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INCLUDING VELOCITY UNCERTAINTY IN THE PROBABILITY OF
COLLISION BETWEEN SPACE OBJECTS

Vincent T. Coppola∗

While there has been much research on computing the probability of collision
between space objects, there is little work on incorporating velocity uncertainty
into the computation. We derive the formula from first principles, including both
position and velocity uncertainty. Moreover, trajectories will evolve according to
differential equations and not by approximating the relative motion. The end re-
sult is a 3-dimensional integral over time on the surface of a sphere. We show
that the formula recovers the classic formula in the limit as the velocity uncer-
tainty approaches zero. Finally, the results produced using the new formula will
be compared to the results of Monte Carlo simulations.

INTRODUCTION

The derivation of the probability of collision formula goes back at least as far as the work of Foster
and Estes1 who developed a formula applicable to the ISS. Improvements and extensions were made
by Chan,2, 3 Alfano,4, 5 Khutorovsky et al.,6 Akella and Alfriend,7 Patera,8 Oltrogge,9 and others.
Chan’s book3 serves as resource for many aspects of spacecraft collision probability, including
computational considerations. Alfano’s works5, 10, 11 also include development of computational
methods for determining conjunction probability in short-term and long-term encounters.

The relative position uncertainty is the primary focus of these derivations; any velocity uncer-
tainty, if considered at all, only leads to the relative position uncertainty changing with time: it
is not an integral part of the formula itself. During long-term encounters, initial velocity uncer-
tainty would lead to significantly different trajectories even when starting at the same position. The
differing trajectories should then have some impact on whether a collision occurs and affect the
probability of collision value.

In this paper, we derive the formula for the probability of collision between space objects from
first principles. The two objects will be modeled as having both position and velocity uncertainty
(as the orbit determination process would model them as having) and their trajectories will evolve
according to differential equations describing their motion (and not approximated as lines or by the
CW equations). At each stage in the derivation, the requisite assumptions will be identified.

The derivation begins by connecting the Monte-Carlo simulation process for computing the prob-
ability of collision to a formula that integrates a probability density function over time. The critical
insights are that (i) the spatial integral of import is the surface of a sphere fixed in the relative po-
sition space of the two objects; and (ii) a time integral arises by considering the flux of trajectories
entering the sphere over time. Both constructs follow naturally. The sphere arises from the defini-
tion of the probability of collision. The flux arises from a transformation of variables into spherical
∗Sr. Astrodynamics Developer, Analytical Graphics Inc., 220 Valley Creek Blvd, Exton PA, 19341.
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coordinates. This is different from the discussion in Khutorovsky et al.6 and Akella and Alfriend7

in that only the influx will be seen to be of importance, not the outflux.

Before simplification, the expression for the probability of collision is a 12-dimensional integral:
the 12 dimensions arise from the state of each object being 6 dimensional (3 each for position
and velocity). Surprisingly, 9 of the dimensions can be integrated analytically leaving only a 2-
dimensional integral over a sphere and a 1-dimensional integral over time. The expression results
from mild assumptions (e.g., the covariances of the two objects are uncorrelated and Gaussian; each
relative trajectory is in collision only once); neither the short encounter duration assumption nor
the linear motion assumption has been made at this point however. While the expression is not an
analytic formula, it is quite simple to compute numerically. The time integral can be performed
using Simpson’s rule; integration routines on a spherical surface have been developed since the late
1950’s, with the best known being those developed by Lebedev.12 Both algorithms are well-suited
for parallelization using multiple threads and/or GPUs.

After deriving the fundamental expression, we will show that the result reduces to the classic
short encounter result in the limit as the velocity uncertainty approaches zero. We then compare
the results of the new formula with the results of Monte Carlo simulations, for both short-term and
long-term encounters. The new formula is shown to be both accurate and fast to compute.

DERIVATION

We are interested in finding the probability that the range between two space objects will become
less than some specified threshold R within a time of interest.

Definition. Given initial conditions for two objects at time t0, a radius thresholdR > 0,
and a maximum time of interest T > 0, two objects are said to collide if ∃t ∈ [t0, t0+T ]
such that‖r(t)‖ ≤ R, where r(t) is relative range vector between the objects at time t.

This is a simple view of the term ’collision’. To actually determine whether two objects collide
or not, one would need to know the attitude and location of each of its parts and then determine
whether any of the parts would come into contact. The attitude and configuration of each object is
not usually known, especially for debris, which is why this simpler definition is used. The value R
is usually chosen as the sum of the hard body radii∗ of the two objects.

Note. While there are just a few key concepts used in the derivation, the mathematical detail can
appear daunting at times. Details have been provided to help the reader see the validity of the end re-
sult. The derivation brings together many different mathematics fields (e.g., integration, dynamical
systems, probability theory, normal distributions). Guidance is provided to the reader to put these
pieces into place to solve the larger puzzle. The derivation ends with the probability of collision
formula defined by Eq. (38).

Note. The appendices provide background information on probability density functions and Gaus-
sian distributions that may help acclimate the reader to issues discussed in the derivation. Ap-
pendix A contains several lemmas that will be used in the derivation to simplify many of the results.

∗The hard body radius of an object is the radius of the smallest sphere that would encompass the entire object.
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Fundamental Formula

The dynamical model for the two objects is given by

dX

dt
= f(X, t) ,X(t0) = X0 (1)

X = (xa,xb) ,

xi(t0) = xi0 , i = a, b,

where xi = (ri,vi) with ri being the position of object i and vi its velocity. The relative motion
will be denoted by x = (r,v) where

x = xb − xa ,

r = rb − ra ,

v = vb − va .

While the motion is deterministic, the initial conditions are uncertain∗. The corresponding proba-
bility density function ρ0(X0; t0) has the property that for any domain Γ for X0, the probability that
X0 ∈ Γ is

P (X0 ∈ Γ) =

∫
Γ

ρ0(X0; t0)dX0 . (2)

Note that the initial condition space spanned by X0 is 12-dimensional. The mean initial condition
will be denoted by (µa0 ,µb0) = (µra0

,µva0
,µrb0

,µvb0
). We will use the term ’nominal trajectory’

to describe the solution to Eq. (1) with initial conditions given by (µa0 ,µb0). In general, the nominal
trajectory at time t is not the mean value of X at time t. (The nominal trajectory is the mean
trajectory when the state equations in Eq. (1) describe a linear system.)

Let V ⊆ R12 be the set of initial conditions for which a collision occurs. By definition, the
probability of collision is then

P =

∫
V

ρ0(X0; t0)dX0 . (3)

The definition of P given by Eq. (3) is the mathematical description of computing the probability
using a Monte Carlo technique. In a Monte Carlo simulation, initial conditions X0 would be sam-
pled, and trajectories for both objects would be computed (perhaps through numerical integration
of Eq. (1)) over the time interval [t0, t0 +T ]. These trajectories would then be investigated to deter-
mine whether a collision occurred at some time t. If they do produce a collision, then X0 ∈ V . The
probability is then determined from the sampled results. Of course, many samples must be taken to
insure accuracy (see Alfano11). For a 12-dimensional system the cost to perform the Monte Carlo
simulation can be prohibitive, given the accuracy needed from the computation.

Transforming Variables using the State Equations

The difficulty in evaluating Eq. (3), of course, is the determination of the set V . Define V0 as
the set of initial conditions X0 for which ‖r(t0)‖ ≤ R, that is, the set of initial conditions that

∗The initial state of a space object is determined by an orbit determination process that aims to produce an estimate
for the state given various measurements. While both the dynamical model and the measurements may be assumed to be
uncertain, we shall not consider dynamical model uncertainty in this paper.
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are within the specified range R at the initial time t0. Define VI = V − V0, i.e., the set of initial
conditions having a collision at some time t > t0. From Eq. (3), we find P = P0 + PI where

P0 =

∫
V0

ρ0(X0; t0)dX0 and PI =

∫
VI

ρ0(X0; t0)dX0 . (4)

We shall concentrate most of our efforts at evaluating PI because in many cases P0 can be well-
approximated as 0. In particular, if the TCA∗ for the nominal trajectory occurs at t∗ � t0 then it
may be the case that the objects are so widely separated at t0 that ρ0(V0; t0) ≈ 0 leaving P0 ≈ 0. In
any case, P0 can be computed since V0 is fully known:

V0 = {X0 | ‖r0‖ ≤ R} where r0 = r(t0) . (5)

No initial condition X0 ∈ VI meets the range criterion for collision at t0, but will meet it at some
later time t > t0. Consider a subset of initial conditions Ωt ⊂ VI whose trajectories satisfying
Eq. (1) first meet the conditions for collision at time t, i.e.,

Ωt = {X0 | ‖r(t)‖ = R, but ‖r(τ)‖ > R ∀τ ∈ [t0, t)}. (6)

Every initial condition X0 ∈ VI must be in exactly one set Ωt for some t ∈ (t0, t0 + T ] and thus

VI =
⋃

t∈(t0,t0+T ]

Ωt. (7)

The set Ωt is still difficult to characterize; however, its definition in Eq. (6) suggests that PI is
simpler to evaluate in new variables.

The dynamical flow given by Eq. (1) creates a t-parametric transformation Φt : X0 7→ X(t), i.e.,
X = Φ(X0, t; t0). Applying the transformation to the set Ωt, we find

Λt = Φt(Ωt) = {X(t) | ‖r(t)‖ = R, but ‖r(τ)‖ > R ∀τ ∈ [t0, t)}. (8)

Thus, the set VI under the transformation of variables Φt becomes

UI =
⋃

t∈(t0,t0+T ]

Φt(Ωt) =
⋃

t∈(t0,t0+T ]

Λt . (9)

The transformation of the integrand follows from the conservation of probability on differential
elements†:

ρ0(X0; t0)dX0 = ρ(X, t; t0)dX (10)

where ρ(X, t; t0) is the probability distribution function at time t. Thus, in the transformed vari-
ables,

PI =

∫
UI

ρ(X, t; t0)dX =

t0+T∫
t0

∫
Λt

ρ(X, t; t0)dX . (11)

∗Time of Closest Approach.
†See Appendix B for a discussion of the effect of a variable transformation on the probability of density function.
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Figure 1. Transforming coordinates using Φt : X0 7→ X(t) maps Ωt into Λt at each time t > t0.

Transforming Variables using the Relative Motion

More care must be taken concerning dX in Eq. (11) than at first appears. Given a time t, the
integration is first performed over Λt, which is an 11-dimensional set. During that integration,
r(t) = ‖r(t)‖ remains constant with value R. It is natural then to use coordinates for UI that
respect Λt, and thus use the coordinates (xa,x) = (ra,va, r,v), with r = r(r, φ, θ) expressed in
spherical coordinates. On Λt, the coordinate r has the constant valueR, while the other 11 elements
vary. Letting dAΛt represent the ’area’ element on Λt, we find

dX = dxa dxb = dxa dx = dxa dr dv ,

= R2 cos θ dxa dv dr dθ dφ , dAΛt dr,

=

∣∣∣∣drdt
∣∣∣∣dAΛt dt =

∣∣v · r̂∣∣dAΛt dt, (12)

where r̂(φ, θ) is the unit vector along r. The absolute value arises from the standard change of
variables formula for differential elements,

dξ =

∣∣∣∣det
∂ξ

∂η

∣∣∣∣dη. (13)

The probability PI becomes

PI =

t0+T∫
t0

∫
Λt

ρ(X, t; t0)
∣∣v · r̂∣∣dAΛt dt. (14)

Finding the Integration Limits

Now that we have coordinates for Λt, we must determine the limits of integration. Looking at
Eq. (8), we see that trajectories on Λt first meet the range criteria at time t, and not before. Moreover,
on those trajectories we must have dr/dt = v(t) · r̂(t) ≤ 0. We now adopt two assumptions:

Assumption (A1). Only one crossing. Each collision trajectory in VI meets the crite-
rion ‖r(t)‖ = R with v(t) · r̂(t) ≤ 0 just once during the time (t0, t0 + T ].
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Assumption (A2). Trajectories must cross. No collision trajectories in VI satisfy r =
R for a finite interval of time. Trajectories either cross at time t with v(t) · r̂(t) < 0
or are at a local minimum of r at time t so that r(t + dt) > R ∀dt > 0 no matter how
small.

Comment. One may need to choose t0, T , and R properly to meet Assumption (A1). This assump-
tion will not be met only in exceptional cases; for example, the assumption should be investigated
when the two objects are controlled to move close together for an extended time (i.e., formation
flying). We expect Assumption (A2) to be met almost always; if not, one can adjust the value of R
to meet the assumption.

Given Assumptions (A1) and (A2), there is only one time t at which r = R with v · r̂ ≤ 0 on
each collision trajectory in VI . Thus, Λt is completely known, and the integration limits for PI can
now be specified. The probability PI becomes

PI =

t0+T∫
t0

2π∫
0

π
2∫

−π
2

∫
v·r̂≤ 0

∞∫
−∞

ρ(X, t; t0)
∣∣v · r̂∣∣R2 cos θ dxa dv dθ dφ dt . (15)

Comment. While the term v · r̂ is a flux term, Eq. (15) does not result from an application of
Reynold’s transport theorem. Reynold’s transport models the time derivative of an extrinsic quan-
tity (e.g., mass) defined as an integral of an intrinsic quantity (e.g., mass density) over a bounded
volume. The extrinsic quantity has a value at each time t. The time derivative of the extrinsic quan-
tity at t depends on the transportation of the intrinsic quantity across the volume’s surfaces and any
generation of the intrinsic quantity within the volume itself. In that computation both influx and
outflux must be considered∗. In our case, collision probability is defined for a time interval, not at
any particular time t. However, one could readily define a concept like ’probability of collision at
time t’ for which Reynold’s transport would apply where of course both influx and outflux would
need to be considered. In fact, the discussions from Akella and Alfriend7 and from Khutorovsky6

follow along these lines. However, one cannot easily compute the collision probability over a time
interval from a probability concept known as a function of time because the collision probability at
each time t is correlated in time to its value at nearby times (i.e., values are not independent over
time). This a direct result of trajectories moving according to a dynamical model, and not randomly.
With the time correlation itself difficult to determine, it is difficult to integrate the proper expression
over a time interval to arrive at the correct result.

Modeling Independent Objects

The most typical case involving space objects is that the orbit determination is performed inde-
pendently for each object and each object’s force model is independent of the location of the other
object. We make the following assumption:

Assumption (A3). Independence. The dynamic model and probability distribution
function for each object is independent.

∗In contrast, Eq. (15) models only influx, which resulted from identifying trajectories in Ωt.
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Comment. This would not be an appropriate model for objects flying in formation where control
acutation was made on one object (e.g., using small thrusters or drag make-up) based upon the
location of the other object.

Applying Assumption (A3), the dynamical model of Eq. (1) becomes

dxa
dt

= fa(xa, t) ,xa(t0) = xa0 , (16a)

dxb
dt

= fb(xb, t) ,xb(t0) = xb0 . (16b)

The combined probability distribution ρ(X, t; t0) is computed as

ρ(X, t; t0) = ρa(xa, t; t0)ρb(xb, t; t0) = ρa(xa, t; t0)ρb(xa + x, t; t0). (17)

The probability PI becomes

PI =

t0+T∫
t0

2π∫
0

π
2∫

−π
2

R2 cos θ

∫
v·r̂≤ 0

∣∣v · r̂∣∣ ∞∫
−∞

ρa(xa, t; t0)ρb(xa + x, t; t0) dxa dv dθ dφ dt . (18)

Gaussian Distributions

In many cases, the probability distribution functions ρi are approximated as Gaussian distribu-
tions. An initially Gaussian distribution will evolve over time as Gaussian for linear dynamical
models; the dynamical model for space objects given by Eq. (1), however, is decidedly nonlinear.
On the other hand, the error dynamics for the system results from linearizing the dynamical model
about the nominal trajectory. An initially Gaussian distribution of the error will remain Gaussian
over time because of its linear dynamical model; likewise, the nominal trajectory at every time t
represents the mean value of the state error at each time t. The probability distribution of the error
dynamics is often used as an approximation to the probability distribution function of the full sys-
tem, for trajectories that remain near the nominal trajectory. Motivated by these notions, we make
the following assumption:

Assumption (A4). Gaussian distribution. The probability distribution functions ρa
and ρb remain Gaussian at each time t.

Comment. This assumption means that the means µa(t) and µb(t) and the covariances Pa(t) and
Pb(t) are known on t ∈ [t0, t0 + T ]. Certainly, when the equations of motion in Eq. (16) are
linear, then the mean and covariance are readily computed as functions of the initial mean, initial
covariance and the state transition matrix.

Since the product of two Gaussian distributions is again Gaussian, the expression for P0 and PI
can be simplified further. Let Nn(ξ,η,P) represent a normal distribution for an n-dimensional
variable ξ with mean η and covariance matrix P, i.e.,

Nn(ξ,η,P) =
1√

(2π)n
1√

det P
exp

[
−1

2
(ξ − η)T P−1 (ξ − η)

]
. (19)
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Applying Assumption (A4), we find

ρa(xa, t; t0) = N6(xa,µa,Pa) , ρb(xb, t; t0) = N6(xb,µb,Pb) (20)

and∗

ρa(xa, t; t0)ρb(xa + x, t; t0) = N6(xa,µa,Pa)N6(xa + x,µb,Pb)

= N6(xa + Tx,µa + Tµ,G)N6(x,µ,P) (21)

where µ = µb − µa, P = Pa + Pb, G−1 = P−1
a + P−1

b , and T = GP−1
b . Note that the second

normal distribution does not depend on xa.

The expression for P0 becomes

P0 =

∫
‖r0‖≤ R

∞∫
−∞

N6(x0,µ0,P)

∞∫
−∞

N6(xa0 + Tx0,µa0 + Tµ0,G)dxa0 dv0 dr0 ,

=

∫
‖r0‖≤ R

∞∫
−∞

N6(x0,µ0,P)dv0 dr0 , (22)

where the inner integration becomes 1 because of Lemma III and Lemma V. Using Eq. (21),
Lemma III and Lemma V, the expression for PI given in Eq. (18) becomes

PI =

t0+T∫
t0

2π∫
0

π
2∫

−π
2

R2 cos θ

∫
v·r̂≤ 0

N6(x,µ,P)
∣∣v · r̂∣∣dv dθ dφ dt . (23)

Integrating Over the Relative Velocity

The integrals in Eq. (22) and Eq. (23) can be further simplified by performing the integration over
the relative velocity v. First partition the covariance matrix P into its 3× 3 parts:

P =

∣∣∣∣ A BT

B C

∣∣∣∣ (24)

where A and C are symmetric positive-definite 3× 3 matrices. Applying Lemma I of Appendix A,
we find

N6(x,µ,P) = N3(r,µr,A)N3(v′,µ′v,C
′) , (25)

where µ = (µr,µv), v′ = v −BA−1r, µ′v = µv −BA−1µr, and C′ = C−BA−1BT .

Simplifying P0. Using Eq. (25) in Eq. (22), we find

P0 =

∫
‖r0‖≤ R

N3(r0,µr0 ,A0)

∞∫
−∞

N3(v′0,µ
′
v0 ,C

′
0)dv′0 dr0 .

=

∫
‖r0‖≤ R

N3(r0,µr0 ,A0) dr0 , (26)

where Lemma V has again been applied to the inner integral. As expected, the velocity uncertainty
completely integrates out of the expression. The expression for P0 integrates the range uncertainty
within the volume of a sphere of radius R using the initial (Gaussian) probability distribution.
∗See Appendix C for a derivation of this product of two normal distributions.

8



Simplifying PI . The expression for PI becomes

PI =

t0+T∫
t0

2π∫
0

π
2∫

−π
2

R2 cos θN3(r,µr,A)ν(r̂, t) dθ dφ dt (27)

where ν(r̂, t) =

∫
v′·r̂+ε0(r̂,t)≤ 0

N3(v′,µ′v,C
′)
∣∣v′ · r̂ + ε0(r̂, t)

∣∣ dv′ . (28)

where v · r̂ = v′ · r̂ + ε0(r̂, t) with ε0(r̂, t) = R r̂TBA−1r̂. The expression for ν(r̂, t) can be found
explicitly by first noting that r̂ is just a parameter during this integration (it will be integrated over
in the outer integration over As). Let î = (1, 0, 0) and define T so that î = Tr̂. (The choice for T
of course depends on the parameter r̂). Using Lemma IV from Appendix A,

N3(v′,µ′v,C
′) = N3(v′′,µ′′v ,D) (29)

where v′′ = Tv′, µ′′v = Tµ′v, and D = TC′TT . Partition D as

D =

∣∣∣∣ σ2 wT

w E

∣∣∣∣ where σ(r̂, t) ∈ R,w ∈ R2 , (30)

with σ(r̂, t) > 0 being a scalar and E a symmetric positive-definite 2× 2 matrix. Note that σ(r̂, t)
is the standard deviation of the effective relative velocity uncertainty in the r̂ direction, and is com-
pletely known from

σ2 = îTDî = r̂TC′r̂ = r̂T
(
C−BA−1BT

)
r̂ . (31)

Applying Lemma I from Appendix A, we find

N3(v′′,µ′′v ,D) = N1(ε, µε, σ
2)N2(ζ − ε

σ2
w,µζ −

µε
σ2

w,E− 1

σ2
wwT ) , (32)

where v′′ = (ε, ζ) and µ′′v = (µε,µζ). The variable µε is completely determined from

µε = îTµ′′v = îTTµ′v = r̂T
(
µv −BA−1µr

)
. (33)

Substituting into Eq. (28), noting that r̂Tv′ = îTTv′ = îTv′′ = ε, and again using Lemma III and
Lemma V,

ν(r̂, t) =

∫
ε+ε0(r̂,t)≤0

N1(ε, µε, σ
2)
∣∣ε+ ε0(r̂, t)

∣∣dε . (34)

Noting that on the integration range for ε the term ε+ ε0(r̂, t) ≤ 0, and then simplifying, we find

ν(r̂, t) =

−ε0(r̂,t)∫
−∞

− 1√
2πσ

(ε+ ε0(r̂, t)) exp

[
−(ε− µε)2

2σ2

]
dε . (35)

This is readily integrated analytically as

ν(r̂, t) =
σ(r̂, t)√

2π
H(ν̃) , (36a)
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H(ν̃) = e−ν̃
2 −
√
πν̃ (1− erf(ν̃)) , (36b)

ν̃ =
ν0(r̂, t)√
2σ(r̂, t)

, (36c)

where ν0(r̂, t) = ε0(r̂, t) + µε, expressed in the original variables, is

ν0(r̂, t) = r̂T
[
µv + BA−1 (Rr̂− µr)

]
. (37)

Comment. The condition v · r̂ ≤ 0 defines a half-infinite space with a planar boundary. The
transformations made above create a pair of coordinates that are parallel to the planar boundary and
one coordinate perpendicular to it. The integration for the pair is then over an infinite plane and
integrates to 1; the integration for the other coordinate is over a half-infinite line. The variables
σ(r̂, t), ν(r̂, t), and ν0(r̂, t) each have the dimension of velocity. A plot of H(ν̃) shows that it
monotonically decreases∗ as ν̃ increases and H(ν̃) → 0 as ν̃ → ∞; it is positive for all ν̃. Thus,
ν(r̂, t) is positive for all ν0(r̂, t).

Summary

The formula for the probability of collision between two objects, meeting Assumptions (A1),
(A2), (A3), and (A4) is given by P = P0 + PI where

P0 =

R∫
0

2π∫
0

π
2∫

−π
2

N3 (r0,µr(t0),A(t0)) r2
0 cos θ dθ dφ dr0 , (38a)

PI =

t0+T∫
t0

2π∫
0

π
2∫

−π
2

N3(r,µr(t),A(t))ν(r̂, t) R2 cos θ dθ dφ dt , (38b)

where µr(t) is the mean relative position, A(t) is the covariance of the relative position, ν(r̂, t)
is defined by Eq. (36), and (θ, φ) are spherical coordinates parameterizing r̂. The integral for P0

involves the volume of a sphere; the integral for PI is the integral on the surface of a sphere over
the time interval being considered.

Extension for Non-Gaussian distributions

Recently, there has been much interest in better approximating the probability density function
for nonlinear dynamical systems, where Assumption (A4) is not used. One approach is the use of a
Gaussian mixture model13 where the probability density function is represented as a weighted sum
of Gaussian distributions. In that case, the formula developed in Eq. (38) can be readily extended.

REDUCTION TO THE CLASSIC SHORT ENCOUNTER FORMULA

The classic short encounter formula for the probability of collision between space objects has
been derived by many authors.1, 4, 2, 7 In the derivations, the motion of the objects is modeled by
Eq. (16) (using a very simple choice for fi) meeting Assumption (A3). The probability density
function is modeled as Gaussian meeting Assumption (A4). Assumptions (A1) and (A2) are met as
a consequence of the motion described below in Assumption (A6).
∗The derivative dH/dν̃ =

√
π (erf(ν̃)− 1) is negative for all ν̃.
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Velocity Uncertainty

In addition to the assumptions already made above, three new key assumptions are made. The
first new assumption is

Assumption (A5). No Velocity Uncertainty. The velocity uncertainty is zero, rendering
ρa and ρb as being functions only of position and time.

Comment. This assumption means that the initial relative velocity v0 is known precisely, though
the initial relative position r0 is still uncertain. While perturbed trajectories all have the same initial
relative velocity v0, they may have different relative velocity v at later times, depending on the
dynamical model given in Eq. (16). Trajectories with initial conditions within the range R of the
mean initial condition will only stay within R over time if the divergence of the vector field fb − fa
is non-positive (i.e., volume elements do not expand over time). Moreover, if the divergence is
negative, then volume elements contract over time and it is possible that a trajectory initially outside
the range R will become within R at some later time.

As a consequence of Assumption (A5), the combined covariance matrix P is only concerned
with the 3 × 3 matrix A. To apply this assumption to the general result, we take B → 0 and
σ → 0+ (since σ was derived in a manner requiring σ > 0). Then ν0(r̂, t) in Eq. (37) becomes
µv · r̂. The limit as σ → 0+ of the exponential term in Eq. (36b) is zero but the other term takes
some care. Since r̂ is an integration variable whose integration limits span the entire surface of a
sphere, ν0(r̂, t) can be positive, negative or zero. When ν0(r̂, t) is zero, the limit of the second term
in Eq. (36b) is zero. When ν0(r̂, t) is positive, erf() → 1 and the limit is zero. When ν0(r̂, t) is
negative, erf()→ −1, and

lim
σ→0+

ν(r̂, t) = −ν0(r̂, t) = −µv · r̂ , when ν0(r̂, t) ≤ 0 . (39)

The integration limits for (φ, θ) can now be restricted to the hemisphere where µv · r̂ ≤ 0. Since
t is just a parameter during the integration over a sphere, we can choose t-dependent axes for the
spherical coordinates that align the x-axis with µv. Then the integral can be expressed as

PI = −
t0+T∫
t0

3π
2∫

π
2

π
2∫

−π
2

N3(r,µ,A)(µv · r̂) R2 cos θ dθ dφ dt . (40)

This would agree with Eq.(26) from Akella and Alfriend7 and with Eq.(2) from Khutorovsky et al.6

except they incorrectly indicate to integrate over the entire sphere, not just a hemisphere∗.

Short Encounter Time

The next key assumption is that the encounter occurs over such a small time interval that certain
approximations are valid:

Assumption (A6). Short Encounter Time. The time interval over which the encounter
takes place is small enough that

∗In subsequent equations, both derivations actually only integrate over a hemisphere, arriving at the correct result.
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i. The motion of each object can be well-approximated as a straight line.

ii. The combined covariance is constant in time.

Comment. Taken together, Assumptions (A5) and (A6i) imply that all perturbed trajectories have
the same constant relative velocity v = v0 over time. Moreover, the vector field in Eq. (16) has
no divergence and trajectories do not move apart from each other. In fact, trajectories for a sphere
of initial conditions with r0 ≤ R centered on the mean trajectory sweep out a cylinder over time,
often referred to as the collision tube. Only trajectories starting within the tube can ever collide; no
trajectory outside the tube ever crosses inside. The probability of collision formula can be derived
using this property of the tube; however, in more general situations where the divergence is not
zero, a tube swept out by initial conditions within a sphere of radius R does not represent the only
trajectories that could have a collision.

The straight-line approximation combines with Assumption (A5) to require that fi = (vi0 , 0) in
Eq. (16), resulting in dr/dt = v0, making the solution for the mean trajectory

µr(t) = µr0 + µv0(t− t0) = µr0 + v0(t− t0) . (41)

For this system, with the velocity uncertainty zero, it can easily be shown that the relative position
covariance remains constant in time.

Integrating over the Encounter Time

We can further simplify Eq. (40) by noting that since µv = v0, v0 = v0 î. In that case,

µx(t) = µx0 + v0(t− t0) , (42a)

µy(t) = µy0 , (42b)

µz(t) = µz0 . (42c)

The integral over the hemispherical area can be performed by instead integrating over the cross-
sectional area Ac perpendicular to v0 (i.e., with normal î and coordinates y and z∗). Note that we
must take x ≤ 0 when integrating over r = (x, y, z) to properly represent the integral over the
correct hemisphere. The probability integral becomes

PI =

t0+T∫
t0

∫∫
Ac

N3(r,µr,A0)v0 dydzdt . (43)

where we have used dy dz = R2 cos2 θ cosφdθ dφ = R2 cos θ dθ dφ |̂i · r̂| and î · r̂ ≤ 0. This agrees
with Eq.(28) of Akella and Alfriend7 though they integrate over all time rather than adhering to a
short time duration. Following them, we apply Lemma II, letting r = (x, ζ) with ζ = (y, z) and

A0 =

∣∣∣∣ η2 wT

w Pc

∣∣∣∣ η ∈ R,w ∈ R2 . (44)

We find

N3(r,µr,A0) = N1(x−wTP−1
c ζ, µx −wTP−1

c µζ , σ
2
ν)N2(ζ,µζ ,Pc), (45)

where σ2
ν = η2 −wTP−1

c w .

∗Actually, Eq. (40) integrates over the left hemisphere whose normal is −î.
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Note µζ = µζ0 is a constant over time given Eq. (42), and that the second normal distribution in
Eq. (45) is independent of time t. The probability integral is then

PI =

∫∫
|ζ|≤R

N2(ζ,µζ0 ,Pc)

t0+T∫
t0

N1(x−wTP−1
c ζ, µx −wTP−1

c µζ0 , σ
2
ν)v0 dt dζ , (46)

where x = −
√
R2 − ζ · ζ and µx is given in Eq. (42a). The inner integral is an integral over time

t, treating ζ as a parameter, where the only time dependence lies in µx, and simplifies to
t0+T∫
t0

N1 v0 dt =

χT∫
χ0

N1(χ, 0, σ2
ν) dχ , (47a)

where χ = v0(t− t0) + wTP−1
c (ζ − µζ0

) +
√
R2 − ζ · ζ + µx0 . (47b)

Even though the encounter is assumed to be of short duration, the time integration is usually
performed over all time (or equivalently, for χ ∈ (−∞,∞) in Eq. (47a)), and using Lemma III and
Lemma V the integral is 1. From a computational perspective, the duration T need not be infinite;
it just needs to be long enough to make the the integral approximately 1. The relevant time scale
is ∆t = σν/v0, and the integral will be approximately 1 for T ' N ∆t, for an integer N not too
large. Several authors3, 5 describe the time integration as instead an integration along the axis of the
collision tube using a distance measure related to χ.

The Short Encounter Formula

We now make two additional assumptions:

Assumption (A7). Time integrates out. The time integration interval is sufficiently long
to approximate the time integral as 1, but not so long as to violate the short encounter
assumption (A6).

Comment. Assumption (A7) is a somewhat odd assumption. Its effect is to simplify the resulting
expression.

Assumption (A8). Initial probability is negligible. The time t0 can be chosen to make
P0 ≈ 0.

Comment. Assumption (A8) is satisfied whenever there exists a time t0 at which the objects are
widely separated. This assumption would need to be investigated for objects that remain close at all
time, i.e., objects in formation.

Using all assumptions, we find

P ' PI =

∫∫
|ζ|≤R

N2(ζ,µζ0 ,Pc)dζ , (48)

which is the classic formula for the probability of collision for short encounters. The computation
takes place over the interior of a circle of radius R where the plane of the circle is perpendicular to
the relative velocity v0. This is referred to as the encounter plane when the velocity v0 is taken to be
the relative velocity at TCA. The covariance Pc is the combined covariance of the relative position
projected into this plane.
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RESULTS

We compare the value obtained from the probability of collision formula defined by Eq. (38) with
Monte Carlo results for a selection of test cases created by Sal Alfano.11 Alfano published a set of
test cases that compared the results of Monte Carlo simulation with several short-term and long-term
probability of collision formulas. In the tests, the mean motion (µr(t),µv(t)) was approximated as
the difference in the nominal motions∗ of the two objects and the probability density function was
approximated as being Gaussian about this mean motion, with the covariance being propagated in
time using the appropriate linear time-update law. Often, millions of simulations would need to be
run to insure statistically significant Monte Carlo results.

Routines were written in MATLAB to compute P0 and PI given a table of ephemerides that in-
cluded 6×6 covariance matrices. The grid of ephemeris data was generated by STK† by numerically
integrating the trajectory and the covariance matrix. When computing PI , the time integration was
performed first, using Simpson’s rule; the integration over the sphere was done using a high-order
Lebedev12 method available from MathWorks. Likewise, when computing P0, the radial integration
was performed first using Simpson’s rule and the integration over the sphere was performed using
Lebedev’s method. Lebedev’s method was computed using 1454 samples, though the results are not
appreciably different when using 2030 or 5810 samples. MATLAB is not particularly well-suited
for fast computations, yet the typical computational time was only about 30 secs: the exception was
test case 10 which needed 10 secs steps to achieve accuracy and took 2 minutes to compute.

Test case 3 involves a short-term encounter of GEO objects for which the classic formula works
well. All 10 methods assessed by Alfano for this case produce results within 0.5%–1.0% of the
Monte Carlo value of 0.100846. We compute a value of 0.100424 (a difference of -0.4%) using
Eq. (38) for the time interval [−8, 8] sec, where t = 0 represents the TCA. The time step used for
the time integration was set at 0.1 sec to insure enough samples to achieve accuracy (the results
were off by 10% using a step of 1.0 sec). At t0 = −8, the initial probability P0 is zero and the
probability accumulates over the conjunction interval because of trajectories having a collision at a
later time.

It is instructive to see how the probability is affected by the choice of time interval. We divided
the original interval [−8, 8] into two parts: the left interval [−8, t[] and the right interval [t[, 8] for
various t[ and compiled the results listed in Table 1. One can see that the initial probability P0 is
greatest at TCA (see P0 for the right interval at t[ = 0). The impacting trajectories are much more
probable before TCA (see the increase of PI for the left interval) than after TCA (see the nearly zero
value for PI for the right interval for t[ ≥ 0). The probability P for the right interval decreases as t[

increases because trajectories that collided at earlier times are not considered: the exception is the
value listed at t[ = −0.8. That time is near the time of the most probable impacting trajectory and is
more sensitive to the time step used in performing the integration. Figure 2 shows the effect of step
sized selection for one sample point on the sphere. Using a step size of 0.01 sec, the conjunction
probability is computed to be 0.100287, and the value of P for the right interval always decreases
as t[ increases.

A much better test of Eq. (38) involves long-term encounters where the assumptions required by
short-term formula are not met. Four examples from Alfano are shown in Table 2. In each case, the
TCA corresponds to t = 0. Of all the methods compared by Alfano, the voxel method10 was closest

∗The nominal motion is the trajectory corresponding to the mean initial condition.
†Software available from Analytical Graphics Inc., www.agi.com.
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Table 1. Results for a Short-Term Encounter: Test Case 3

t[ Left Interval Right Interval

(sec) P0 PI P P0 PI P

-1.0 0.0 0.004367 0.004367 0.004387 0.096057 0.100443
-0.8 0.0 0.041028 0.041028 0.040762 0.059396 0.100158
-0.6 0.0 0.073343 0.073343 0.073219 0.027080 0.100299
-0.4 0.0 0.089232 0.089232 0.089098 0.011192 0.100289
-0.2 0.0 0.097368 0.097368 0.097230 0.003056 0.100287
0.0 0.0 0.100170 0.100170 0.099778 0.000254 0.100031
0.2 0.0 0.100422 0.100422 0.097219 0.000002 0.097221
0.4 0.0 0.100424 0.100424 0.089086 0.000000 0.089086
0.6 0.0 0.100424 0.100424 0.073309 0.000000 0.073309
0.8 0.0 0.100424 0.100424 0.040578 0.000000 0.040578
1.0 0.0 0.100424 0.100424 0.003301 0.000000 0.003301

to the Monte Carlo results, which involves the numerical integration of many trajectories. Alfano
recommends that voxels only be used in reference cases because of the computational complexity
and slow computation speed. In all cases shown in Table 2, the probability P computed using
Eq. (38) is more accurate than even voxels and computes quickly. For test case 11, Alfano re-ran
the Monte Carlo simulation to count collisions exactly as this paper defines. The Monte Carlo and
voxel results listed in the table for test case 11 have been updated from his original paper. Only
one million simulations were run for this new simulation, however, so the confidence of this Monte
Carlo result is less than in the other test cases.

Table 2. Comparison with Monte Carlo Results: Long-Term Encounters

Orbit Step t0 t0 + T Conjunction Probability % Difference

Test Case Type (sec) (sec) (sec) Monte Carlo P Voxels P Voxels

4 GEO 60.0 -21600 21600 0.073090 0.073643 0.073900 0.75 1.11
8 MEO 60.0 -10135 10135 0.035256 0.035201 0.035134 -0.16 -0.35

10 HEO 10.0 -14400 14400 0.362952 0.364002 0.366169 0.29 0.89
11 LEO 60.0 -1420 1420 0.004452 0.004320 0.003841 -2.92 -13.72

FURTHER WORK

One caveat in using Alfano’s test cases is that all the tests have very small velocity uncertainty.
Even near TCA, the velocity remains sufficiently small that Assumption (A5) is met and PI can be
computed using the simpler formula given by Eq. (40) with little change in the results. More work
needs to be done to create test cases with realistic velocity uncertainty (i.e., values typically found
for objects as a result of the orbit determination process) where statistically significant Monte Carlo
results have been computed.

CONCLUSIONS

We have derived a probability of collision formula from first principles, including both position
and velocity uncertainty, identifying all the relevant assumptions along the way. The formula applies
under very mild assumptions; in particular, no assumptions are made about the relative motion nor
constancy of the covariance. We have showed that the formula reduces to the classic short encounter
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Figure 2. The effect of step size selection on time integration for one sample point on
the sphere. The dashed line shows samples at 1 sec; the dotted line at 0.1 sec; and the
solid line at 0.01 sec.

formula under the requisite assumptions. Comparisons to Monte Carlo simulations show excellent
agreement in both short-term and long-term encounters and can be computed much faster than
previously proposed methods.
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APPENDIX A PROPERTIES OF GAUSSIAN DISTRIBUTION FUNCTIONS

LetNn(ξ,η,P) represent a normal distribution for an n-dimensional variable ξ with mean η and
covariance matrix P, a symmetric positive definite n× n matrix, i.e.,

Nn(ξ,η,P) =
1√

(2π)n
1√

det P
exp

[
−1

2
(ξ − η)T P−1 (ξ − η)

]
. (A1)

Consider a partitioning of ξ, η, and P where ξ = (ε, ζ), η = (ηε,ηζ) and

P =

∣∣∣∣ R QT

Q S

∣∣∣∣ , (A2)
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where ε and ηε are r-dimensional, ζ and ηζ are s-dimensional, Q is s×r, R is a symmetric positive
definite r × r matrix, Q is a symmetric positive-definite s× s matrix, and n = r + s.

Lemma I.

Nn(ξ,η,P) = Nr(ε,ηε,R)Ns(ζ + Tε,ηζ + Tηε,S
′),

where S′ = S−QR−1QT

and T = −QR−1.

Proof. Define ξ′ = (ε′, ζ′) = Mξ where the linear transformation matrix M is

M =

∣∣∣∣ Ir 0rs
T Is

∣∣∣∣ . (A3)

Note that M is invertible and has determinant 1. The transformation leaves ε unaltered (i.e., ε′ =
ε). Define η′ = Mη analogously. Under the transformation, the quadratic form in N6(ξ,η,P)
becomes

exp

[
−1

2
(ξ − η)T P−1 (ξ − η)

]
= exp

[
−1

2

(
ξ′ − η′

)T
M−TP−1M−1

(
ξ′ − η′

)]
(A4)

leading us to define P′ = MPMT where

P′ =

∣∣∣∣ R 0
0 S′

∣∣∣∣ (A5)

Note that det P = det P′ = det R det S′. Because P′ is trivially inverted, the quadratic form
becomes

exp

[
−1

2
(ξ − η)T P−1 (ξ − η)

]
= exp

[
−1

2

(
ξ′ − η′

)T
P′−1

(
ξ′ − η′

)]
= exp

[
−1

2
(ε− ηε)

T R−1 (ε− ηε)
]

× exp

[
−1

2

(
ζ′ − η′ζ

)T
S′−1

(
ζ′ − η′ζ

)]
. (A6)

Now from the transformation ζ′ = ζ + Tε and η′ζ = ηζ + Tηε, completing the proof.

Lemma II.

Nn(ξ,η,P) = Nr(ε+ TT ζ,ηε + TTηζ ,R
′)Ns(ζ,ηζ ,S),

where R′ = R−QTS−1Q

and T = −S−1Q.

Proof. This follows similarly to Lemma I, where

M =

∣∣∣∣ Ir TT

0sr Is

∣∣∣∣ . (A7)
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Lemma III.

Nn(ξ +$,η,P) = Nn(ξ,η −$,P) = Nn(ξ +$ − η,0,P) (A8)

Proof. Follows from direct computation.

Lemma IV.

N3(ξ,η,P) = N3(Tξ,Tη,TPTT ) (A9)

Proof. Follows from direct computation.

Lemma V.

∞∫
−∞

Nn(ξ,$,P) dξ = 1 (A10)

for any constant value$ whether it is the mean of ξ or not.
Proof. From Lemma III, Nn(ξ,$,P) = Nn(ξ −$, 0,P) = Nn(ξ′, 0,P) where the integration
limits remain over all space since $ is a constant parameter. By definition, integration of this last
expression over all space is 1.

APPENDIX B PROBABILITY DENSITY FUNCTIONS

Let ξ be a random variable with probability density function ρξ(ξ). The probability density
function has the property that for any domain V of ξ, the probability that ξ ∈ V is

P (ξ ∈ V ) =

∫
V

ρξ(ξ)dξ. (B1)

Invariance under transformation

The value of an integral is independent of the coordinates with which it is computed. Let ξ =
Φ(η, t) be a t-parametric transformation of variables from η to ξ, where Φ is a invertible continuous
function with continuous partial derivatives. Let Ψ(ξ, t) represent the inverse of Φ. The volume
elements are related by the Jacobian of the transformation J = ∂Φ/∂η according to

dξ = |det J| dη. (B2)

Define Ut as the transformation of V , i.e., Ut = Ψ(V, t). Then

P (ξ ∈ V ) =

∫
Ut

ρξ(Φ(η, t))| det J(η, t)| dη =

∫
Ut

ρη(η, t)dη = P (η ∈ Ut), (B3)

where
ρη(η, t) , ρξ (Φ(η, t))) | det J(η, t)| . (B4)

Obviously, ρη(η, t) satisfies the properties of a probability density function for η at each param-
eter value t. Thus, the probability contained within a differential volume is invariant under the
transformation, i.e.,

ρξ(ξ)dξ = ρη(η, t)dη. (B5)
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Time-evolution

Let η = Ψ(ξ, t) represent the t-parametric transformation of variables defined by the solution to
the differential equation

dη

dt
= F(η, t) , η(t0) = ξ, (B6)

with F being continuous with continuous partial derivatives, and bounded on some domain W .
Then solutions to Eq. (B6) exist and are unique on W . Moreover, the Jacobian K = ∂Ψ/∂ξ is not
singular on solutions in W (i.e., det K 6= 0) and since K(ξ, t0) is the identity matrix, det K > 0
on all solutions in W . Since J = K−1 and the determinant of the inverse is the reciprocal, Eq. (B4)
becomes

ρξ(ξ) = ρη(Ψ(ξ, t), t) det K(ξ, t) . (B7)

Differentiating with respect to time t, using Jacobi’s formula for the derivative of the determinant,
and simplifying, we find

0 =

(
∂ρη
∂t

+
∂ρη
∂η

∂Ψ

∂t

)
det K + ρη det K ∇η · F , (B8)

=
∂ρη
∂t

+∇ηρη · F + ρη∇η · F , (B9)

=
∂ρη
∂t

+∇η · (ρη F) . (B10)

Like Eq. (B7), Eq. (B10) expresses the conservation (or continuity) of probability. It is a PDE
for ρη(η, t) with boundary condition ρη(η, t0) = ρξ(ξ). This is just the deterministic part of
the Kolmogorov forward equation (KFE)∗. The KFE models the time-evolution of the probability
density function for systems modeled using stochastic differential equations.†

APPENDIX C PRODUCT OF TWO NORMAL DISTRIBUTIONS

Consider the product ρ of two normal distributions of the same dimension n of the form

ρ = Nn(xa,µa,Pa)Nn(xa + x,µb,Pb) . (C1)

ρ can be refactored into two other normal distributions where one is independent of xa. Let ξ =
xa − µa and η = x− µ with µ = µb − µa. Then by Lemma III

ρ = Nn(ξ, 0,Pa)Nn(ξ + η, 0,Pb) . (C2)

The exponential term appearing in Eq. (C2) becomes

exp

[
−1

2

{
ξTP−1

a ξ + (ξ + η)TP−1
b (ξ + η)

}]
. (C3)

Direct computation shows that the inner expression can be factored as

(ξ + Tη)TG−1(ξ + Tη) + ηTP−1
b (In −T)η , (C4a)

where G−1 = P−1
a + P−1

b , (C4b)

∗Also known by the name Fokker-Planck equation (FPE).
†See Reference 14 for a discussion.
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T = GP−1
b and In is the n × n identity matrix. Now P−1

b (In − T) = P−1
b − P−1

b GP−1
b , and

applying the matrix inversion lemma∗ we find(
P−1
b (In −T)

)−1
= Pb + (G−1 −P−1

b )−1 = Pb + Pa , P . (C5)

Therefore the exponential argument can be written

(ξ + Tη)TG−1(ξ + Tη) + ηTP−1η . (C6)

Now consider the determinant of P:

det P = det Pa det Pb det(P−1
a + P−1

b ) = det Pa det Pb det G−1 . (C7)

Since the determinant of the inverse is the reciprocal,

det Pa det Pb = det P det G (C8)

Thus using Lemma III,

ρ = Nn(ξ + Tη, 0,G)Nn(η, 0,P) = Nn(xa + Tx,µa + Tµ,G)Nn(x,µ,P) . (C9)
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