ tk be the time tags of adjacent ordered measurements yk and
yk+1, for k ∈ {0, 1, 2, . . .}. That is, there exist no measurements between yk and
yk+1. Then the use of X̂k+1|k as the state estimate reference for all linearizations
at time tk+1 defines local linearization at time tk+1.
The use of any state estimate reference other than X̂k+1|k at time tk+1 for

linearization is a non-local linearization at time tk+1.

4.3 Global Linearization

Given the integer variable k ∈ {0, 1, 2, . . .} and any fixed non-negative integer
j, then the use of X̂k|j as the state estimate reference for linearization at time
tk for each k defines global linearization.

4.4 Observability

A particular state estimate parameter is observable to a particular measurement
if and only if the sequential processing of that measurement reduces the estimate
error variance on that parameter.

4.5 Completeness

The state estimate structure is complete if and only if all parameters, that are
both unknown and observable, are contained in the state estimate structure.

4.6 McReynolds’ Filter-Smoother Consistency Test

Given the matrix response values to a forward running sequential filter and an
associated backward running sequential fixed interval smoother for times tk,
k ∈ {0, 1, 2, . . . , L}, a rigorous consistency test was defined[6] at each time and
on each of the N state estimate elements.
Calculate the N ×N difference matrix P̄k|L between the filtered covariance

matrix P̂k|k and the smoothed covariance matrix P̃k|L for time tk:

P̄k|L = P̂k|k − P̃k|L (10)

for each k ∈ {0, 1, 2, . . . , L}. The difference matrix P̄k|L has no negative eigen-
values. Denote the square root of the ith main diagonal element of the N ×N
difference matrix P̄k|L as σik|L. Also calculate the N × 1 difference matrix X̄k|L
between filtered state estimate X̂k|k and smoothed state estimate X̃k|L for time
tk:
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X̄k|L = X̂k|k − X̃k|L (11)

Denote the ith element of the N × 1 difference matrix X̄k|L as X̄i
k|L. Now

calculate and graph the ratio :

Ri
k|L = X̄i

k|L/σ
i
k|L (12)

for each i ∈ {1, 2, . . . , N} and for each k ∈ {0, 1, 2, . . . , L}.

4.6.1 Test

If for each i ∈ {1, 2, . . . , N} and for each k ∈ {0, 1, 2, . . . , L} we have:¯̄̄
Ri
k|L
¯̄̄
≤ 3 (13)

then McReynolds’ filter-smoother test is satisfied globally. If for each i ∈
{1, 2, . . . ,N} and for each k ∈ {0, 1, 2, . . . , L} we have:¯̄̄

Ri
k|L
¯̄̄
> 3 (14)

then McReynolds’ filter-smoother test is failed globally. For each i for which
inequality 13 is satisfied McReynolds’ filter-smoother test is passed for that state
estimate element, and for each i for which inequality 14 is satisfied McReynolds’
filter-smoother test is failed for that state estimate element.

4.7 Optimal Orbit Determination

By optimal orbit determination, I mean that the method used to calculate
the state estimate (containing the orbit estimate) satisfies the following eight
requirements:

1. Sequential processing (SP) is used to account for force modeling errors and
measurement information in the time order in which they are realized.

2. The optimal state error estimate ∆X̂ is the expectation of the state error
∆X given the measurement residual ∆y. That is: ∆X̂ = E {∆X|∆y}.
This is Sherman’s Theorem [2][3][4][5].

3. Linearization of state estimate time transition and state to measurement
representation is local in time, not global.

4. The state estimate structure is complete

5. All state estimate models and state estimate error model approximations
are derived from appropriate force modeling physics, and measurement
sensor performance
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6. All measurement models and measurement error model approximations
are derived from appropriate sensor hardware definition and associated
physics, and measurement sensor performance

7. Necessary conditions for real data:

• Measurement residuals approximate Gaussian white noise[5][8]
• McReynold’s filter-smoother consistency test is satisfied with proba-
bility 0.99

8. Sufficient conditions for simulated data: The state estimate errors agree
with the state estimate error covariance function.

The first six requirements define standards for optimal algorithm design,
and the creation of a realistic state estimate error covariance function. The
last two requirements enable validation: They define realizable test criteria for
optimality. The last requirement implies the development and use of a physically
realistic measurement simulator.

5 Discussion

5.1 SP Initialization

Successful initialization of sequential processing requires an a priori state esti-
mate (and error covariance) that is within the capture region of the sequential
processor.
Capture refers to the subsequent non-divergence of the sequential proces-

sor. Divergence refers to the unbounded separation between the state estimate
and the true state. Divergence is most directly identified by the autonomous
sequential rejection of all measurements.

5.2 Sherman’s Theorem

Sherman’s Theorem is applicable to a linear state estimate; i.e., a condition
where the state estimate is a linear combination of available measurements. But
in all orbit determination problems, the orbit (substate) estimate is a nonlinear
function of available measurements. We must linearize in order to use Sherman’s
Theorem.
Optimal orbit determination requires measurement linearization about the

local state estimate X̂k+1|k to produce a local measurement residual :

∆yk+1 = yk+1 − y
³
X̂k+1|k

´
and linearization about the same local state estimate X̂k+1|k to produce a local
state error estimate ∆X̂k+1|k+1, given ∆yk+1. Local linearization enables a
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linear relation between each state error estimate ∆X̂k+1|k+1 and each measure-
ment residual ∆yk+1. With local linearization, one applies Sherman’s Theorem
anew to each scalar measurement residual, never simultaneously to a batch of
measurement residuals.
Let ∆Xk+1|k = Xk+1|k − X̂k+1|k define the error in state estimate X̂k+1|k,

and let δXk+1|k = ∆Xk+1|k − ∆X̂k+1|k define the error in ∆X̂k+1|k. Ideally
δXk+1|k = 0, and the state error estimate ∆X̂k+1|k is perfect. When δXk+1|k 6=
0, assign a penalty (or loss) function L = L

¡
δXk+1|k

¢
with four admissibility

requirements:

• L is a scalar-valued function of the N state estimate variables.

• L (0) = 0, where the first 0 is an N×1 matrix of zeros. No loss is assigned
when the state error estimate is perfect.

• L
³
δXa

k+1|k
´
≥ L

³
δXb

k+1|k
´
whenever ρ

³
δXa

k+1|k
´
≥ ρ

³
δXb

k+1|k
´
, where

ρ is a scalar-valued, non-negative, convex function of N variables. Thus
L is defined to be a non-decreasing function of distance ρ from the origin.
The closer δXk+1|k is to zero, the smaller the loss.

• L
¡
δXk+1|k

¢
= L

¡−δXk+1|k
¢
. That is, L (·) is symmetric about the origin.

Performance J
£
δXk+1|k

¤
is defined as the of the expectation of the loss:

J
£
δXk+1|k

¤
= E

©
L
¡
δXk+1|k

¢ª
(15)

That is, our measure of performance is defined by the mean value of loss. Our
goal is to minimize J

£
δXk+1|k

¤
.; i.e., to minimize the mean value of loss.

Denote the conditional probability distribution function of ∆Xk+1|k given
∆yk+1 by:

P
©
∆Xk+1|k ≤ ξ|∆yk+1

ª
= F {ξ|∆yk+1} (16)

The reader is referred to Chapter 5.0, Section 5.2, of Meditch [5] for the
following theorems.

5.2.1 Most General Form

Given any admissible loss function L
¡
δXk+1|k

¢
, and any conditional probability

distribution function F {ξ|∆yk+1} such that F {ξ|∆yk+1} is:

• Symmetric about its mean ξ̄

• Convex for all ξ ≤ ξ̄

then:

∆X̂k+1|k+1 = E
©
∆Xk+1|k|∆yk+1

ª
(17)

8



Application of the conditional mean E
©
∆Xk+1|k|∆yk+1

ª
generates a global

minimum to the performance function J
£
δXk+1|k

¤
. This is true for all com-

binations of admissible loss functions and symmetric and convex conditional
probability distribution functions. Proof is due to Sherman[2][3].

5.2.2 Gaussian Distribution

Given any admissible loss function L
¡
δXk+1|k

¢
, and Gaussian random variables

∆Xk+1|k and ∆yk+1, then:

∆X̂k+1|k+1 = E
©
∆Xk+1|k|∆yk+1

ª
(18)

Application of the conditional mean E
©
∆Xk+1|k|∆yk+1

ª
generates a global

minimum to the performance function J
£
δXk+1|k

¤
, even for asymmetric loss

functions. Proof is due to Doob[14].

5.2.3 Mean Square Error

If L
¡
δXk+1|k

¢
=
¡
δXk+1|k

¢T ¡
δXk+1|k

¢
, then:

∆X̂k+1|k+1 = E
©
∆Xk+1|k|∆yk+1

ª
(19)

The loss function
¡
δXk+1|k

¢T ¡
δXk+1|k

¢
is referred to as the mean square state

error. Minimization of the performance function E
n¡

δXk+1|k
¢T ¡

δXk+1|k
¢o

results, in part, in the minimization of mean square orbit error. Application
of the conditional mean E

©
∆Xk+1|k|∆yk+1

ª
generates a global minimum to

the performance function. In this case the conditional probability distribution
function need not be either symmetric or convex. Proof is due to Doob[14].

5.3 Complete State Estimate

Consider any case where the state estimate structure is incomplete. The ob-
servable parameter neglected in the state estimate structure will alias into the
estimated orbit elements, significantly degrading them. Thus one needs an ap-
propriate place in the state estimate structure to put every observable effect.

5.4 Gaussian White Noise

5.4.1 What is it?

In one dimension, I think of a Gaussian white noise sequence as a sequence of
ratios from a random walk sequence Rj , j ∈ {0, 1, 2, . . .}. The numerator in
each ratio is the difference (Rj+1 −Rj) in the random walk functional across
a specified time interval [tj, tj+1], and the denomenator is the associated time
difference (tj+1 − tj). The ratio limit (tj+1 − tj) −→ 0 does not exist[14]. Thus

9



one must always use Gaussian white noise in a granular manner. The Wiener-
Levi (random walk) sequence developed in Papoulis [11] provides appropriate
useful results for application.

5.4.2 Measurements

Gaussian white noise models are used appropriately for themal noise when
associated with resistance in electronic circuits [12]. Thus Gaussian white
noise is used directly for modeling stochastic phenomena in clocks, transmit-
ters, receivers, and sensors. Range and Doppler measurements consist of signal,
Gaussian white noise, and various biases.
Gauss[1] used a Gaussian white noise model for orbit determination to rep-

resent noise in angles right ascension and declination.

5.4.3 Linear Systems

Gaussian white noise is used appropriately, but indirectly, as a linear system
input to develop a Gaussian stochastic output functional with particular serial
correlation properties. This provides a convenient method to represent stochas-
tic modeling errors in some cases. But in other cases this method is useless;
e.g., for acceleration modeling errors that derive from errors in modeling the
geopotential.

5.4.4 Not Spacecraft Acceleration Model Errors

Acceleration modeling errors that derive from errors in modeling the geopoten-
tial, atmospheric density, and solar photon pressure are random and nonsta-
tionary, but they are not white.

6 Summary
Optimal orbit determination refers to the satisfaction of the eight requirements
given in Section 4.7. It remains to demonstrate mathematically and physically
under exactly what set of conditions these requirements are realizable and mu-
tually consistent. For now, I rely on their successful use for the past twenty-two
years.
This paper is presented in response to a request from Dave Vallado.
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