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QQ-PLOT FOR
SEQUENTIAL ORBIT DETERMINATION

James R Wright�

Abstract

Use of the Kalman measurement update theorem for sequential orbit determination incurs
the requirement, from fundamental hypothesis, that post-�t measurement residual ratios have a
standard normal distribution. When the residual sample size is small, comparison to the normal
density curve is not useful because small-sample normal ensembles do not resemble the in�nite-
ensemble normal curve (bell curve). The quantile-quantile (QQ) plot with Royston-Michael
acceptance boundaries for normal distributions is useful for small and large ensembles. Herein
I demonstrate the application of QQ-Plots to simulated measurement residual ratios. On real
data, QQ-Plots will be used to demonstrate, or deny, that the requirement is satis�ed.

INTRODUCTION

Electronic measurements are used to estimate spacecraft orbit states, attitude states, clock states,
and time-varying bias states due to measurement bias and force model bias. Herein I refer to post-�t
measurement residual ratios (measurement residual/root-variance) derived from the use of a sequen-
tial �lter-smoother algorithm for orbit determination. Electronic measurement sequences all have
signi�cant thermal noise components, and every thermal noise sequence has a normal distribution[2].
Measurement residuals are a composition of measurement thermal noise and random modeling er-
rors. Every measurement residual ratio is a standard normal variate when serially correlated residual
components are removed by optimal state estimation.
Measurement residual ratio histograms are compared to the standard normal density function1

N (0; 1) in Figures 1 and 2. This comparison enables one to identify undesired characteristics (mea-
surement bias, histogram2 peakedness, or histogram �atness) when ensemble size is large. When
ensemble size is small the histogram comparison is not useful. Quantitative acceptance boundaries
are not available for histograms, large or small.
We consider here the application of QQ-Plots and their acceptance boundaries to measurement

residual ratios derived from electronic measurements. An hypothesis for both the QQ-Plot test,
and for the Kalman measurement update theorem, is that the post-�t measurement residual ratios
be white; i.e., independent and identically distributed. Post �t measurement residual ratios due
to optimal state estimation are white[3][4]. Thus optimality can be supported, or denied, with a
whiteness test3 .
Given the use of simulated perfect models for spacecraft acceleration, attitude, and measurements,

and the use of simulated measurement data with simulated thermal noise, then post-�t measurement
residual ratios should be standard normal N(0; 1) variates. Inspection of the QQ-Plot on post-�t
measurement residual ratios enables immediate quantitative validation of these simulated models.

�ODTK Architect, Analytical Graphics, Inc., 220 Valley Creek Blvd, Exton, PA, 19341
1Notation N(�; �2) refers to a normal distribution with mean � and variance �2. Notation N(0; 1) refers to a

standard normal distribution because it has mean 0 and variance 1.
2My use of words peakedness and �atness does not refer to kurtosis (de�ned in [9]).
3An appropriate whiteness test was presented by John Seago[8] and David Vallado.



Given the use of imperfect models for spacecraft acceleration, attitude, and electronic measure-
ments, and given real electronic measurements whose measurement thermal noise is not masked (e.g.,
by truncation of the measurement word length), then post-�t measurement residual ratios are used
in a QQ-Plot to identify existense of imperfections in the models used. This enables (in part) the
development and validation of appropriate model corrections. For validation of su¢ ciently designed
models, it is necessary that post-�t measurement residual ratios have the standard normal N(0; 1)
distribution, and this is easily veri�ed by application of the QQ-Plot. Inspection of the QQ-Plot
enables validation for normal distribution, identi�cation of non-normal distribution, and quanti�es
additive bias, density function peakedness, and density function �atness.
The fundamental hypothesis for the Kalman �lter[3][4], adapted for use by ODTK4 , requires that

ODTK measurement residuals and state estimate modeling error corrections have normal distribu-
tions5 . Since each measurement residual is mapped linearly to the state estimate correction matrix
using the Kalman gain matrix, then the state estimate error correction matrix belongs to a normal
distribution if the measurement residual belongs to a normal distribution. Thus if each measurement
residual ratio is shown to belong to a standard normal distribution by application of a QQ-Plot, then
we have simultaneously demonstrated that each state estimate error correction matrix belongs to a
normal distribution. The QQ-Plot is used to demonstrate, or deny, that the fundamental hypothesis
for the Kalman �lter is satis�ed.

1 Histograms

Measurement residuals are a composition of measurement thermal noise and random modeling errors
�inclusive of force modeling errors and measurement bias. Denote measurement thermal noise (white
noise) root variance by �WN , and denote Gauss-Markov sequence measurement bias root variance by
�GM . Values for �WN and �GM are required ODTK �lter inputs for each measurement type on each
sensor. Each measurement residual ratio is de�ned with measurement residual in the numerator and
measurement residual root-variance in the denominator. When the measurement residual variance
input value is signi�cantly too small, �lter performance can become unstable, eventually leading to
�lter divergence. When the measurement residual variance input value is signi�cantly too large, state
estimate corrections are too large and optimal accuracy performance is degraded.
To correct a peaked histogram, reduce the size of the measurement residual ratio denominator to

increase the histogram frequency width. To correct a �attened histogram, increase the size of the
measurement residual ratio denominator to reduce the histogram frequency width.
Figures 1 and 2 present real-data examples that compare a peaked measurement residual ratio

histogram with its corrected histogram. Table 1 presents operational values associated with the
peaked histogram of Figure 1, and corrected values associated with the corrected histogram of Figure
2. Note that root variances �WN and �GM were reduced to correct the peaked histogram.

C bias (m) �GM bias (m) �WN (m)
peaked 563 100 7:62
corrected 800 30 1:00

Table 1: Residual Ratio Histogram Correction

4Orbit determination tool kit (ODTK) is a software capability, licensed and o¤ered by Analytical Graphics, Inc
(AGI).

5Kalman used Sherman�s Theorem as theoretical foundation for the Kalman �lter, but he restricted his use of the
class of Sherman distributions to the normal distribution in order to obtain a computationally tractable algorithm.
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QQ-PLOT

Motivation

Given any two sets of data X and Y , each with n elements xj and yj for j 2 f1; 2; : : : ; ng, we want to
determine graphically if sets X and Y are the same, or if they are "close" to each other. Order each set
smallest to largest. Suppose set X is known. If yj = xj for6 each j, then the graph q (xj) = yj = xj
lies on a diagonal straight line (Figure 3), and set Y is known because Y = X.
For random sets of data X and Y , where Y 6= X, but Y is su¢ ciently close to X, and the

distribution function for X is known, then the distribution function for Y is also known. Choose set
X to be an ordered set of n standard Normal variates. Then if set Y of ordered elements is su¢ ciently
close to set X, then set Y is also a set of n standard Normal variates.

De�nition

Abscissa x

Quantiles on the abscissa are normal variates, derived by inversion of the standard normal N(0; 1)
cumulative distribution function (CDF) F (x). F (x) is de�ned by Equation 1, using dummy variable
� notation, and is graphed in Figure 4.

F (x) =
1p
2�

Z x

�1
exp

�
��2=2

�
d� (1)

F (x), on the ordinate of Figure 4, is partitioned here uniformly on the interval [0; 1] in increments
of 0:1. Notice that x = 0 for F (x) = 0:5. That is F (x) = 0:5 implies

x = F�1 (0:5) = 0

Similarly for F (x) = 0:691462467

x = F�1 (0:69146246) = 0:5

Generally

F�1 (F (x)) = x (2)

Example Given ten uniformly centered values of F (x), then values for x = F�1 (F (x)) were
calculated and are displayed in Table 2. The ten values of x thus calculated, symmetric about the
origin, are the x-axis quantiles for our �rst QQ-Plot.

Ordinate y for Simulation

Draw n values randomly from an N (0; 1) standard normal distribution to simulate post-�t measure-
ment residual ratios, and order them smallest to largest to de�ne the y-axis quantiles.

Ordinate y for Real Measurement Residual Ratios

Given n measurement residual ratios, order them smallest to largest, to de�ne n real-data y-axis
quantiles.

6Elements xj and yj for the ideal case are of course not random.
7See Abramowitz[1] page 966.
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F (x) x
0:05 �1:6448536
0:15 �1:0364334
0:25 �0:67448975
0:35 �0:38532047
0:45 �0:12566135
0:55 +0:12566135
0:65 +0:38532047
0:75 +0:67448975
0:85 +1:0364334
0:95 +1:6448536

Table 2: Abscissa Quantiles

x-axis Quantiles y-axis Quantiles
�1:6448536 �1:1805311
�1:0364334 �0:34795186
�0:67448975 �0:30266471
�0:38532047 �0:27558085
�0:12566135 �0:16322556
+0:12566135 +0:035624810
+0:38532047 +0:067902558
+0:67448975 +0:234433610
+1:0364334 +0:82798437
+1:6448536 +1:2870826

Table 3: QQ Table

QQ-Plot

Each pair of quantiles (x; y) de�nes a dot to be plotted in the plane. Connect the dots to construct
a QQ-Plot.

Example Figure 5 presents the QQ-Plot (a jagged red line within the smooth blue envelope) derived
from Table 3.

ROYSTON-MICHAEL ACCEPTANCE BOUNDARIES

The two smooth blue curves of Figure 5 are Royston-Michael[7] acceptance boundaries for the QQ-
Plot. Royston�s application of Michael�s[5] theoretical development addresses only normal distrib-
utions. Royston suggests validity of sample size N for 7 � N � 1000, based on fairly exhaustive
testing, and validity for 1000 � N � 2000, based on minimum testing. The sample size for Figure 5
is ten, and thus falls at the lower end of sample size validity range.
Table 4 associates � (Alpha) with the normal � (Sigma) interval for the scalar standard normal

distribution N (0; 1).

Royston�s suggested range validity for � is 50% � � � 99:5%. Test signi�cance is de�ned by the
(100� �) per-cent level. Figure 5 uses � = 99:5%, thus test signi�cance for Figure 5 is 0:5%.
The Royston acceptance boundary construction algorithm is a specialization of Michael�s[5] results

to normal distributions. Michael used results due to Noe[6]. From the title of Noe�s paper one sees
that Royston�s algorithm for QQ-Plot acceptance boundaries derives from theory that reaches back
to Kolmogorov and Smirnov (KS) and the KS test statistic.
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Alpha Sigma
68:2689492137% �1
95:4499736104% �2
99:7300203937% �3
99:9936657616% �4
99:9999426697% �5
99:9999998027% �6

Table 4: Associate Alpha with Sigma

Boundaries

The lower Royston-Michael boundary yiL, for i 2 f1; 2; : : : ; ng, is de�ned (Royston[7], page 154,
Section 2.2)

yiL = �y +
p
vF�1

�
sin2 di

�
(3)

where �y is the sample mean on test quantiles, v is the sample variance about the sample mean on
test quantiles, and di is called a critical point. Each critical point di is calculated by an empirically
derived algorithm given by Royston (page154, Section 2.3).
The upper Royston-Michael boundary yiU , for i 2 f1; 2; : : : ; ng, is de�ned

yiU = �y �
p
vF�1

�
sin2 dn�i+1

�
(4)

Graphically, the upper boundary yiU is symmetric with the lower boundary yiL in that the dn�i+1
are the di in inverted order8 .

Unde�ned di
Critical point di is unde�ned if the calculation given for di is negative or zero (Royston, page 154,
Section 2.2). Most of the examples presented herein have unde�ned points at the beginning of the
lower bound sequence in di, and symmetrically at the end of the upper bound sequence in di. This
must be accounted for when graphing the lower and upper boundaries. Inspection of Figure 5 reveals
one blank space at the beginning (left side) of the lower boundary (associate �rst corner in the QQ
line), and one blank space at the end (right side) of the upper boundary (associate last corner in the
QQ line).

QQ-PLOT COMPARISONS BETWEEN A NORMAL DIS-
TRIBUTION AND A NON-NORMAL SHERMAN DISTRI-
BUTION

Distinction between a Normal distribution and a non-Normal Sherman distribution, for a particular
� level, is achieved if the QQ-Plot does cross either boundary line. Distinction, for a particular �
level, is not achieved if the QQ-Plot does not cross either boundary line.
The QQ-Plot capability to distinguish between Normal and non-Normal Sherman distributions is

dependent on sample size when sample size is small. With Figure 14, sample size 200 and � = 90:0%,
the QQ-Plot does distinguish between a Normal and a non-Normal Sherman distribution. With
Figure 15, sample size 100 and � = 90:0%, the QQ-Plot does not distinguish between a Normal and
a non-Normal Sherman distribution. See the subsection Sherman Distributions below for de�nition
of the particular non-Normal Sherman distribution used.

8For C++ indexing with k rather than i, where k 2 f0; 1; 2; : : : ; n� 1g, replace yiU with ykU and
�
sin2 dn�i+1

�
with

�
sin2 dn�k�1

�
in Equation 4.
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TEST QUANTILE DISTRIBUTIONS DISTINGUISHED BY
QQ-PLOT

Normal

Simulations

Figures 5 through 11 present QQ-Plots within acceptance boundaries. Normal N (0; 1) distributions
are thereby indicated.
Figures 7 and 8 have sample size 1000, and have � = 99:5%. But Figure 7 presents an unbiased

QQ-Plot, whereas the QQ-Plot of Figure 8 has a positive bias of 1�, created by adding 1� to simulated
normal N (0; 1) test quantiles. The bias is quanti�ed explicitly by inspection of the QQ-Plot at zero
on the abscissa.
Figures 9 and 10 quantify �atness and peakedness of associated histograms by angular rotations

of the QQ-Plot away from the diagonal with slope m = 1. Measure the slope m > 0 from a QQ-Plot,
then calculate the variance �2

�2 = 1=m2 (5)

where m = 1 implies �2 = 1. Figure 9 is �attened with slope m = 2 = 1=
p
0:25 with � = 1=2, and

Figure 10 is peaked with slope m = 1=2 = 1=
p
4 with � = 2.

Real Data

Let �yk denote real measurement residuals produced by orbit determination at time tk, for k 2
f1; 2; : : : ; ng, and let �y denote a random variable with values �yk. Approximately

E f�yg = 0 (6)

De�ne the unknown true variance �2 on �y

�2 = E
n
(�y)

2
o

(7)

Let �̂2 denote an estimate of �2, input by the operator to the orbit determination �lter algorithm.
Construct a histogram of ratios �yk=�̂, and overlay it with a graph of N (0; 1). If �̂ > �, then the
histogram is peaked relative to N (0; 1), the �lter gain magnitudes are too large, �lter correction
magnitudes are too large, the autonomous �lter editor does not reject as many outliers as expected,
and the mean-squared state error is not minimized. But if �̂ < �, then the histogram is �attened
relative to N (0; 1), the �lter gain magnitudes are too small, �lter correction magnitudes are too
small, an excessive number of measurements are rejected by the autonomous �lter editor, and the
mean-squared state error is not minimized. An example of a peaked histogram is presented in Figure
1 where �̂ > �. Figure 2 was obtained after adjustment of �̂ to achieve �̂ � �. Both histograms are
(approximately) normal. Think of Figure 1 as a scaled version of Figure 2. This is a manual iterative
procedure. Automation can be achieved with the QQ-Plot. Calculate the

� QQ-Plot on �yk for k 2 f1; 2; : : : ; ng

� QQ-Plot slope m

� variance � = 1=m (Equation 5)

Non-Normal Simulations

Figure 12 responds to having replaced one of the original normal N (0; 1) quantiles near the origin with
a 4� outlier, namely 4, prior to calculating boundaries. Figure 12, with � = 90%, shows the QQ-Plot
crossing acceptance boundaries. The test quantiles are rejected as normal N (0; 1) test quantiles.
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Sherman Distributions

By de�nition, a Sherman probability distribution function S (x) is symmetric about its mean �x, and
is convex for all x � �x. Normal distributions are Sherman distributions, but there are an in�nite
number of Sherman distributions that are not normal distributions. Figure 17 was derived from the
non-Normal Sherman distribution function S1 (x)

S1 (x) =

8<: 0 if x < �3
1
4

�
2 + x� x3=27

�
if �3 � x � 3

1 if x > 3
(8)

and Figure 18 was derived from the associated non-Normal Sherman density function s1 (x)

s1 (x) =

8<: 0 if x < �3
1
4

�
1� x2=9

�
if �3 � x � 3

0 if x > 3
(9)

The associated Sherman test quantiles of Figure 13 with sample size 1000, and Figure 14 with sample
size 200, derived from S1 (x), are distinguished as non-Normal distributions by their QQ-Plots. The
associated Sherman test quantiles of Figure 15 with sample size 100, and Figure 14 with sample size
10, derived from S1 (x), are not distinguished as non-Normal distributions by their QQ-Plots.

SAMPLE-SIZE DEPENDENCE

QQ-Plots with acceptance boundaries are presented for sample sizes of 10, 50, 1000, and 100000 (this
last case is not supported or denied by Royston). Boundaries are observed to "close-in" as sample
size increases.

MEASUREMENT RESIDUAL RATIOS

Signi�cant thermal noise w (t) exists as a time-varying component in all electronic spacecraft tracking
measurements. Thermal noise has a normal distribution N(0; �2w (t)) with mean 0 and variance �

2
w (t),

where

�2w (t) = E
�
w2 (t)

	
Form the ratio

R (t) =
w (t)

�w (t)

and notice that R (t) has a standard normal N (0; 1) distribution.

E fR (t)g = 0

E
�
R2 (t)

	
= 1
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Figure 11: Sample Size 100000 Alpha 99.5%

­3 ­2 ­1 0 1 2 3
N(0,1) CDF Inverse Quantiles (σ)

­3

­2

­1

0

1

2

3

Te
st

 Q
ua

nt
ile

s 
(σ

)

QQ­Plot (red)
Royston­Michael­Noe Acceptance Boundaries (blue)

Sample Size = 50 α = 90%   Seed #0
test quantiles N(0,1) except for +4

prob = 0.0000633, for 4σ N(0,1) variate
(0.0000633)(50) = 0.003167

Figure 12: Test Quantiles: Forty-Nine N(0,1) Variates & One with Value 4

14



­5 ­3 ­1 1 3 5
N(0,1) CDF Inverse Quantiles (σ)

­5

­3

­1

1

3

5

Sh
er

m
an

 1
 T

es
t Q

ua
nt

ile
s 

(σ
)

QQ­Plot (red)
Royston­Michael­Noe Acceptance Boundaries (blue)

Sample Size = 1000 α = 95.44%   Seed #0

Sherman 1 CDF
                0                     if   x < ­3
   (2 + x ­ x^3/27)/4         if  |x| ≤ 3
                1                     if   x > 3

N(0,1) and Sherman 1 CDFs are both symmetric and convex
This graph demonstrates ability of the QQ­Plot to distinguish them

Figure 13: Sample Size 1000 Does Distinguish Sherman 1 from N(0,1)

­5 ­3 ­1 1 3 5
N(0,1) CDF Inverse Quantiles (σ)

­5

­3

­1

1

3

5

Sh
er

m
an

 1
 T

es
t Q

ua
nt

ile
s 

(σ
)

QQ­Plot (red)
Royston­Michael­Noe Acceptance Boundaries (blue)

Sample Size = 200 α = 90%   Seed #1000

N(0,1) and Sherman CDFs are both symmetric and convex
This graph demonstrates ability of the QQ­Plot to distinguish them

Figure 14: Sample Size 200 Does Distinguish Sherman 1 from N(0,1)

15



­4 ­2 0 2 4
N(0,1) CDF Inverse Quantiles (σ)

­4

­2

0

2

4

Sh
er

m
an

 1
 T

es
t Q

ua
nt

ile
s 

(σ
)

QQ­Plot (red)
Royston­Michael­Noe Acceptance Boundaries (blue)

N(0,1) and Sherman CDFs are both symmetric and convex
This graph demonstrates inability of the QQ­Plot to distinguish them

Sample Size = 100 α = 90%   Seed #1000

Figure 15: Sample Size 100 Does Not Distinguish Sherman 1 from N(0,1)
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Sample Size = 10 α = 99.5%   Seed #0

N(0,1) and Sherman CDFs are both symmetric and convex
This graph demonstrates inability of the QQ­Plot to distinguish them

Figure 16: Sample Size 10 Does Not Distinguish Sherman 1 from N(0,1)
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Figure 17: Sherman Probability Distribution Function S1 (x)
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Figure 18: Sherman Probability Density Function s1 (x)
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